
Programs
Source

Introduction

Jia Xiaodong

Last revised August 16, 2021

Jia Xiaodong Introduction



Programs
Source

Evaluation

How are programs run? *

• Stored program computer

• In essence, just 1’s and 0’s

• Set up macros to ease the pain (assembly)

• Set up more macros (low level languages)

• Either compile it back for the computer to read, or get
something to interpret it

Jia Xiaodong Introduction



Programs
Source

Evaluation

How are programs run? *

• Stored program computer

• In essence, just 1’s and 0’s

• Set up macros to ease the pain (assembly)

• Set up more macros (low level languages)

• Either compile it back for the computer to read, or get
something to interpret it

Jia Xiaodong Introduction



Programs
Source

Evaluation

How are programs run? *

• Stored program computer

• In essence, just 1’s and 0’s

• Set up macros to ease the pain (assembly)

• Set up more macros (low level languages)

• Either compile it back for the computer to read, or get
something to interpret it

Jia Xiaodong Introduction



Programs
Source

Evaluation

How are programs run? *

• Stored program computer

• In essence, just 1’s and 0’s

• Set up macros to ease the pain (assembly)

• Set up more macros (low level languages)

• Either compile it back for the computer to read, or get
something to interpret it

Jia Xiaodong Introduction



Programs
Source

Evaluation

How are programs run? *

• Stored program computer

• In essence, just 1’s and 0’s

• Set up macros to ease the pain (assembly)

• Set up more macros (low level languages)

• Either compile it back for the computer to read, or get
something to interpret it

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Expressions

• Programs are made of sequences of statements.

• All statements are things such as

– const asd = 123;
– Blocks {program},
– Expressions

• And expressions are made of primitives like

– 1; "hi"; true; . . .
– Unary operators -5; !true;
– Binary operators 5 - 2; 10 < 5; "a" === "b";
– Ternary operator expr1 ? expr2 : expr3

• Expressions produce results.

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Expressions

• Programs are made of sequences of statements.
• All statements are things such as

– const asd = 123;
– Blocks {program},
– Expressions

• And expressions are made of primitives like

– 1; "hi"; true; . . .
– Unary operators -5; !true;
– Binary operators 5 - 2; 10 < 5; "a" === "b";
– Ternary operator expr1 ? expr2 : expr3

• Expressions produce results.

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Expressions

• Programs are made of sequences of statements.
• All statements are things such as

– const asd = 123;

– Blocks {program},
– Expressions

• And expressions are made of primitives like

– 1; "hi"; true; . . .
– Unary operators -5; !true;
– Binary operators 5 - 2; 10 < 5; "a" === "b";
– Ternary operator expr1 ? expr2 : expr3

• Expressions produce results.

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Expressions

• Programs are made of sequences of statements.
• All statements are things such as

– const asd = 123;
– Blocks {program},

– Expressions

• And expressions are made of primitives like

– 1; "hi"; true; . . .
– Unary operators -5; !true;
– Binary operators 5 - 2; 10 < 5; "a" === "b";
– Ternary operator expr1 ? expr2 : expr3

• Expressions produce results.

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Expressions

• Programs are made of sequences of statements.
• All statements are things such as

– const asd = 123;
– Blocks {program},
– Expressions

• And expressions are made of primitives like

– 1; "hi"; true; . . .
– Unary operators -5; !true;
– Binary operators 5 - 2; 10 < 5; "a" === "b";
– Ternary operator expr1 ? expr2 : expr3

• Expressions produce results.

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Expressions

• Programs are made of sequences of statements.
• All statements are things such as

– const asd = 123;
– Blocks {program},
– Expressions

• And expressions are made of primitives like

– 1; "hi"; true; . . .
– Unary operators -5; !true;
– Binary operators 5 - 2; 10 < 5; "a" === "b";
– Ternary operator expr1 ? expr2 : expr3

• Expressions produce results.

