
Introduction
Streams

Questions

Streams

Jia Xiaodong

October 25, 2021

Jia Xiaodong Streams



Introduction
Streams

Questions
Declarative Programming

Declarative Programming

Simply put, a declarative style means:

We declare what we the program wants to do.

What to do, not how to do it.

Example

SELECT * FROM students WHERE name="Bob"

sibling(X,Y) :- parent(Z,X), parent(Z,Y), X\==Y.

Jia Xiaodong Streams



Introduction
Streams

Questions
Declarative Programming

Being lazy

Short-circuiting

false && big_calc && massive_calc – we don’t need to evaluate
everything!

Copy On Write

If you make a copy of a file do we need to comply? Just keep one
file, and only ”really” make a copy when you start editing the copy!

Lazy evaluation

Why must we evaluate a statement on assignment? Let’s
procrastinate until when it is really needed.

Jia Xiaodong Streams

There are times to be eager, or over-eager. For example modern CPUs
speculatively execute instructions that you haven’t told it to, for exam-
ple when waiting for memory to be addressed. It may have wasted a
load of effort, but statistically speaking it is definitely faster.

However there is a benefit to laziness. Sometimes it is an optimiza-
tion. Often the most elegant or creative solutions are the laziest. Yet
machines don’t really slack off. So we have to artificially introduce
some laziness into the system.



Introduction
Streams

Questions
Declarative Programming

Application: Lists

The first element of N
head(enum_list(0, Infinity));

Some element of N
list_ref((enum_list(0, BIGNUMBER), BIGNUMBER + 1);

Jia Xiaodong Streams

A contrived example.

These things don’t work. This is because we aren’t lazy! We are
trying to evaluate these huge objects. However, do we really need all
the way to infinity in one go? Can’t we just hand out the next value
when we need it?



Introduction
Streams

Questions

Lazy Lists
Stream Operations
Infinity and Beyond

Delaying Lists

Definition

A list is a pair whose head is of type any and whose tail is of type
list | null.

Definition

A lazy list is a pair whose head is of type any and whose tail is of
type (() => lazy list) | (null).

Example

empty = null;

one = pair(1, () => 1);

thing = pair(1, () => thing); // recursive structures

Jia Xiaodong Streams

We have talked about this before. There is one way for us to delay the
evaluation of our lists, and that is with functions. With an anonymous
function we can create a closure around the scope the object resides
in and potentially create a recursive structure. This is what makes
streams so powerful.



Introduction
Streams

Questions

Lazy Lists
Stream Operations
Infinity and Beyond

Operations

Definition

A lazy list is a pair whose head is of type any and whose tail is of
type (() => lazy list) | (null).

Of course, we need to adapt our list operations to fit the lazy
version:

head: as per normal.

tail: Do a normal tail, then call the function ().

Jia Xiaodong Streams

Now we need new operations to go with our lazy lists. Looking at
the definition it is easy to find a new definition. What about the other
operations?



Introduction
Streams

Questions

Lazy Lists
Stream Operations
Infinity and Beyond

Operations: map

Eager map

function map(f, xs) {

return is_null(xs) ? null

: pair(f(head(xs)), map(f, tail(xs)));

}

Lazy map

function stream_map(f, xs) {

return is_null(xs) ? null

: pair(f(head(xs)),

() => stream_map(f, stream_tail(xs)));

}

Jia Xiaodong Streams



Introduction
Streams

Questions

Lazy Lists
Stream Operations
Infinity and Beyond

Operations: filter

Eager filter

function filter(pred, xs)

return is_null(xs) ? xs : pred(head(xs))

? pair(head(xs), filter(pred, tail(xs)))

: filter(pred, tail(xs));

Lazy filter

function stream_filter(pred, xs)

return is_null(xs) ? null : pred(head(xs))

? pair(head(xs), () =>

stream_filter(pred, stream_tail(xs)))

: filter(pred, stream_tail(xs));

Jia Xiaodong Streams



Introduction
Streams

Questions

Lazy Lists
Stream Operations
Infinity and Beyond

An application

What does this do?

!is_null(head(stream_filter(x => x,

stream_map(x => is_prime(x),

enum_stream(A, B)))));

It checks if there is a prime between A and B. Some questions:

How lazy is it?

Is map “equally lazy” as filter1?

