
Preliminaries
Recursion

Complexity
Questions

Function evaluation, recursion and complexity

Jia Xiaodong

Last revised August 22, 2021

Jia Xiaodong Function evaluation, recursion and complexity

Preliminaries
Recursion

Complexity
Questions

Substitution Model
Applicative Order Reduction

Substitution Model

• What is the substitution model?

– Reasoning about programs

• What is the idea behind it?

– Certain expressions are irreducible.
– Computation continues until we cannot proceed further, i.e. we

get something that is irreducible.
– By performing repeated reductions, we can simplify and find the

result of any given statement.

Jia Xiaodong Function evaluation, recursion and complexity

The substitution model is simple. Previously we have seen how pro-
grams are made of statements and expressions. Each of these evaluate
to some result. For example 3 + 2 evaluates to 5, whereas 'a' evalu-
ates to 'a'. From here we can see that there are irreducible expressions.

Therefore to evaluate anything all we do is to apply some reduction
rules till the expression becomes irreducible. This is fairly ordinary
for arithmetic operations. However, how are statements with function
calls going to be evaluated?

Preliminaries
Recursion

Complexity
Questions

Substitution Model
Applicative Order Reduction

Applicative Order Reduction

What does this do?

12345 % math_pow(10, math_floor(math_log10(12345)));

Let’s try:

• 12345 % math_pow(10, math_floor(math_log10(12345)));

• 12345 % math_pow(10, math_floor(4.09...));

• 12345 % math_pow(10, 4);

• 12345 % 10000;

• 2345;

Jia Xiaodong Function evaluation, recursion and complexity

Applicative order reduction basically like the arithmetic case — eval-
uate from the left and deepest expression. Here are how the steps
unfold. Before you evaluate a function, all of its arguments must be
evaluated first.

1. The leftmost number is already irreducible so we move on.

2. 10 is done. So the math_floor has to be evaluated.

3. Then math_log has to be evaluated first. The number it takes in is
already irreducible so we can go ahead ahd do that.

4. We get 4.09 something which we then plug into floor, and so
on. . .

To answer the question as to what this program does, it gets rid of
the leading digit of any number. A more useful thing might be the
stuff after the %, which gives a power of 10 with as many digits as
the number you feed in. In this case we feed in 12345 with 5 digits, it
will produce 10000 with 5 digits.

Preliminaries
Recursion

Complexity
Questions

Substitution Model
Applicative Order Reduction

Normal Order Reduction

What does this do?

function sq(x) { return x * x };

function dist(x, y) { return math_sqrt(sq(x) + sq(y)) };

dist(1 + 5, 2 * 10);

Let’s try:

• dist(1 + 5, 2 * 10);

• math_sqrt(sq(1 + 5) + sq(2 * 10))

• math_sqrt((1 + 5) * (1 + 5) + (2 * 10) * (2 * 10))

• math_sqrt((6) * (1 + 5) + (2 * 10) * (2 * 10))

• math_sqrt((6) * (6) + (2 * 10) * (2 * 10))

• etc.

Jia Xiaodong Function evaluation, recursion and complexity

Evaluate from left to right. Fairly straight-forward. Do note that the
interpreter does not use this evaluation strategy, so this is a FYI only.

Preliminaries
Recursion

Complexity
Questions

Substitution Model
Applicative Order Reduction

Exercise

Ex. 1.5

function p() {

return p();

}

function test(x, y) {

return x === 0 ? 0 : y;

}

test(0, p());

What does this evaluate to?

Jia Xiaodong Function evaluation, recursion and complexity

Sometimes it feels very natural to just plug values in and forget about
the rules. One might forget here that p() is not irreducible and needs
to be evaluated. Once we remember this fact, we see that this program
doesn’t even evaluate to anything since it never stops.

Then again, using normal order reduction you will get a value, 0. The
fact that the interpreter does not give this value and instead chooses
to crash serves to highlight again that we are using applicative order
reduction in this course!

