More functions and recursion

Jia Xiaodong

August 30, 2021

Anonymous functions

```
const g = param => { /* body */ }
```


Anonymous functions

const g = param => \{ /* body */ \}

Short aside: difference between parameter and argument:

- A parameter is what the function depends on. For the above, the parameter of g is param.

Anonymous functions

```
const g = param => { /* body */ }
```

Short aside: difference between parameter and argument:

- A parameter is what the function depends on. For the above, the parameter of g is param.
- An argument is what you give the function. For example, $g(5)$, then 5 is the argument.

Higher order functions

Remember this?
function fact_helper(n, res) \{
return n === 1
? res
: fact_helper(n - 1, n * res);
\}
function factorial(n) \{ return fact_helper (n, 1);
\}

Higher order functions

Cont.
Makes more sense?

```
function factorial(n) {
    function fact_helper(n, res) {
        return n === 1
        ? res
        : fact_helper(n - 1, n * res);
    }
    return fact_helper(n, 1);
}
```


Higher order functions

Functions as return value

Functions of functions (functionals):

$$
I=\int f(t) \mathrm{d} t
$$

Higher order functions

Functions as arguments

Say I want the smallest of two things.

Higher order functions

Functions as arguments

Say I want the smallest of two things.

```
const min = (a, b) => a < b ? a : b
```


Higher order functions

Functions as arguments

Say I want the smallest of two things.

```
const min = (a, b) => a < b ? a : b
```

What if I am comparing timings in $\mathrm{HH}: \mathrm{MM}$ format and I want the earliest?

Higher order functions

Functions as arguments

Say I want the smallest of two things.

```
const min = (a, b) => a < b ? a : b
```

What if I am comparing timings in $\mathrm{HH}: \mathrm{MM}$ format and I want the earliest?

```
const min = (a, b, f) => f(a) < f(b) ? a : b
```

function hhmm_to_mins(a) \{ ... \} min(a, b, hhmm_to_mins);

Additions to the language
Examples and enrichment Tutorial Questions

Anonymous functions Higher order functions Scoping

Scoping

- We give names to things.

Scoping

- We give names to things.
- We may give many things the same name. (e.g. c: Speed of light, specific heat capacity, etc.)

Scoping

- We give names to things.
- We may give many things the same name. (e.g. c: Speed of light, specific heat capacity, etc.)
- What gives us the context for our names?

Scopes

- A name occurrence refers to the closest surrounding declaration.

Scopes

- A name occurrence refers to the closest surrounding declaration.
- Scopes are our context where we find our names.

Scopes

- A name occurrence refers to the closest surrounding declaration.
- Scopes are our context where we find our names.
- The most common context are blocks: \{ . . . \}.

Scopes

- A name occurrence refers to the closest surrounding declaration.
- Scopes are our context where we find our names.
- The most common context are blocks: \{ . . . \}.
- To find what a name refers to, look at the current scope, and then outwards. Take the first one you come across.

Scopes

- A name occurrence refers to the closest surrounding declaration.
- Scopes are our context where we find our names.
- The most common context are blocks: \{ . . . \}.
- To find what a name refers to, look at the current scope, and then outwards. Take the first one you come across.
- Names in an outer scope can be hidden by definitions in an inner scope.

Exercise

```
hello = "world"
function n(hello){
    const g = hello => display;
    g(hello);
}
n("hello")(hello);
```


Exercise

```
hello = "world"
function n(hello){
    const g = hello => display;
    g(hello);
}
n("hello")(hello);
```

```
const n = 1;
{
    const n = 2;
    {
        const n = 3;
        {
            display(n);
        }
        const n = 4;
    }
}
```


Example: series *

Let us make a polynomial series generator. A series is something like

$$
S(x)=\sum_{n=0}^{k} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

Example: series *

Let us make a polynomial series generator. A series is something like

$$
S(x)=\sum_{n=0}^{k} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

A disposable solution:

```
function sum(x) {
    return a0 + a1 * x + a2 * x * x + ...
```

\}

Example: series *

Cont.
function series_generator(k, coeff) \{

Example: series *

Cont.

```
function series_generator(k, coeff) {
    function gen_helper(n, series) {
    return n === k
    ? series
```