No.
stream_filter consumes until it finds a passing candidate.
stream_map strictly consumes only one element at a time.

1They are all lazy, but some things are more lazy than others.

Jia Xiaodong Streams

Here is an example of something we can do. By mapping every num-
ber in a range to its is_prime result, we can check if there is a prime
in this range by filtering for true. On an ordinary list, this will check
all elements, but not so for a stream. It will stop once it finds the first
one.

Naturally filter is less lazy than map since it has to actually find the
next item that satisfies the predicate.



Introduction
Streams

Questions

Lazy Lists
Stream Operations
Infinity and Beyond

Recursive streams

Ones

const one = pair(1, () => one);

Constructing N
N = pair(0, () => one + 1) // ???

const next =

s => pair(head(s)+1, () => next(stream_tail(s)));

const N = pair(0, () => next(N));

Jia Xiaodong Streams

There is a method presented in the lecture slides to generate the natu-
ral numbers. Here we present another way to showcase how you can
build recursive structures.

Starting with 0, we want to constantly add 1 to it. Essentially, we can
think of it being like map, but instead of applying the function (+1)
just once, we apply it more and more each time we go down the list
(compare the program here with the definition of map). The secret to
stacking the applications is to make N have a tail that is next(N),
which will give us (0, (1, () => next((1, ...)))) on the first
evaluation. Another time, (0, (1, (2, () => next((2, ...))))).



Introduction
Streams

Questions
Tutorial questions

S11 Q1

What is A?

const A = pair(1, () => scale_stream(2, A));

function scale_stream(c, stream) {

return stream_map(x => c * x, stream);

}

function stream_map(f, xs) {

return is_null(xs) ? null

: pair(f(head(xs)),

() => stream_map(f, stream_tail(xs)));

}

Repeated calls on tail:

A = (1, () => scale_s(2, A))

t = (2, () => s_map((2*), t))

tt = (4, () => s_map((2*), tt))

Powers of 2.
Jia Xiaodong Streams

We can evaluate this a few times to get a feel for what’s going on. I
have used some shorthand here but it will quickly become clear what
they mean.

• The original list.

• Call stream_tail. This calls stream_map that returns a new list
with the head multiplied by 2, and the tail is stream_tail(A)
(since xs <- A here). The tail evaluates to scale_stream(2, A),
which is basically the pair we have here, so I mark it as t for
tail.

• Call stream_tail again. Same thing happens. tt stands for tail
tail.

Note: here we evaluate the bodies of the lambda functions. This is
not correct behaviour, but only illustrative. We can get away with it
here and in most places, and it saves a lot of space worrying about
scopes and closures.



Introduction
Streams

Questions
Tutorial questions

S11 Q1

What is B?

const B = pair(1, () => mul_streams(B, integers));

function mul_streams(a,b) {

return pair(head(a) * head(b),

() => mul_streams(stream_tail(a), stream_tail(b)));

}

Repeated calls on tail:

B = (1, () => mul_s(B, (1, ...)))

t = (1, () => mul_s(t, (2, ...)))

tt = (2, () => mul_s(tt, (3, ...)))

ttt = (6, () => mul_s(ttt, (4, ...)))

Factorials.

Jia Xiaodong Streams

We do the same thing.

• The original list.

• Calls stream_tail. This will create a new pair whose head is
the multiplication of the heads of B and ints, which is 1 * 1.
The tail is then the lambda in the function body.

• The pattern repeats.

Note: again the order of evaluation here is wrong on purpose to save
some space and make life easier.



Introduction
Streams

Questions
Tutorial questions

S11 Q2

What does this do?

function stream_pairs(s) {

return is_null(s)

? null

: stream_append(

stream_map(

sn => pair(head(s), sn),

stream_tail(s)),

stream_pairs(stream_tail(s)));

}

On the finite stream 1,2,3,4,5:

pair(1, 2), pair(1, 3), pair(1, 4), pair(1, 5),

pair(2, 3), pair(2, 4), pair(2, 5),

pair(3, 4), pair(3, 5),

pair(4, 5)

Jia Xiaodong Streams

The function produces a stream containing all pairs (pi, pj) where pi
comes before pj in the input stream s.

We can see this from the s_map call. This converts every element in
s_tail(s) into a pair (head(s), sn). This is then appended with a
call to s_pairs(s_tail(s)). Using some wishful thinking, we obtain
our conclusion.