Preliminaries
Recursion

Complexity
Questions

Introduction

Recursion

From Wikipedia:

Recursion (adjective: recursive) occurs when a thing is defined in
terms of itself or of its type.

This gives rise to a way of solving certain problems. Certain
problems exhibit the property of optimal substructure. This means
that the method to solve a large problem is by breaking it up and
solving the smaller sub-problems. Then you piece it back together.

Jia Xiaodong Function evaluation, recursion and complexity

Recursion on its own is quite simple. It is mathematical in origin.
In fact the earliest programming languages did not always support
recursion. Nowadays all mainstream ones do.

In any case, the main scenario where we use recursion is because you
might not know how to solve the entire problem but you do have
a way of solving a small problem and you know how to combine
solutions.

Preliminaries
Recursion

Complexity
Questions

Introduction

Recursion

• Things we need:

– The base case, or the trivial case.
– A relationship between the large problem and the smaller sub

problems.

Ex: Listing out N

s0 = 0 sn = sn−1 + 1

Ex: Fib(n)

F1 = 1, F2 = 1 Fn = Fn−1 + Fn−2

Jia Xiaodong Function evaluation, recursion and complexity

Let us explore more. Again, what we need is

• a small problem we know how to solve, the base case,

• and a way to combine small solutions or build up on them.

A few easy examples.

• A child is learning to count to 100. He does not know what is
100 since it’s too big. It is easy to know what’s 0, though. So we
start with 0, and now we increment it and one day we will hit
100.

• Fibonacci numbers. If you are asked for the 100-th one, you
would have to use the relationship and try to find the 99th and
98th one, and so on.

In fact here we see two different ways of using recursion. The first
example is a bottom-up approach, and the second example is a top-
down approach.

Preliminaries
Recursion

Complexity
Questions

Time and Space Complexities
Big O notation

Time and Space Complexities

• Why do we care?

– We need an abstract way to talk about resources consumed.
– We do not want to care about worldly problems like

programming languages, computer architecture, CPU speed, etc.
– We want to know how input affects it.

Jia Xiaodong Function evaluation, recursion and complexity

Since now we are on the topic of algorithms, we want to be able to
tell if one is better than another. The two main resources on any
computing device is time and space. However we do need a better
measurement than seconds and bytes since these are going to change
based on your system.

We will also definitely be taking in input in our calculations. It is also
easy to imagine that larger inputs most likely use up more time. So
naturally we also want to relate resources consume to input size.

Preliminaries
Recursion

Complexity
Questions

Time and Space Complexities
Big O notation

Time Complexity

• Some abstract measure of time taken for the program to run.
• How do we characterize it?

– Number of operations performed.
– Number of “simple” operations performed for some input size.
– Simple operations:

All arithmetic e.g. 4 * 5

Memory read and write e.g. const a = 4;

Conditionals e.g if (a === 4)

• An asymptotic bound on the number of primitive operations by
nice functions 1.

1You can forget about this entirely, you will never meet a bad function in this course. This is however usually
enforced because there exist pathological functions that really mess up complexity classes.

Jia Xiaodong Function evaluation, recursion and complexity

We want to know how long an algorithm is going to take — what
costs time in an algorithm? The number of steps it runs. Of course
you can just call the entire program a single step but that’s not very
useful. So there are certain steps that are defined to take 1 unit of
time to complete.

Furthermore, we will see that we don’t really care if the simple steps
actually take 1 or 2 or 100 units of time, as long as they are guaranteed
to always take the same amount of time (“constant time”). Hence
there can be some lax when counting these operations.

The number of steps taken are going to vary based on the size of the
input. So we want to provide some indication of the trend that the
number of steps taken as we increase the size of the input.

An aside: what constitutes a single step depends on the mathematical
model of your machine. For example usually it is customary to let all
arithmetic operations take 1 unit time, but multiplication is always
slower than addition, and on certain processors you don’t have multi-
plication at all. There are also models of machines that can only add
and subtract by 1, so it really depends.

