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Evaluation

How are programs run? *

• Stored program computer

• In essence, just 1’s and 0’s

• Set up macros to ease the pain (assembly)

• Set up more macros (low level languages)

• Either compile it back for the computer to read, or get
something to interpret it
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Expressions

• Programs are made of sequences of statements.

• All statements are things such as

– const asd = 123;
– Blocks {program},
– Expressions

• And expressions are made of primitives like

– 1; "hi"; true; . . .
– Unary operators -5; !true;
– Binary operators 5 - 2; 10 < 5; "a" === "b";
– Ternary operator expr1 ? expr2 : expr3

• Expressions produce results.
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Abstraction

Abstraction, the wagon of progress.

Iron Mine Furnace Steel Factory

Coal Mine Turbine Pump

Factory
Oblivious
Persons

Ore Metal

Power

Coal

Water

Coal

Steel Sheet

Toys
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Functions

Example

What does this do?

function norm(x, y) {

return math_sqrt(x * x + y * y);

}

Good to know

• display

• math_PI, math_log, . . .
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Conditionals

The if-else statement:

if (expr) {

program;

} else if (expr2) {

program2;

} else {

program3;

}

Jia Xiaodong Introduction



Programs
Source

Expressions
Functions
New operator

Ternary operator

predicate ? consequent : alternative

Examples

• 5 < 2 ? 10 : 100;

• "a" < "b" ? 1 : 2;

• "a" < "A" ? 1 : 2;
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Short circuiting

predicate ? consequent : alternative

Example

What does this do?

1 === 2 && display("No")

Good to know

Some operators are also lazy!

1 === 2 ? display("No") : 1;
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Modulo

• We can do + - * /

• New operator: %
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