Example: series *

Cont.

```
function series_generator(k, coeff) {
    function gen_helper(n, series) {
    return n === k
    ? series
    : gen_helper(n + 1,
```


Example: series *

Cont.

```
function series_generator(k, coeff) {
    function gen_helper(n, series) {
    return n === k
    ? series
    : gen_helper(n + 1,
        x => series(x) + coeff(n) * math_pow(x, n))
```


Example: series *

Cont.

```
function series_generator(k, coeff) {
    function gen_helper(n, series) {
    return n === k
    ? series
    : gen_helper(n + 1,
        x => series(x) + coeff(n) * math_pow(x, n)
    }
```


Example: series *

Cont.

```
function series_generator(k, coeff) {
    function gen_helper(n, series) {
        return n === k
            ? series
            : gen_helper(n + 1,
                x => series(x) + coeff(n) * math_pow(x, n))
    }
    return gen_helper(0, x => 0);
}
```

Additions to the language

Series

I heard you like recursion

Example: series *

Demonstration

$$
e^{x} \approx \sum_{n=0}^{k} \frac{x^{n}}{n!}
$$

Example: series *

Demonstration

$$
e^{x} \approx \sum_{n=0}^{k} \frac{x^{n}}{n!}
$$

function exp_coeff(n) \{ return 1 / factorial(n);
\}
const exp_series = series_generator(5, exp_coeff);

Try it out!

Example: series

Demonstration, cont.

$$
\sin (x) \approx \sum_{n=0}^{k} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
$$

Example: series

Demonstration, cont.

$$
\sin (x) \approx \sum_{n=0}^{k} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
$$

function sin_coeff(n) \{
function minus_one(n) \{

$$
\text { return }((n-1) / 2) \% 2===0 ? 1:-1
$$

\}
return $n \% 2$ === 0 ? 0 : minus_one(n) / factorial(n);
\}
const sin_series = series_generator(5, sin_coeff);

Try it out! (same link as before)

Example: series *

Challenge

Fourier trigonometric series for function f with period $2 L$:

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} b_{n} \cos \left(\frac{n \pi x}{L}\right)
$$

Primitive recursion

Definition

The following are primitive recursive:

- Constant function: 0
- Successor function: $S(x)=x+1$
- Projection function ${ }^{1}: P_{i}(\mathbf{x})=\mathbf{x}_{i}$

Recursion: if f, g are primitive recursive, h is primitive recursive if

$$
\begin{aligned}
h(0, \mathbf{x}) & =f(\mathbf{x}) \\
h(S(y), \mathbf{x}) & =g(y, h(y, \mathbf{x}), \mathbf{x})
\end{aligned}
$$

[^0]
Primitive recursion

Definition
A function f is defined from t by iteration if

$$
f(\mathbf{x}, n)=t^{n}(\mathbf{x})
$$

Theorem

Minus some formalities, primitive recursion and iteration are equivalent.

Proof.

Iteration is primitive recursion because

$$
\begin{align*}
f(\mathbf{x}, 0) & =\mathbf{x} \\
f(\mathbf{x}, n+1) & =t(f(\mathbf{x}, n))
\end{align*}
$$

Primitive recursion *

Proof.

Primitive recursion can be converted into recursion. Take

$$
t(\mathbf{x}, n, z):=(\mathbf{x}, n+1, h(\mathbf{x}, n, z))
$$

Then

$$
(\mathbf{x}, n, f(\mathbf{x}, n))=t^{n}(\mathbf{x}, 0, g(\mathbf{x}))
$$

Example: factorial

Factorial is defined as follows:

$$
\begin{aligned}
f(0)=g & :=1 \\
f(n+1)=h(n, f(n)) & :=(n+1) \cdot f(n)
\end{aligned}
$$

Primitive recursion *

Example: factorial

Let us make it iterative. Then using the recipe,

$$
\begin{aligned}
t(n, z) & :=(n+1,(n+1) \cdot z) \\
(n+1, n!) & =t^{n}(0,1)
\end{aligned}
$$

S4 Q1

Write a function computing elements of Pascal's triangle, i.e. $\binom{$ row }{ col } . The following relationships might be helpful:

$$
\binom{r}{c}=\binom{r-1}{c-1}+\binom{r-1}{c} \quad\binom{r}{1}=\binom{r}{r}=1
$$

