
Programs
Source

Introduction

Jia Xiaodong

Last revised August 16, 2021

Jia Xiaodong Introduction



Programs
Source

Evaluation

How are programs run? *

• Stored program computer

• In essence, just 1’s and 0’s

• Set up macros to ease the pain (assembly)

• Set up more macros (low level languages)

• Either compile it back for the computer to read, or get
something to interpret it

Jia Xiaodong Introduction

Your laptop is a stored program computer. Most computers today
are. They have somewhere where programs sit, and a processor reads
them out to execute them. At the lowest level these are in 1’s and 0’s.
This is also called machine code. It’s what the machine understands
and manipulates.

Unfortunately humans aren’t machines and programming in that
method is extremely painful so you can simply devise a scheme to
translate commands to those 1’s and 0’s.

Yet those are still cumbersome, so you can set up human readable
rules that will be translated to those instructions.

These instructions can either be compiled back down to machine code,
or they can be interpreted by another program. Source is an inter-
preted language. So there is a program that runs your program. At
the end of the chain however it is still machine code, so it is not magic.



Programs
Source

Expressions
Functions
New operator

Expressions

• Programs are made of sequences of statements.
• All statements are things such as

– const asd = 123;
– Blocks {program},
– Expressions

• And expressions are made of primitives like

– 1; "hi"; true; . . .
– Unary operators -5; !true;
– Binary operators 5 - 2; 10 < 5; "a" === "b";
– Ternary operator expr1 ? expr2 : expr3

• Expressions produce results.

Jia Xiaodong Introduction

Refer to the language spec for detailed specs on the language. It
written in a more formal syntax but it’s not too difficult to get an idea
of it’s really talking about.

It is important that in most programming languages equality (as in
5 is equal to 5) is not expressed by =. Unfortunately historically = is
given the role of assignment (think of it as ←). Hence a=5 does not
mean a is equal to 5, but a gets the value of 5. Equality is delegated
to == or === most of the time.

Expressions always evaluate to something. For blocks, this result is
the result of the last statement, or that of the first return statement
encountered.

https://sicp.comp.nus.edu.sg/source/source_1.pdf


Programs
Source

Expressions
Functions
New operator

Abstraction

Abstraction, the wagon of progress.

Iron Mine Furnace Steel Factory

Coal Mine Turbine Pump

Factory
Oblivious
Persons

Ore Metal

Power

Coal

Water

Coal

Steel Sheet

Toys

Jia Xiaodong Introduction

The person drinking the water does not need to worry about how the
water reached him. The person applying the theorem does not need
to know the proof.

So when you write your programs, it should hide the underlying
implementation details. Users of your program should not have to
care how it does its job. At the same time, you should not care how
the tools you use (i.e. Source) does their job. And even if you do
know, you should not use them directly and break abstraction.

Of course, in certain applications you might need to worry about the
underlying details. But that is also a call to improve the abstraction.



Programs
Source

Expressions
Functions
New operator

Functions

Example

What does this do?

function norm(x, y) {

return math_sqrt(x * x + y * y);

}

Good to know

• display
• math_PI, math_log, . . .

Jia Xiaodong Introduction

The norm function evaluates the Euclidean norm (or in more lay-
man terms, that Pythagoras theorem thing). It would be good if we
could type norm(3, 4) instead of math_sqrt(3 * 3 + 4 * 4).
Not only is it just for convenience — do you know how to perform
math_sqrt if it isn’t there?



Programs
Source

Expressions
Functions
New operator

Conditionals

The if-else statement:

if (expr) {

program;

} else if (expr2) {

program2;

} else {

program3;

}

Jia Xiaodong Introduction

Programs require flow control to redirect execution. The if-else
statement is one form of flow control.

This does exactly what it says it does. expr is evaluated first, if it is
true, then program is evaluated and the entire if-else statement
evaluates to that result. Otherwise, expr2 is evaluated next, and if
that is true, then program2 is evaluated, and so on. . .

Note that unlike other languages, Source insists that else always fol-
lows if. else if is optional.



Programs
Source

Expressions
Functions
New operator

Ternary operator

predicate ? consequent : alternative

Examples

• 5 < 2 ? 10 : 100;

• "a" < "b" ? 1 : 2;

• "a" < "A" ? 1 : 2;

Jia Xiaodong Introduction

The ternary operator is the only ternary operator.If predicate eval-
uates to true, then the operator evaluates to consequent. Otherwise
it evaluates to alternative.

For the reason why "a" is larger than "A", it is partly due to how
these characters are represented. In most modern systems they are
represented with UTF-8 (Unicode). Search for the list of unicode
characters up on Wikipedia and find the section on ASCII, and it
will show you why this result is given. (ASCII is another widespread
character encoding scheme, older and simpler than Unicode).



Programs
Source

Expressions
Functions
New operator

Short circuiting

predicate ? consequent : alternative

Example

What does this do?

1 === 2 && display("No")

Good to know

Some operators are also lazy!

1 === 2 ? display("No") : 1;

Jia Xiaodong Introduction

The principle of short-circuiting operators is simply this: if, during
any point of evaluation, you know for sure what the result will be,
then there is no point continuing. What this also means is that certain
side-effects caused by evaluation may not occur. The given example
shows this in action.

Though this may seem contrived, often times this may catch you off
guard! It may be dangerous if you don’t know this exists. “Be the
change you want to see in the world” — don’t rely on a comparison
to do things other than comparing!



Programs
Source

Expressions
Functions
New operator

Modulo

• We can do + - * /

• New operator: %

Jia Xiaodong Introduction


	Programs
	Evaluation

	Source
	Expressions
	Functions
	New operator


