
Recap
Questions

Studio 09-D
Sorting and memoization

Jia Xiaodong

22 Oct 2018

Jia Xiaodong Studio 09-D

Recap
Questions

Loops
Searching
Memoization

Loops

Definition

A for loop is made as such:

for (expr a; expr b; expr c) {

statements

}

Definition

A while loop is made as such:

while (expression) {

statements

}

Jia Xiaodong Studio 09-D

Brief recap.

Recap
Questions

Loops
Searching
Memoization

Something useful

Loops model iterative processes.

Consider

function findmin(arr) {

let a = Infinity;

for (let i = 0; i < length(arr); i = i + 1) {

if (arr[i] < a) {

a = arr[i];

}

}

return a;

}

Jia Xiaodong Studio 09-D

Loops are a good way of doing something over and over again. This
is a very natural concept for humans. Consider this function to find
the smallest element in an array. We simply go through the array one
by one and keep track of the smallest element we have seen so far.

Recap
Questions

Loops
Searching
Memoization

Checking for existence

Consider

function find(arr, x) {

for (let i = 0; i < length(arr); i = i + 1) {

if (arr[i] === x) {

return i;

}

}

return -1;

}

Questions to ask:

How fast is this?

Can we do better?

Jia Xiaodong Studio 09-D

Let’s look at this function to find something in an array. Again it is
easy to model this as an iterative process. We go through the array
one by one and compare it with what we are looking for.

How fast is this? Certainly it is in linear time.

Can we do better? No. If the list is random, then in the worst case, we
must check everything. Perhaps sometimes we might be lucky and
stop earlier, but on average you can imagine the number of checks
would be n/2 times so it will still be linear.

However we have seen binary search trees before in the assignments
and we know that if a list is sorted the search is much faster than
linear. This is because the extra information given by the ordering
guides our search.

Recap
Questions

Loops
Searching
Memoization

Sorting

Easy! Consider this:

Algorithm

Input: arr to sort.

1 If arr not empty, do m = findMin(arr), remove m from arr (or
set it to ∞).

2 Append m to an array res, return to step 1.

3 Return res.

How fast is this?

Can we improve?

Jia Xiaodong Studio 09-D

Let us try to sort things. This is one of the simplest kind of sorts. We
just keep taking the smallest element out and appending it to another
array. If you recall your lectures this looks vaguely like insertion sort
but it is perhaps even simpler than that.

How fast does this run? Quadratic time. See if you can reason why.

Recap
Questions

Loops
Searching
Memoization

Better sorts

Merge sort:

Split arrays into two

Sort both halves recursively

Merge both halves in linear time

Merge at each level takes O(n) time. There are lg n levels of
splits. Total: O(n lg n) time.

Jia Xiaodong Studio 09-D

So the more naive approaches aren’t cutting it. Enter merge sort. With
the power of wishful thinking we can now sort things, fast.

With this we get from quadratic to linearithmic time. Can we go any
faster? It turns out that the answer is no. There is a proof for this
relying on information theory which is quite elegant. You can find
it on Wikipedia. In essence, we start off from a state of complete
ignorance and decide at every comparison the order of the elements
we have seen. So the algorithm kind of generates a decision tree.
Each node is a possible ordering of the elements. This decision tree
is balanced, which roughly means that the tree branches are all about
the same length (there isn’t a super long branch sticking out). The
worst case runtime is then the length of the longest branch, which
turns out to be n lg n.

Recap
Questions

Loops
Searching
Memoization

Aside

I want to get the median element of an array.

Brute force method: findMin n
2 times?

How fast is this?

Sort the array and take the n
2 -th element?

How fast is this?

Can we go faster?

Jia Xiaodong Studio 09-D

We have seen this before.

Recap
Questions

Loops
Searching
Memoization

Select-Kth

function pivot(arr)...

function partition(arr, p)...

function select(k, arr) {

p = pivot(arr);

L, R = partition(arr, p);

if (length(L) === k - 1)

return arr[p];

else if (length(L) > k - 1)

return select(L, k);

else if (length(L) < K - 1)

return select(R, k - length(L) - 1);

}

Jia Xiaodong Studio 09-D

Recap
Questions

Loops
Searching
Memoization

Quicksort

function pivot(arr)...

function partition(arr, p)...

function quicksort(arr, lo, hi) {

if (lo < hi) {

const pivot = partition(A, lo, hi);

quicksort(arr, lo, pivot - 1);

quicksort(arr, pivot + 1, hi);

}

}

Jia Xiaodong Studio 09-D

There is a sort method very similar to what we have just seen known
as quicksort. The idea is quite simple — we pick a pivot and put the
smaller things on one side and the larger things on the other side.
Then we use some wishful thinking and sort both sides. We now end
up with a sorted list.

Recap
Questions

Loops
Searching
Memoization

Memoization

Memoization:

Put things down on a memo pad.

Referentially transparent 1.

1Usually you won’t have to worry about this.

