
Additions to the language
Examples and enrichment

Tutorial Questions

More functions and recursion

Jia Xiaodong

August 30, 2021

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Anonymous functions

const g = param => { /* body */ }

Short aside: difference between parameter and argument:

• A parameter is what the function depends on. For the above,
the parameter of g is param.

• An argument is what you give the function. For example,
g(5), then 5 is the argument.

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Anonymous functions

const g = param => { /* body */ }

Short aside: difference between parameter and argument:

• A parameter is what the function depends on. For the above,
the parameter of g is param.

• An argument is what you give the function. For example,
g(5), then 5 is the argument.

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Anonymous functions

const g = param => { /* body */ }

Short aside: difference between parameter and argument:

• A parameter is what the function depends on. For the above,
the parameter of g is param.

• An argument is what you give the function. For example,
g(5), then 5 is the argument.

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Higher order functions

Remember this?

function fact_helper(n, res) {

return n === 1

? res

: fact_helper(n - 1, n * res);

}

function factorial(n) {

return fact_helper(n, 1);

}

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Higher order functions
Cont.

Makes more sense?

function factorial(n) {

function fact_helper(n, res) {

return n === 1

? res

: fact_helper(n - 1, n * res);

}

return fact_helper(n, 1);

}

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Higher order functions
Functions as return value

Functions of functions (functionals):

I =

ˆ
f(t) dt

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Higher order functions
Functions as arguments

Say I want the smallest of two things.

const min = (a, b) => a < b ? a : b

What if I am comparing timings in HH:MM format and I want the
earliest?

const min = (a, b, f) => f(a) < f(b) ? a : b

function hhmm_to_mins(a) { ... }

min(a, b, hhmm_to_mins);

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Higher order functions
Functions as arguments

Say I want the smallest of two things.

const min = (a, b) => a < b ? a : b

What if I am comparing timings in HH:MM format and I want the
earliest?

const min = (a, b, f) => f(a) < f(b) ? a : b

function hhmm_to_mins(a) { ... }

min(a, b, hhmm_to_mins);

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Higher order functions
Functions as arguments

Say I want the smallest of two things.

const min = (a, b) => a < b ? a : b

What if I am comparing timings in HH:MM format and I want the
earliest?

const min = (a, b, f) => f(a) < f(b) ? a : b

function hhmm_to_mins(a) { ... }

min(a, b, hhmm_to_mins);

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Higher order functions
Functions as arguments

Say I want the smallest of two things.

const min = (a, b) => a < b ? a : b

What if I am comparing timings in HH:MM format and I want the
earliest?

const min = (a, b, f) => f(a) < f(b) ? a : b

function hhmm_to_mins(a) { ... }

min(a, b, hhmm_to_mins);

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Scoping

• We give names to things.

• We may give many things the same name. (e.g. c: Speed of
light, specific heat capacity, etc.)

• What gives us the context for our names?

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Scoping

• We give names to things.

• We may give many things the same name. (e.g. c: Speed of
light, specific heat capacity, etc.)

• What gives us the context for our names?

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Scoping

• We give names to things.

• We may give many things the same name. (e.g. c: Speed of
light, specific heat capacity, etc.)

• What gives us the context for our names?

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Scopes

• A name occurrence refers to the closest surrounding
declaration.

• Scopes are our context where we find our names.

• The most common context are blocks: {...}.

• To find what a name refers to, look at the current scope, and
then outwards. Take the first one you come across.

• Names in an outer scope can be hidden by definitions in an
inner scope.

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Scopes

• A name occurrence refers to the closest surrounding
declaration.

• Scopes are our context where we find our names.

• The most common context are blocks: {...}.

• To find what a name refers to, look at the current scope, and
then outwards. Take the first one you come across.

• Names in an outer scope can be hidden by definitions in an
inner scope.

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Scopes

• A name occurrence refers to the closest surrounding
declaration.

• Scopes are our context where we find our names.

• The most common context are blocks: {...}.