Preliminaries
Recursion

Complexity
Questions

Time and Space Complexities
Big O notation

Space Complexity

• Some abstract measure of space taken for the program to run.
• How do we characterize it?

– Number of symbols created.
– Maximum number of “simple” symbols created.

• An asymptotic bound on the space required relative to input
size.

Jia Xiaodong Function evaluation, recursion and complexity

The same goes for space requirements. Now we count the number
of symbols created. So what is a symbol? For our purposes, it does
not harm just counting anything that takes up memory: numbers,
characters, functions, etc. There is some subtlety here regarding the
length of the symbols, but you do not have to worry about it now.

Of course the amount of space the program uses will change while
it’s running. What we are looking for thus is the maximum, since
that’s the resources you are going to need.

Most of the time these things are very natural and common-sense to
count, so there is no need to worry too much.

Preliminaries
Recursion

Complexity
Questions

Time and Space Complexities
Big O notation

Big O notation

To accomplish these things we use the Big O asymptotic notation.

Name Definition Meaning

f(n) = O(g(n)) ∃k > 0,∃N, ∀n > N, f(n) ≤ k · g(n) f is bounded above by g.

f(n) = Ω(g(n)) ∃k > 0,∃N, ∀n > N, f(n) ≥ k · g(n) f is bounded below by g.

f(n) = Θ(g(n))
∃k1, k2 > 0, ∃N, ∀n > N,

k1 · g(n) ≤ f(n) ≤ k2 · g(n) f is bounded by g.

We can find some constant factor(s) such that regardless of how
large the input gets (asymptotic) we can provide a bound on the
function.

Jia Xiaodong Function evaluation, recursion and complexity

These are the formal definitions. There also exist a small o notation
that is stricter, and you can look it up for enrichment.

In any case you only need to remember the meaning of the notation.
Here is what they are used for

• O: Provides a worst-case upper bound (may not be tight).

• Θ: Provides a tight bound on growth rate.

• Ω: Provides a best-case lower bound. This is used less for
complexity analysis of an algorithm, but for denoting that some
problem must take at least some amount of resources.

Also most times when people use O, frequently they actually mean
Θ but it has become quite customary to just treat O as giving a tight
bound as well. This is because you can always give some ridiculous
bound like O(exp(exp(exp(x)))) and be always correct, but it wouldn’t
do you much good.

Preliminaries
Recursion

Complexity
Questions

Time and Space Complexities
Big O notation

Big O notation
Graphical illustration

n

f(n)

g(n)

h(n)

k(x)

Jia Xiaodong Function evaluation, recursion and complexity

Here f is our function we wish to provide a bound for.

• g clearly forms an upper bound on f eventually. Hence we can
write f(n) = O(g(n)).

• h also forms an lower bound on f eventually. Hence we can
write f(n) = Ω(h(n)).

• k seems to provide a lower bound as well. However, notice that
if we stretch k vertically, it will provide an upper bound on f as
well. So it gives a tight bound on the behaviour of f , and we
can write f(n) = Θ(k(n)).

An aside: everyone uses f = O(g) when more accurately it is
f ∈ O(g). I believe it particularly makes sense in mathematics where
for example if you were performing an approximation you can write
sin(x) = x + O(x3) and using ∈ would be odd. Stick to using =.

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

S3 Q1

function f1(rune_1, n, rune_2) {

return n === 0

? rune_2

: f1(rune_1, n - 1, beside(rune_1,stack(�, rune_2)));

}

Evaluate f1(�, 3, ♥) using the substitution model.

f1(�, 3, ♥)

f1(�, 2, beside(�, stack(�, ♥)))
f1(�, 2, beside(�,�

♥))

f1(�, 2, ��
♥)

f1(�, 1, beside(�, stack(�, ��
♥)

f1(�, 1,����
♥
)

f1(�, 0, beside(�, stack(�, ��
♥)

f1(�, 0,����

��
♥

)

Jia Xiaodong Function evaluation, recursion and complexity

We use � to represent square and � to represent blank and ♥ to repre-
sent heart. The symbols and spacing drawn here are not to scale.