S4 Q1

Write a function computing elements of Pascal's triangle, i.e. ($\left.\begin{array}{c}\text { row } \\ \text { col }\end{array}\right)$. The following relationships might be helpful:

$$
\binom{r}{c}=\binom{r-1}{c-1}+\binom{r-1}{c} \quad\binom{r}{1}=\binom{r}{r}=1
$$

```
function pascal(row, col) {
    return col === 1 || col === row
    ? 1
    : pascal(row - 1, col - 1) + pascal(row - 1, col);
```

\}

S4 Q2

Draw the tree illustration the process generated by

 pascal(5, 4).
S4 Q2

Draw the tree illustration the process generated by pascal(5, 4).

Recursive.

S4 IC-Q1

What do the following evaluate to? compose(math_sqrt, math_log) (math_E) compose(math_log, math_sqrt)(math_E * math_E)

S4 IC-Q1

What do the following evaluate to?
compose(math_sqrt, math_log) (math_E)
compose(math_log, math_sqrt)(math_E * math_E)
(z => math_sqrt(math_log(z)))(math_E)

S4 IC-Q1

What do the following evaluate to?
compose(math_sqrt, math_log) (math_E) compose(math_log, math_sqrt)(math_E * math_E)
(z => math_sqrt(math_log(z)))(math_E)
(y => math_log(math_sqrt(z)))(math_E * math_E)

S4 IC-Q2

```
const compose = (f,g) => x => f(g(x));
function thrice(f) {
    return compose(compose(f, f), f);
}
```


S4 IC-Q2

```
const compose = (f, g) => x => f(g(x));
function thrice(f) {
    return compose(compose(f, f), f);
}
```

thrice(h);
compose(compose(h, h), h)

S4 IC-Q2

```
const compose = (f, g) => x => f(g(x));
function thrice(f) {
    return compose(compose(f, f), f);
}
```

thrice(h);
compose(compose(h, h), h)
compose($\mathrm{x}=>\mathrm{h}(\mathrm{h}(\mathrm{x}) \mathrm{)}$, h$)$

S4 IC-Q2

```
const compose = (f, g) => x => f(g(x));
function thrice(f) {
    return compose(compose(f, f), f);
}
```

```
thrice(h);
compose(compose(h, h), h)
compose(x => h(h(x)), h)
y => (x => h(h(x))(h(y))
```


S4 IC-Q2

```
const compose = (f, g) => x => f(g(x));
function thrice(f) {
    return compose(compose(f, f), f);
}
```

thrice(h);
compose(compose(h, h), h)
compose($\mathrm{x}=>\mathrm{h}(\mathrm{h}(\mathrm{x}))$, h$)$
$y=>(x=>h(h(x))(h(y))$
thrice(h)(z);
(x => h(h(x))(h(z))
$h(h(h(z)))$

S4 IC-Q3

```
const compose = (f, g) => x => f(g(x));
function repeated(f, n) {
    return n === 0
        ? x => x
    : compose(f, repeated(f, n - 1));
}
```


S4 IC-Q3

```
const compose \(=(f, g)=>x\) ( \(\mathrm{f}(\mathrm{x}))\);
function repeated (f, n) \{
    return \(\mathrm{n}==0\)
        ? \(\mathrm{x}=\mathrm{x}\)
        : compose(f, repeated(f, \(n-1)\) );
\}
```

repeated(f, 2);
compose(f, repeated(f, 1))

S4 IC-Q3


```
function repeated (f, n) \{
    return \(\mathrm{n}===0\)
        ? \(\mathrm{x}=>\mathrm{x}\)
        : compose(f, repeated(f, \(n-1)\) );
\}
```

repeated (f, 2);
compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))

S4 IC-Q3

```
const compose = (f, g) => x => f(g(x));
function repeated(f, n) {
    return n === 0
        ? x => x
    : compose(f, repeated(f, n - 1));
}
```

```
repeated(f, 2);
compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
```