• To find what a name refers to, look at the current scope, and
then outwards. Take the first one you come across.

• Names in an outer scope can be hidden by definitions in an
inner scope.

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Scopes

• A name occurrence refers to the closest surrounding
declaration.

• Scopes are our context where we find our names.

• The most common context are blocks: {...}.

• To find what a name refers to, look at the current scope, and
then outwards. Take the first one you come across.

• Names in an outer scope can be hidden by definitions in an
inner scope.

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Scopes

• A name occurrence refers to the closest surrounding
declaration.

• Scopes are our context where we find our names.

• The most common context are blocks: {...}.

• To find what a name refers to, look at the current scope, and
then outwards. Take the first one you come across.

• Names in an outer scope can be hidden by definitions in an
inner scope.

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Exercise

hello = "world"

function n(hello){

const g = hello => display;

g(hello);

}

n("hello")(hello);

const n = 1;

{

const n = 2;

{

const n = 3;

{

display(n);

}

const n = 4;

}

}

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Exercise

hello = "world"

function n(hello){

const g = hello => display;

g(hello);

}

n("hello")(hello);

const n = 1;

{

const n = 2;

{

const n = 3;

{

display(n);

}

const n = 4;

}

}

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Series
I heard you like recursion

Example: series *

Let us make a polynomial series generator. A series is something like

S(x) =

k∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · ·

A disposable solution:

function sum(x) {

return a0 + a1 * x + a2 * x * x + ...

}

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Series
I heard you like recursion

Example: series *

Let us make a polynomial series generator. A series is something like

S(x) =

k∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · ·

A disposable solution:

function sum(x) {

return a0 + a1 * x + a2 * x * x + ...

}

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Series
I heard you like recursion

Example: series *
Cont.

function series_generator(k, coeff) {

function gen_helper(n, series) {

return n === k

? series

: gen_helper(n + 1,

x => series(x) + coeff(n) * math_pow(x, n));

}

return gen_helper(0, x => 0);

}

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Series
I heard you like recursion

Example: series *
Cont.

function series_generator(k, coeff) {

function gen_helper(n, series) {

return n === k

? series

: gen_helper(n + 1,

x => series(x) + coeff(n) * math_pow(x, n));

}

return gen_helper(0, x => 0);

}

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Series
I heard you like recursion

Example: series *
Cont.

function series_generator(k, coeff) {

function gen_helper(n, series) {

return n === k

? series

: gen_helper(n + 1,

x => series(x) + coeff(n) * math_pow(x, n));

}

return gen_helper(0, x => 0);

}

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Series
I heard you like recursion

Example: series *
Cont.

function series_generator(k, coeff) {

function gen_helper(n, series) {

return n === k

? series

: gen_helper(n + 1,

x => series(x) + coeff(n) * math_pow(x, n));

}

return gen_helper(0, x => 0);

}

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Series
I heard you like recursion

Example: series *
Cont.

function series_generator(k, coeff) {

function gen_helper(n, series) {

return n === k

? series

: gen_helper(n + 1,

x => series(x) + coeff(n) * math_pow(x, n));

}

return gen_helper(0, x => 0);

}

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Series
I heard you like recursion

Example: series *
Cont.

function series_generator(k, coeff) {

function gen_helper(n, series) {

return n === k

? series

: gen_helper(n + 1,

x => series(x) + coeff(n) * math_pow(x, n));

}

return gen_helper(0, x => 0);

}

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Series
I heard you like recursion

Example: series *
Demonstration

ex ≈
k∑

n=0

xn

n!

function exp_coeff(n) {

return 1 / factorial(n);

}

const exp_series = series_generator(5, exp_coeff);

Try it out!

Jia Xiaodong More functions and recursion

https://share.sourceacademy.nus.edu.sg/seriesgen

Additions to the language
Examples and enrichment

Tutorial Questions

Series
I heard you like recursion

Example: series *
Demonstration

ex ≈
k∑

n=0

xn

n!

function exp_coeff(n) {

return 1 / factorial(n);

}

const exp_series = series_generator(5, exp_coeff);

Try it out!