This is fairly straight-forward. The only hiccup is to keep in mind
what is being evaluated and what is being returned. For example
you may pre-maturely finish evaluation at n = 1, by thinking execu-
tion ends at the next step where n = 0. Execution cannot end there
because n 6= 0! This is more likely than not caused by writing in
shorthand as we do here, so be careful!

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

S3 Q2

function f2(rune, n) {

return n === 0

? rune

: stack(beside(�, f2(rune, n - 1)), �);
}

Evaluate f2(♥, 3) using the substitution model.

f2(♥, 0);

♥

f2(♥, 1);

stack(beside(�, f2(♥, 0)), �)

stack(beside(�, ♥), �)

stack(�♥, �)
�♥
�

f2(♥, 2);

stack(beside(�, f2(
�♥
� , 1)), �)

��♥
�

�
f2(♥, 3);

���♥
�

�

�
Jia Xiaodong Function evaluation, recursion and complexity

For this question you might get into quite a tangle going in head first.

Unofficially, an easier way could be to take a bottom-up approach
instead. However this is no the substitution method. The proper
method is left as an exercise.

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

Q1

Write a function moony_1(rune) that outputs this:

rune

function moony_1(rune) {

return stack(beside(circle, blank),

beside(square, rune));

}

Jia Xiaodong Function evaluation, recursion and complexity

There are two simple ways of doing this. Shown here is one way.

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

Q2

Write a function moony_2 to recursively insert circles into the right
place. Example output of moony_2(4):

function moony_2(n) {

return n === 1

? circle

: moony_1(moony_2(n - 1));

}

Jia Xiaodong Function evaluation, recursion and complexity

You can go about this both ways, top down and bottom up.

The top down way requires you to see that by squeezing the larger
rune into the position of rune in moody_1 you can create the image. The
base case is then a circle.

The bottom up way requires you to see that the base case is just a
circle. From there you can build up on the circle by using it as rune in
moody_1.

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

Q3

Now make the circles have the same diameters:

rune

rune

Jia Xiaodong Function evaluation, recursion and complexity

We do not need to modify anything else. All that matters here is some
scaling. The previous questions might also not be very helpful here.

The base case occurs again at n = 1. Let us think now: if we have
an image that has been stacked nicely, and if we were to just simply
squeeze it into the bottom right corner, the ratios would be messed
up. What we need here is to make the circle smaller. The extra space
would be occupied by the square (now no longer a square).

How much more space? Since every column takes up the same
amount of space, then the circle has to occupy 1

n units of space hori-
zontally and vertically. For the square below it, it will occupy 1

n units
horizontally, and n−1

n units vertically.

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

Q3
Cont.

function moony(n) {

return n === 1

? circle
: stack_frac(1 / n,

beside_frac(1/n, circle, blank),
beside_frac(1/n, square, moony(n - 1)));

}

Jia Xiaodong Function evaluation, recursion and complexity

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

Q4

Do your functions give rise to recursive or iterative processes? What
is the time and space complexities of your moony?

Name Process Space Time

moony_1 — Θ(1) Θ(1)

moony_2 Recursive Θ(n) Θ(n)

moony Recursive Θ(n) Θ(n)

Jia Xiaodong Function evaluation, recursion and complexity

Assuming all runes take up constant space, and the rune operations
we used (stack and beside) also operate in constant space and time.
This is quite a realistic assumption.

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

Q1

function expt(b, n) {

return n === 0

? 1

: b * expt(b, n - 1);

}

• 5 * expt(b, 4)

• 5 * 5 * expt(b, 3)

• 5 * 5 * 5 * expt(b, 2)

• 5 * 5 * 5 * 5 * expt(b, 1)

• . . .

• Time: Θ(e)
• Space: Θ(e)

Jia Xiaodong Function evaluation, recursion and complexity

This is just exponentiation by repeated multiplication. It is similar to
the factorial function we have seen previous. The analysis is similar.
There are deferred operations, and we clearly see that it extends as
many times as we exponentiate.