S4 IC-Q3

```
const compose = (f, g) => x => f(g(x));
function repeated(f, n) {
    return n === 0
        ? x => x
    : compose(f, repeated(f, n - 1));
}
```

```
repeated(f, 2);
compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x) (y)))
```


S4 IC-Q3

```
const compose = (f, g) => x => f(g(x));
function repeated(f, n) {
    return n === 0
        ? x => x
    : compose(f, repeated(f, n - 1));
}
```

```
repeated(f, 2);
compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x) (y)))
z => f((y => f((x => x) (y))) (z))
```


S4 IC-Q3

```
const compose = (f, g) => x => f(g(x));
function repeated(f, n) {
    return n === 0
        ? x => x
    : compose(f, repeated(f, n - 1));
}
```

```
repeated(f, 2);
compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x) (y)))
z => f((y => f((x => x) (y))) (z))
```

repeated (f, 2) (a);
$f((y)=>((x=>)(y)))(a))$

S4 IC-Q3

```
const compose = (f, g) => x => f(g(x));
function repeated(f, n) {
    return n === 0
        ? x => x
    : compose(f, repeated(f, n - 1));
}
```

```
repeated(f, 2);
compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x) (y)))
z => f((y => f((x => x) (y))) (z))
```

repeated (f, 2) (a);
$f((y=>f((x=>)(y)))(a))$
$f((f((x=>x)(a))))$

S4 IC-Q3

```
const compose = (f, g) => x => f(g(x));
function repeated(f, n) {
    return n === 0
        ? x => x
    : compose(f, repeated(f, n - 1));
}
```

```
repeated(f, 2);
compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x) (y)))
z => f((y => f((x => x) (y))) (z))
```

repeated (f, 2) (a);
$f((y=>f((x=>)(y)))(a))$
$f((f((x=>x)(a))))$
$f((f((a))))$

S4 IC-Q3

Cont.

```
const compose = (f, g) => x => f(g(x));
function thrice(f) {
    return compose(compose(f, f), f);
}
```

For what value of n will ((thrice (thrice)) (f)) (0) return the same value as (repeated (f, n)) (0)?

S4 IC-Q3

Cont.

```
const compose = (f, g) => x => f(g(x));
function thrice(f) {
    return compose(compose(f, f), f);
}
```

For what value of n will ((thrice (thrice)) (f)) (0) return the same value as (repeated (f, n)) (0)?

```
// thrice(h)(z) ---> h(h(h(z)))
(thrice(thrice))(f);
```


S4 IC-Q3

Cont.

```
const compose = (f, g) => x => f(g(x));
function thrice(f) {
    return compose(compose(f, f), f);
}
```

For what value of n will ((thrice (thrice)) (f)) (0) return the same value as (repeated (f, n)) (0)?
// thrice(h)(z) ---> h(h(h(z)))
(thrice(thrice)) (f);
thrice(thrice(thrice(f)))

S4 IC-Q3

Cont.

```
const compose = (f, g) => x => f(g(x));
function thrice(f) {
    return compose(compose(f, f), f);
}
```

For what value of n will ((thrice (thrice)) (f)) (0) return the same value as (repeated (f, n)) (0)?
// thrice(h)(z) ---> h(h(h(z)))
(thrice(thrice)) (f);
thrice(thrice(thrice(f)))
((thrice(thrice)) (f)) (0);
(thrice(thrice(thrice(f))))(0)

S4 IC-Q3

Cont.

```
const compose = (f, g) => x => f(g(x));
function thrice(f) {
    return compose(compose(f, f), f);
}
```

For what value of n will ((thrice (thrice)) (f)) (0) return the same value as (repeated (f, n)) (0)?
// thrice(h)(z) ---> h(h(h(z)))
(thrice(thrice)) (f);
thrice(thrice(thrice(f)))
((thrice(thrice)) (f)) (0);
(thrice(thrice(thrice(f))))(0)
$\mathrm{g}(\mathrm{g}(\mathrm{g}(0))) / / \mathrm{g}=$ thrice(thrice(f))

S4 IC-Q3

Cont.

```
const compose = (f, g) => x => f(g(x));
function thrice(f) {
    return compose(compose(f, f), f);
}
```