Introduction
Streams

Questions
Tutorial questions

S11 Q2

function stream_pairs(s) {

return is_null(s)

? null

: stream_append(

stream_map(

sn => pair(head(s), sn),

stream_tail(s)),

stream_pairs(stream_tail(s)));

}

What does this do: stream_pairs(integers)?

function stream_append(xs, ys) {

return is_null(xs)

? ys

: pair(head(xs),

() => stream_append(stream_tail(xs), ys));

}

It runs forever.
Jia Xiaodong Streams

We do not even need how stream_append is implemented. The
problem is stream_pairs is not exactly lazy. Each time it calls
stream_append (which is lazy), but by doing so the arguments have
to be evaluated which causes another recursive call to stream_pairs

to be made and the cycle will never stop since the input stream is
infinite.



Introduction
Streams

Questions
Tutorial questions

S11 Q2

function stream_append_pickle(xs, ys) {

return is_null(xs)

? ys()

: pair(head(xs),

() => stream_append_pickle(stream_tail(xs), ys));

}

function stream_pairs2(s) {

return is_null(s)

? null

: stream_append_pickle(

stream_map(

sn => pair(head(s), sn),

stream_tail(s)),

() => stream pairs2(stream tail(s)));

}

Additions in red. How does this work?

Laziness!

pair(1, 2), pair(1, 3), pair(1, 4), ...

Jia Xiaodong Streams

We have solved the problem by making the function lazy. We do this
with the same way we make lists lazy, by delaying evaluation using
an anonymous function. Now append does not demand two proper
streams, but one stream xs and another delayed/pickled one ys that
waits for xs to be exhausted first before being evaluated.

However this introduces one problem. If xs is infinite, then ys

will never actually be activated. This is reflected in the output of
stream_pairs2(integers).



Introduction
Streams

Questions
Tutorial questions

S11 Q2

How to make our pickled version utilize ys as well when xs is
infinite?

function interleave_stream_append(xs, ys) {

return is_null(xs)

? ys()

: pair(head(xs),

() => interleave_stream_append(

ys(), () => stream tail(xs)));

}

Jia Xiaodong Streams

To give a chance to both streams, we will have to interleave them. This
is quite a common thing to do in the electronics and computing world.
For example, you have interlaced video and images.

In our case, we will have to change our append function to just swap
xs and ys around after every call so they are utilized equally.



Introduction
Streams

Questions
Tutorial questions

S11 Q3

Create the streams alt_ones, zeros, pos_integers.

const alt_ones = pair(1, () => pair(-1, () => alt_ones));

const zeros = add_streams(alt_ones, stream_tail(alt_ones));

const ones = pair(1, () => ones);

const pos_integers =

pair(1, () => add_streams(ones, pos_integers));

Jia Xiaodong Streams

These are fairly simple exercises. We have already seen ones be-
fore. alt_ones is similar in spirit, a simple circular list kind of thing.
zeros can be achieved with adding two alt_ones together with one
of them offset by 1 unit. pos_integers is created by adding ones to
pos_integers, similar to how we created the stream N previously.



Introduction
Streams

Questions
Tutorial questions

S11 Q4

Write a function to multiply two streams together like gradeschool
multiplication.

1 1 1 1

1 2 3 4

1 1 1 1

2 2 2 2

3 3 3 3

1 3 6 · · ·

Jia Xiaodong Streams

Given two streams, we want to pretend each element is a digit and
multiply them in the gradeschool fashion.

In the figure, what we want to achieve is the black output at the
bottom. We see that we will need two things: add_streams and
scale_streams. It is quite simple once we get the recursive relation-
ship down. In this example, we see the relation is

1111× 1234 = 1111× 234 + 1111× 1000.

Hence what we can do is add two series together: the wishful think-
ing series where we multiply s1 with s_tail(s2), and the other series
comprising of actually multiplying s1 with head(s2)



Introduction
Streams

Questions
Tutorial questions

S11 Q4

function mul_series(s1, s2) {

return pair(head(s1) * head(s2),

() => add_series(

stream_tail(scale_series(head(s2), s1)),

mul_series(stream_tail(s2), s1)));

}

Jia Xiaodong Streams


	Introduction
	Declarative Programming

	Streams
	Lazy Lists
	Stream Operations
	Infinity and Beyond

	Questions
	Tutorial questions