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

Q2

function fast_power(b, e) {

return e === 0

? 1

: is_even(e)

? fast_power(b * b, e / 2)

: b * fast_power(b, e - 1);

}

• fast_power(3, 4)

• fast_power(9, 2)

• fast_power(81, 1)

• 81 * fast_power(81, 0) X

• Time: Θ(log e)
• Space: Θ(1)

Jia Xiaodong Function evaluation, recursion and complexity

This is exponentiation by squaring.

We can answer the first question: there will be deferred operations
unless e is a power of 2.

As for the runtime, first we can see that for any exponent e that is
a power of 2, it will take O(log(e)) steps. The example run shows
how this can be faster than the naive exponentiation implementation.
How much faster?

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

Q9
Cont.

return e === 0

? 1

: is_even(e)

? fast_power(b * b, e / 2)

: b * fast_power(b, e - 1);

• fast_power(3, 10)

• fast_power(9, 5)

• 9 * fast_power(9, 4)

• 9 * fast_power(81, 2)

• 9 * fast_power(6561, 1)

• 9 * 6561 * fast_power(6561, 0) X

Jia Xiaodong Function evaluation, recursion and complexity

For any other e, we can write

e =

k∑
j=0

ai2
k

where k is the smallest integer such that 2k+1 > e, and ai ∈ {0, 1}.
For example, 10 = 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20 (the more astute will
recognize this as binary). The number of non-zero coefficients give us
one more than the number of multiplications. k gives us the number
of squares.

Is this magic? If we look at 10
2 , we get remainder 0, which means

10 = 5 · 21 + 0 · 20. Next, 5
2 gives remainder 1, which means that

10 = (2 · 21 + 1 · 20) · 21 + 0 · 20 = 2 · 22 + 1 · 21 + 0 · 20. Doing the
same for 2, we get the expansion as shown above. Notice that this is
exactly the process fast_power goes through! Every time there is some
remainder, fast_power does one multiplication, and in our expansion
we encounter a coefficient of 1. At every division it has to do a square,
so there are k number of them.

What is k? k = Θ(log e).

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

Q1

Show that 4n2 − n = Θ(n2)

n

5n2

4n2 − n

n2

1

n0 = 1, k2 = 5, k1 = 1.

In fact one can show
that for any polynomial
pm(n) of degree
m, pm(n) = Θ(nm).

Jia Xiaodong Function evaluation, recursion and complexity

From the graph it is easy to check that the provided witnesses support
the claim. This is fine since here since the derivatives also tell us that
their order will be preserved.

Let pm(n) be a polynomial of order m with n as the variable. To show
that pm(n) = O(nm), choose n0 ≥ 1 such that pm(n) ≥ 0 for all n ≥ n0.
Suppose pm(n) is of the form a0 + a1n + · · · + amnm where am is
positive (why must it be positive?). Then let k = |a0|+ · · ·+ |am|.

To show that pm(n) = Ω(nm), choose n0 such that a0+· · ·+am−1n
m−1+

am

2 nm ≥ 0 for all n ≥ n0. Then pm(n) ≥ am

2 nm, so we take k = am

2 .

Also, a tight bound means both directions: f(n) = Θ(g(n)) ⇐⇒
f(n) = Ω(g(n)) ∧ f(n) = O(g(n)).

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

Q2

Show that log5(n) = Θ(lnn)

loga n =
logb n

logb a

Jia Xiaodong Function evaluation, recursion and complexity

Any logarithm regardless of its base is only scaled by a constant factor
with respect to any other logarithm. Hence there is no need to specify
a base in our big O notations involving logarithms.

Another question: what about exponentials? i.e. for example between
2n and 3n?

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

Q3

10n log n
?
= O(n2)

10n log n
?
≤ 2n2

log n ≤ n

Jia Xiaodong Function evaluation, recursion and complexity

We can work backwards from the claim to check. This is fairly easy.
For the proof, just reverse the workings.