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Expressions

• Programs are made of sequences of statements.
• All statements are things such as

– const asd = 123;
– Blocks {program},
– Expressions

• And expressions are made of primitives like

– 1; "hi"; true; . . .

– Unary operators -5; !true;
– Binary operators 5 - 2; 10 < 5; "a" === "b";
– Ternary operator expr1 ? expr2 : expr3

• Expressions produce results.

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Expressions

• Programs are made of sequences of statements.
• All statements are things such as

– const asd = 123;
– Blocks {program},
– Expressions

• And expressions are made of primitives like

– 1; "hi"; true; . . .
– Unary operators -5; !true;

– Binary operators 5 - 2; 10 < 5; "a" === "b";
– Ternary operator expr1 ? expr2 : expr3

• Expressions produce results.

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Expressions

• Programs are made of sequences of statements.
• All statements are things such as

– const asd = 123;
– Blocks {program},
– Expressions

• And expressions are made of primitives like

– 1; "hi"; true; . . .
– Unary operators -5; !true;
– Binary operators 5 - 2; 10 < 5; "a" === "b";

– Ternary operator expr1 ? expr2 : expr3

• Expressions produce results.

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Expressions

• Programs are made of sequences of statements.
• All statements are things such as

– const asd = 123;
– Blocks {program},
– Expressions

• And expressions are made of primitives like

– 1; "hi"; true; . . .
– Unary operators -5; !true;
– Binary operators 5 - 2; 10 < 5; "a" === "b";
– Ternary operator expr1 ? expr2 : expr3

• Expressions produce results.

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Expressions

• Programs are made of sequences of statements.
• All statements are things such as

– const asd = 123;
– Blocks {program},
– Expressions

• And expressions are made of primitives like

– 1; "hi"; true; . . .
– Unary operators -5; !true;
– Binary operators 5 - 2; 10 < 5; "a" === "b";
– Ternary operator expr1 ? expr2 : expr3

• Expressions produce results.

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Abstraction

Abstraction, the wagon of progress.

Iron Mine Furnace Steel Factory

Coal Mine Turbine Pump

Factory
Oblivious
Persons

Ore Metal

Power

Coal

Water

Coal

Steel Sheet

Toys

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Functions

Example

What does this do?

function norm(x, y) {

return math_sqrt(x * x + y * y);

}

Good to know

• display

• math_PI, math_log, . . .

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Functions

Example

What does this do?

function norm(x, y) {

return math_sqrt(x * x + y * y);

}

Good to know

• display

• math_PI, math_log, . . .

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Conditionals

The if-else statement:

if (expr) {

program;

} else if (expr2) {

program2;

} else {

program3;

}

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Ternary operator

predicate ? consequent : alternative

Examples

• 5 < 2 ? 10 : 100;

• "a" < "b" ? 1 : 2;

• "a" < "A" ? 1 : 2;

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Ternary operator

predicate ? consequent : alternative

Examples

• 5 < 2 ? 10 : 100;

• "a" < "b" ? 1 : 2;

• "a" < "A" ? 1 : 2;

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Ternary operator

predicate ? consequent : alternative

Examples

• 5 < 2 ? 10 : 100;

• "a" < "b" ? 1 : 2;

• "a" < "A" ? 1 : 2;

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Ternary operator

predicate ? consequent : alternative

Examples

• 5 < 2 ? 10 : 100;

• "a" < "b" ? 1 : 2;

• "a" < "A" ? 1 : 2;

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Short circuiting

predicate ? consequent : alternative

Example

What does this do?

1 === 2 && display("No")

Good to know

Some operators are also lazy!

1 === 2 ? display("No") : 1;

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Short circuiting

predicate ? consequent : alternative

Example

What does this do?

1 === 2 && display("No")

Good to know

Some operators are also lazy!

1 === 2 ? display("No") : 1;

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Modulo

• We can do + - * /

• New operator: %

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Modulo

• We can do + - * /

• New operator: %

Jia Xiaodong Introduction


	Programs
	Evaluation

	Source
	Expressions
	Functions
	New operator