For what value of n will ((thrice (thrice)) (f)) (0) return the same value as (repeated (f, n)) (0)?
// thrice(h)(z) ---> h(h(h(z)))
(thrice(thrice)) (f);
thrice(thrice(thrice(f)))
((thrice(thrice)) (f)) (0);
(thrice(thrice(thrice(f))))(0)
$\mathrm{g}(\mathrm{g}(\mathrm{g}(0))) / / \mathrm{g}=$ thrice(thrice(f))
$\operatorname{g}(\mathrm{g}(\mathrm{h}(\mathrm{h}(\mathrm{h}(0))))) / / \mathrm{h}=$ thrice(f)

S4 IC-Q3

Cont.

```
const compose = (f, g) => x => f(g(x));
function thrice(f) {
    return compose(compose(f, f), f);
}
```

For what value of n will ((thrice (thrice)) (f)) (0) return the same value as (repeated (f, n)) (0)?
// thrice(h)(z) ---> h(h(h(z)))
(thrice(thrice)) (f);
thrice(thrice(thrice(f)))
((thrice(thrice)) (f)) (0);
(thrice(thrice(thrice(f))))(0)
$\mathrm{g}(\mathrm{g}(\mathrm{g}(0)) \mathrm{)} / / \mathrm{g}=$ thrice(thrice(f))
$\operatorname{g}(\mathrm{g}(\mathrm{h}(\mathrm{h}(\mathrm{h}(0))))) / / h=$ thrice(f)
$g(g(h(h(f(f(f(0))))))$

S4 IC-Q3

Cont.

```
// thrice(h)(z) ---> h(h(h(z)))
((thrice(thrice))(f))(0);
(thrice(thrice(thrice(f))))(0)
g(g(g(0))) // g = thrice(thrice(f))
g(g(h(h(h(0))))) // h = thrice(f)
g(g(h(h(f(f(f(0)))))))
g(g(h(f(f(f(a)))))) // a = f(f(f(0)))
g(g(f(f(f(b))))) // b = f(f(f(a)))
g(g(c)) // c = f(f(f(b))) = ffffffa = ffffffffff0
g(fffffffffc)
fffffffffd // d = fffffffffc = fffffffff fffffffff0
fffffffff fffffffff fffffffff0
```

27.

Additions to the language
Examples and enrichment Tutorial Questions

Tutorial questions In class questions

S4 IC-Q4a

((thrice(thrice))(add1))(6);

S4 IC-Q4a

((thrice(thrice))(add1))(6);

aaaaaaaaa aaaaaaaaa aaaaaaaaa6
33.

Tutorial questions In class questions

S4 IC-Q4b

((thrice(thrice))(x => x))(compose);

S4 IC-Q4b

((thrice(thrice))(x => x))(compose);

fffffffff fffffffff fffffffffc

S4 IC-Q4b

((thrice(thrice))(x => x))(compose);

fffffffff fffffffff fffffffffc fffffffff fffffffff ffffffffc

S4 IC-Q4b

((thrice(thrice))(x => x))(compose);

fffffffff fffffffff fffffffffc fffffffff fffffffff ffffffffc
c

Tutorial questions In class questions

S4 IC-Q4c,d

((thrice)(thrice)) (square))(2);

S4 IC-Q4c,d

((thrice(thrice)) (square)) (2);

SSSSSSSSS SSSSSSSSS $\operatorname{sssssssss2~//~2`1~}$

S4 IC-Q4c,d

((thrice)(thrice)) (square)) (2);

ssssssss ssssssss sssssssss2 // 2^1
sssssssss sssssssss ssssssss4 // 2^2

S4 IC-Q4c,d

((thrice)(thrice)) (square)) (2);

S4 IC-Q4c,d

((thrice)(thrice)) (square)) (2);
ssssssss ssssssss ssssssss2 // 2^1
ssssssss ssssssss ssssssss 4 // $2^{\wedge} 2$
sssssssss ssssssss sssssss16 // 2^4
$2^{2^{27}} \gtrsim 2^{100 \text { million }}$

[^0]: ${ }^{1}$ In subsequent slides \mathbf{x} is the vector of arguments given to the function (i.e. represents x_{1}, x_{2}, \ldots), and \mathbf{x}_{i} is the i-th element of the vector (i.e. x_{i}).