The proof that log n grows slower than n (of course only if we pick a
suitable n0) is basic calculus and is left as an exercise.

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

Q4

n3 ?
= O(2n)

n3
?
≤ k · 2n

log n3
?
≤ log k + log 2n

3 log n ≤ log k + n log 2

n

2x

x3

Jia Xiaodong Function evaluation, recursion and complexity

First of all keep in mind that for some number c, nc and cn are very
different things. Also this is a question where “proof by graph” might
fail.

To understand why, suppose we just pick k = 1, to draw the test
graph as shown in the figure. Then looking at our inequality let us
find the n0 such that for all n ≥ n0 it holds true:

3 log n ≤ n log 2

10 log n ≤ n

where 3
log 2 ≈ 10. Usually such equations do not have easy solutions,

but today we are in luck: n0 = 10. Well that doesn’t seem too unrea-
sonable, but then notice that this means 2n will start to overtake n3

only after 210 = 1024! That is way outside the plotting window, and
you would not have noticed it unless you put in the effort to scroll
that far. Hence, graphical methods are not very acceptable as proofs.

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

Q5

a) 5n2 + n = Θ(?)

b)
√
n + n = Θ(?)

c) 3nn2 = Θ(?)

a) Θ(n2)

b) Θ(n)

c) Θ(3nn2)

Jia Xiaodong Function evaluation, recursion and complexity

For part (a) we have already shown this previously.

For part (b) note that
√
n grows slower than n so

√
n+n grows slower

than n + n.

For part (c), no constant grows faster than n2, so it cannot be Θ(3n).
From the previous question it definitely cannot be Θ(n2) either. So
nothing can be done here.

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

For the next few questions, give the space and time complexities of
the functions presented.

Jia Xiaodong Function evaluation, recursion and complexity

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

Q6

function factorial(n) {

return n === 1

? 1

: n * factorial(n - 1);

}

• 5 * factorial(4)

• 5 * 4 * factorial(3)

• 5 * 4 * 3 * factorial(2)

• 5 * 4 * 3 * 2 * factorial(1)

• 5 * 4 * 3 * 2 * 1

• Time: Θ(n)
• Space: Θ(n)

Jia Xiaodong Function evaluation, recursion and complexity

This will be easier if we list out the process that this function gives
rise to. Question: why don’t we evaluate the 5 * 4 term?

We can see that a call to this function results in n operations being
created. Then the time and space complexities are easy to determine.

Preliminaries
Recursion

Complexity
Questions

Tutorial questions
In Class
Extra material
Extra questions — Big O

Q7

Write factorial that gives rise to an iterative process.

function _(n, res) {

return n === 1

? res

: _(n - 1, n * res);

}

function factorial(n) {

return _(n, 1);

}

Jia Xiaodong Function evaluation, recursion and complexity

The deferred operations do not get evaluated until the end because
they do not “touch” each other — they belong to different results.
Hence the standard recipe to eliminate these is to let them “touch”,
by using an accumulator to store your result.

Here actually our secret little function _ does the work, and as a layer
of abstraction we wrap factorial around it. factorial knows how to
operate _ properly.

In any case, now there are clearly no deferred operations. The space
consumption will then be O(1). For time consumption, since _ runs n
times and its body is evaluated in constant time, factorial takes O(n)
time.

Here I use _ as a name just for fun. If you read the language specifica-
tion you might find other kind of weird names you can come up with,
such as $. In reality, these names are frequently used in other applica-
tions. In this case, since we have not covered higher order functions,
one way to hide our user-unfriendly factorial function is to give it an
odd name. Many languages use names starting with underscores to
denote that this might be “private property”.

	Preliminaries
	Substitution Model
	Applicative Order Reduction

	Recursion
	Introduction

	Complexity
	Time and Space Complexities
	Big O notation

	Questions
	Tutorial questions
	In Class
	Extra material
	Extra questions — Big O