Jia Xiaodong More functions and recursion

https://share.sourceacademy.nus.edu.sg/seriesgen

Additions to the language
Examples and enrichment

Tutorial Questions

Series
I heard you like recursion

Example: series *
Demonstration, cont.

sin(x) ≈
k∑

n=0

(−1)nx2n+1

(2n+ 1)!

function sin_coeff(n) {

function minus_one(n) {

return ((n - 1) / 2) % 2 === 0 ? 1 : -1;

}

return n % 2 === 0 ? 0 : minus_one(n) / factorial(n);

}

const sin_series = series_generator(5, sin_coeff);

Try it out! (same link as before)

Jia Xiaodong More functions and recursion

https://share.sourceacademy.nus.edu.sg/seriesgen

Additions to the language
Examples and enrichment

Tutorial Questions

Series
I heard you like recursion

Example: series *
Demonstration, cont.

sin(x) ≈
k∑

n=0

(−1)nx2n+1

(2n+ 1)!

function sin_coeff(n) {

function minus_one(n) {

return ((n - 1) / 2) % 2 === 0 ? 1 : -1;

}

return n % 2 === 0 ? 0 : minus_one(n) / factorial(n);

}

const sin_series = series_generator(5, sin_coeff);

Try it out! (same link as before)

Jia Xiaodong More functions and recursion

https://share.sourceacademy.nus.edu.sg/seriesgen

Additions to the language
Examples and enrichment

Tutorial Questions

Series
I heard you like recursion

Example: series *
Challenge

Fourier trigonometric series for function f with period 2L:

f(x) =
a0
2

+

∞∑
n=1

an sin
(nπx
L

)
+

∞∑
n=1

bn cos
(nπx
L

)

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Series
I heard you like recursion

Primitive recursion *

Definition

The following are primitive recursive:

• Constant function: 0

• Successor function: S(x) = x+ 1

• Projection function1: Pi(x) = xi

Recursion: if f, g are primitive recursive, h is primitive recursive if

h(0,x) = f(x)

h(S(y),x) = g(y, h(y,x),x)

1In subsequent slides x is the vector of arguments given to the function (i.e. represents x1, x2, . . .), and xi is
the i-th element of the vector (i.e. xi).

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Series
I heard you like recursion

Primitive recursion *

Definition

A function f is defined from t by iteration if

f(x, n) = tn(x)

Theorem

Minus some formalities, primitive recursion and iteration are
equivalent.

Proof.

Iteration is primitive recursion because

f(x, 0) = x

f(x, n+ 1) = t(f(x, n))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Series
I heard you like recursion

Primitive recursion *

Proof.

Primitive recursion can be converted into recursion. Take

t(x, n, z) := (x, n+ 1, h(x, n, z))

Then
(x, n, f(x, n)) = tn(x, 0, g(x))

Example: factorial

Factorial is defined as follows:

f(0) = g := 1

f(n+ 1) = h(n, f(n)) := (n+ 1) · f(n)

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Series
I heard you like recursion

Primitive recursion *

Example: factorial

Let us make it iterative. Then using the recipe,

t(n, z) := (n+ 1, (n+ 1) · z)
(n+ 1, n!) = tn(0, 1)

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 Q1

Write a function computing elements of Pascal’s triangle, i.e.
(row
col

)
.

The following relationships might be helpful:(
r

c

)
=

(
r − 1

c− 1

)
+

(
r − 1

c

) (
r

1

)
=

(
r

r

)
= 1

function pascal(row, col) {

return col === 1 || col === row

? 1

: pascal(row - 1, col - 1) + pascal(row - 1, col);

}

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 Q1

Write a function computing elements of Pascal’s triangle, i.e.
(row
col

)
.