Jia Xiaodong Studio 09-D

Memoization is a simple technique that can result in huge time sav-
ings. All you have to do is to find a signature for your recursive calls,
and save them into some array. Then in the future you can refer back
to the array instead of recalculating everything.

A recursive function can only be memoized if it is referentially trans-
parent, or if it is pure. Intuitively this means the function does not
change the state of anything else. A function that reads and modifies
an array that is not local to it is therefore not referentially transpar-
ent. You can see why this cannot be memoized — the function is not
guaranteed to do the same thing every time it is run.

This is more of a note, though. In this course it will be quite clear
when you can and when you cannot memoize something.

Recap
Questions

Tutorial questions

S10 Q1

Draw the environment during the evaluation of the following:

function swap(A, i, j) {

let temp = A[i];

A[i] = A[j];

A[j] = temp;

}

function reverse_array(A) {

const len = array_length(A);

const half_len = math_floor(len / 2);

let i = 0;

while (i < half_len) {

const j = len - 1 - i;

swap(A, i, j);

i = i + 1;

}

}

const arr = [1, 2, 3, 4, 5];

reverse_array(arr);

arr;

Skipped

Jia Xiaodong Studio 09-D

This question is skipped. Answers will be shared somewhere else.

Recap
Questions

Tutorial questions

S10 Q2

function bubblesort_array(A) {

const len = array_length(A);

for (let i = len - 1; i >= 1; i = i - 1) {

for (let j = 0; j < i; j = j + 1) {

if (A[j] > A[j + 1]) {

const temp = A[j];

A[j] = A[j + 1];

A[j + 1] = temp;

} else { }

}

}

}

What is the time complexity for this function?

O(n2).

Jia Xiaodong Studio 09-D

The two loops each go through the array (almost) once. The if block
takes constant time to finish. So in total it runs in quadratic time.

Recap
Questions

Tutorial questions

S10 Q2

Write bubblesort_list that works on lists instead of arrays.

function bubblesort_array(A) {

const len = array_length(A);

for (let i = len - 1; i >= 1; i = i - 1) {

for (let j = 0; j < i; j = j + 1) {

// swap if larger

if (A[j] > A[j + 1]) {

const temp = A[j];

A[j] = A[j + 1];

A[j + 1] = temp;

} else { }

}

}

}

function bubblesort_list(L) {

const len = length(L);

for (let i = len - 1; i >= 1; i = i - 1) {

let p = L;

for (let j = 0; j < i; j = j + 1) {

if (head(p) > head(tail(p))) {

const temp = head(p);

set_head(p, head(tail(p)));

set_head(tail(p), temp);

} else { }

p = tail(p);

}

}

}

Jia Xiaodong Studio 09-D

It is important to know how bubble sort works before we go in. Bub-
ble sort works by “bubbling” the big items to the end of the list. On
every pass, the largest bubble will rise to become the last element of
the list. Then we repeat the procedure again, ignoring the last ele-
ment because it is already in the correct position.

So what do we have to change here? The outer loop can stay the same.
Its purpose is to keep track of the number of times we have bubbled
something up. It does not do anything to the list itself so we don’t
need to touch it. The inner loop has controls over the swapping so we
will have to modify that. The simplest way would be to traverse the
list left to right by calling tail. To swap, we would just use set_head

on the contents of the two list cells.

Recap
Questions

Tutorial questions

S10 Q3

function coin_change(amount, kinds_of_coins) {

if (amount === 0) {

return 1;

} else if (amount < 0 || kinds_of_coins === 0) {

return 0;

} else {

return coin_change(amount, kinds_of_coins - 1)

+ coin_change(amount - first_denomination(kinds_of_coins), kinds_of_coins);

}

}

function first_denomination(kinds_of_coins) {

return [undefined, 5, 10, 20, 50, 100][kinds_of_coins];

}

Can this be memoized?

Jia Xiaodong Studio 09-D

Can this be memoized? Yes, it certainly can be. However a better
question is: should this be memoized? Yes. This is because if you try
an example run you will meet many duplicate computations. When-
ever this occurs we should consider memoization to cut down on
computing time.

Recap
Questions

Tutorial questions

S10 Q3

Implement the memoized version, and give its space and time complexities.

function mcc(n, k) {

if (read(n, k) !== undefined) {

return read(n, k);

} else {

const result = n === 0

? 1

: n < 0 || k === 0

? 0

: mcc(n, k - 1)

+ mcc(n - first_denomination(k), k);

write(n, k, result);

return result;

}

}

Jia Xiaodong Studio 09-D

Here is an implementation. It is quite a simple change.

This implementation is not complete. There are some extra checks
you have to perform that have been left out. For example, you need to
handle the case of accessing undefined entries in your memo, which
will otherwise crash your program. Also write will need some checks
to prevent writing to invalid locations. However those are fairly sim-
ple, and left for you to fill in.

	Recap
	Loops
	Searching
	Memoization

	Questions
	Tutorial questions

