
Introduction
Questions

Studio 09-D
Metacircular Evaluator

Jia Xiaodong

5 Nov 2019

Jia Xiaodong Studio 09-D

Introduction
Questions

What is it
Programming Languages
Parsing
Evaluation

What is it?

Meta

About itself.

Circular

The language is implemented in itself (self-hosting).

Evaluator

Jia Xiaodong Studio 09-D

So what is a MCE anyway? Quite simply, it’s a program written
in Source (or any language for that matter) that executes a program
written in Source just like Source would. In other words, it is a Source
interpreter written in Source! As you might know Source is written
in JavaScript, so the interpreter in the browser is not a MCE. However
once we have such a thing, we could write a Source program to mimic
this interpreter.

Introduction
Questions

What is it
Programming Languages
Parsing
Evaluation

Programming

Leaving the abstract: how does a computer work?

They operate on a pre-defined language — machine code.

Normal desktops and laptops: x86

Mobile devices: ARM

eg.: 893C2500000000

Can be read with tools eg. xxd, hexdump.

Not very friendly for humans.

Assembly: macros
eg.: mov $0x1,%edi

Can be read with tools eg. gdb.

High level programming languages:

return 1;

Can be read with tools eg. your eyes

Jia Xiaodong Studio 09-D

In most fields progress is made by building up on abstractions. For
instance in the creation of computers. The earliest computers were
unable to be programmed. The stored program computer was a rev-
olution that first appeared in theoretical computer science as “univer-
sal machines”.

The history of programming is a lot older than what is on this slide.
For example, punch cards and tape. However the stepping stone to-
wards our modern idea of programming language were the gradual
abstraction of “macros” for CPU instructions. From binary to assem-
bly then to low level languages like C, followed by huge strides of ab-
straction in operating systems, virtual machines, etc., which allowed
for more high level languages.

Introduction
Questions

What is it
Programming Languages
Parsing
Evaluation

Parsing

Parsing is the way to comprehend a language.

The programming language is defined with strict rules.

The language can be decomposed into elements with these
rules.

Can be seen with parse(str) in Source.

Jia Xiaodong Studio 09-D

In the execution of a program there are two main steps. The first
step is parsing. A language first is built up of very strict rules. For
most programming languages this is specified as a kind of context-
free grammar. This is specified on the language spec sheet. This serves
as a solid foundation for the execution of our language because it
should leave no room for doubt as to what the computer understands
by a certain program. Languages that are too strict are too hard to
program in, and languages that are too loose (human languages, for
example) have too much freedom of interpretation.

We will not go into how parsing is done.

Introduction
Questions

What is it
Programming Languages
Parsing
Evaluation

Evaluation

Irreducible things: done.

Reducible things: evaluate statement by statement.

See lecture slides for step-by-step walkthrough.

Jia Xiaodong Studio 09-D

For evaluation we just follow the same evaluation rules we have been
using all this while. There are a few pre-defined things that are ir-
reducible. For anything that is reducible, we try to reduce it along
the reduction rules. For example functions are called, arithmetic is
calculated, etc.

Introduction
Questions

Tutorial questions

S12 Q1

Implement function definition hoisting in the MCE.

function reorder_statements(stmts) {

function split_statements(stmts) {

if (is_null(stmts)) {

return pair(null, null);

} else {

const first_statement = head(stmts);

const split_rest = split_statements(tail(stmts));

return is_function_declaration(first_statement)

? pair(pair(first_statement, head(split_rest)),

tail(split_rest))

: pair(head(split_rest),

pair(first_statement, tail(split_rest)));

}

}

const split = split_statements(stmts);

return append(head(split), tail(split));

}

Jia Xiaodong Studio 09-D

We want to move all function declarations in a block to the top. We
can do this anywhere before evaluate but certainly the most conve-
nient place to do it is right at evaluate. The line in question is the
line eval_sequence(sequence_statements(component), env).

Here is a simple way of doing this. Keep a pair of lists. Go through
the list of statements, and every time we meet a function declaration,
put it into the head list. Otherwise, put it into the tail list. Then at the
end, merge these two lists, and we are done.

Introduction
Questions

Tutorial questions

S12 Q2

Make the MCE detect undeclared names.

function evaluate(component, env) {

return is_literal(component)

? literal_value(component)

: is_name(component)

? lookup_symbol_value(

symbol_of_name(component),

env)

: is_application(component)

? apply(

evaluate(

function_expression(component),

env),

list_of_values(

arg_expressions(component),

env))

: is_operator_combination(component)

? evaluate(

operator_combination_to_application(component),

env)

function check_names(component, env) {

is_literal(component)

? "ok"

: is_name(component)

? lookup_symbol_value(symbol_of_name(component), env)

: is_application(component)

? check_names(

make_sequence(

pair(function_expression(component),

arg_expressions(component))),

env)

: is_operator_combination(component)

? check_names(

operator_combination_to_application(component),

env)

Jia Xiaodong Studio 09-D

This is actually quite tedious. This is because there can be many ways
a name might appear. For example we not only have to check for sim-
ple things like a+2, but also undeclared function name, undeclared
function parameters, inside return expressions, etc.

Fortunately, the evaluate function already separates out all the pos-
sible cases. All we have to do, is to extend the function to check the
names.

	Introduction
	What is it
	Programming Languages
	Parsing
	Evaluation

	Questions
	Tutorial questions