The following relationships might be helpful:(
r

c

)
=

(
r − 1

c− 1

)
+

(
r − 1

c

) (
r

1

)
=

(
r

r

)
= 1

function pascal(row, col) {

return col === 1 || col === row

? 1

: pascal(row - 1, col - 1) + pascal(row - 1, col);

}

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 Q2

Draw the tree illustration the process generated by
pascal(5, 4).

pascal(5, 4)

pascal(4, 4) + pascal(4, 3)

1 pascal(3, 3) + pascal(3, 2)

1

pascal(2, 2) + pascal(2, 1)

1 1

Recursive.

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 Q2

Draw the tree illustration the process generated by
pascal(5, 4).

pascal(5, 4)

pascal(4, 4) + pascal(4, 3)

1 pascal(3, 3) + pascal(3, 2)

1

pascal(2, 2) + pascal(2, 1)

1 1

Recursive.

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q1

What do the following evaluate to?

compose(math_sqrt, math_log)(math_E)

compose(math_log, math_sqrt)(math_E * math_E)

(z => math_sqrt(math_log(z)))(math_E)

(y => math_log(math_sqrt(z)))(math_E * math_E)

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q1

What do the following evaluate to?

compose(math_sqrt, math_log)(math_E)

compose(math_log, math_sqrt)(math_E * math_E)

(z => math_sqrt(math_log(z)))(math_E)

(y => math_log(math_sqrt(z)))(math_E * math_E)

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q1

What do the following evaluate to?

compose(math_sqrt, math_log)(math_E)

compose(math_log, math_sqrt)(math_E * math_E)

(z => math_sqrt(math_log(z)))(math_E)

(y => math_log(math_sqrt(z)))(math_E * math_E)

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q2

const compose = (f, g) => x => f(g(x));

function thrice(f) {

return compose(compose(f, f), f);

}

thrice(h);

compose(compose(h, h), h)

compose(x => h(h(x)), h)

y => (x => h(h(x))(h(y))

thrice(h)(z);

(x => h(h(x))(h(z))

h(h(h(z)))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q2

const compose = (f, g) => x => f(g(x));

function thrice(f) {

return compose(compose(f, f), f);

}

thrice(h);

compose(compose(h, h), h)

compose(x => h(h(x)), h)

y => (x => h(h(x))(h(y))

thrice(h)(z);

(x => h(h(x))(h(z))

h(h(h(z)))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q2

const compose = (f, g) => x => f(g(x));

function thrice(f) {

return compose(compose(f, f), f);

}

thrice(h);

compose(compose(h, h), h)

compose(x => h(h(x)), h)

y => (x => h(h(x))(h(y))

thrice(h)(z);

(x => h(h(x))(h(z))

h(h(h(z)))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q2

const compose = (f, g) => x => f(g(x));

function thrice(f) {

return compose(compose(f, f), f);

}

thrice(h);

compose(compose(h, h), h)

compose(x => h(h(x)), h)

y => (x => h(h(x))(h(y))

thrice(h)(z);

(x => h(h(x))(h(z))

h(h(h(z)))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q2

const compose = (f, g) => x => f(g(x));

function thrice(f) {

return compose(compose(f, f), f);

}

thrice(h);

compose(compose(h, h), h)

compose(x => h(h(x)), h)

y => (x => h(h(x))(h(y))

thrice(h)(z);

(x => h(h(x))(h(z))

h(h(h(z)))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3

const compose = (f, g) => x => f(g(x));

function repeated(f, n) {

return n === 0

? x => x

: compose(f, repeated(f, n - 1));

}

repeated(f, 2);

compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x)(y)))
z => f((y => f((x => x)(y)))(z))

repeated(f, 2)(a);

f((y => f((x => x)(y)))(a))
f((f((x => x)(a))))
f((f((a))))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3

const compose = (f, g) => x => f(g(x));

function repeated(f, n) {

return n === 0

? x => x

: compose(f, repeated(f, n - 1));

}

repeated(f, 2);

compose(f, repeated(f, 1))

compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x)(y)))
z => f((y => f((x => x)(y)))(z))

repeated(f, 2)(a);

f((y => f((x => x)(y)))(a))
f((f((x => x)(a))))
f((f((a))))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3

const compose = (f, g) => x => f(g(x));

function repeated(f, n) {

return n === 0

? x => x

: compose(f, repeated(f, n - 1));

}

repeated(f, 2);

compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))

compose(f, compose(f, x => x))
compose(f, y => f((x => x)(y)))
z => f((y => f((x => x)(y)))(z))

repeated(f, 2)(a);

f((y => f((x => x)(y)))(a))
f((f((x => x)(a))))
f((f((a))))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3

const compose = (f, g) => x => f(g(x));

function repeated(f, n) {

return n === 0

? x => x

: compose(f, repeated(f, n - 1));

}

repeated(f, 2);

compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))

compose(f, y => f((x => x)(y)))
z => f((y => f((x => x)(y)))(z))

repeated(f, 2)(a);

f((y => f((x => x)(y)))(a))
f((f((x => x)(a))))
f((f((a))))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3

const compose = (f, g) => x => f(g(x));

function repeated(f, n) {

return n === 0

? x => x

: compose(f, repeated(f, n - 1));

}

repeated(f, 2);

compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x)(y)))

z => f((y => f((x => x)(y)))(z))

repeated(f, 2)(a);

f((y => f((x => x)(y)))(a))
f((f((x => x)(a))))
f((f((a))))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3

const compose = (f, g) => x => f(g(x));

function repeated(f, n) {

return n === 0

? x => x

: compose(f, repeated(f, n - 1));

}

repeated(f, 2);

compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x)(y)))
z => f((y => f((x => x)(y)))(z))

repeated(f, 2)(a);

f((y => f((x => x)(y)))(a))
f((f((x => x)(a))))
f((f((a))))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3

const compose = (f, g) => x => f(g(x));

function repeated(f, n) {

return n === 0

? x => x

: compose(f, repeated(f, n - 1));

}

repeated(f, 2);

compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x)(y)))
z => f((y => f((x => x)(y)))(z))

repeated(f, 2)(a);

f((y => f((x => x)(y)))(a))

f((f((x => x)(a))))
f((f((a))))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3

const compose = (f, g) => x => f(g(x));

function repeated(f, n) {

return n === 0

? x => x

: compose(f, repeated(f, n - 1));

}

repeated(f, 2);

compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x)(y)))
z => f((y => f((x => x)(y)))(z))

repeated(f, 2)(a);

f((y => f((x => x)(y)))(a))
f((f((x => x)(a))))

f((f((a))))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3

const compose = (f, g) => x => f(g(x));

function repeated(f, n) {

return n === 0

? x => x

: compose(f, repeated(f, n - 1));

}

repeated(f, 2);

compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x)(y)))
z => f((y => f((x => x)(y)))(z))

repeated(f, 2)(a);

f((y => f((x => x)(y)))(a))
f((f((x => x)(a))))
f((f((a))))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3
Cont.

const compose = (f, g) => x => f(g(x));

function thrice(f) {

return compose(compose(f, f), f);

}

For what value of n will ((thrice(thrice))(f))(0) return
the same value as (repeated(f, n))(0)?

// thrice(h)(z) ---> h(h(h(z)))

(thrice(thrice))(f);
thrice(thrice(thrice(f)))

((thrice(thrice))(f))(0);

(thrice(thrice(thrice(f))))(0)
g(g(g(0))) // g = thrice(thrice(f))
g(g(h(h(h(0))))) // h = thrice(f)
g(g(h(h(f(f(f(0)))))))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3
Cont.

const compose = (f, g) => x => f(g(x));

function thrice(f) {

return compose(compose(f, f), f);

}

For what value of n will ((thrice(thrice))(f))(0) return
the same value as (repeated(f, n))(0)?

// thrice(h)(z) ---> h(h(h(z)))

(thrice(thrice))(f);

thrice(thrice(thrice(f)))

((thrice(thrice))(f))(0);

(thrice(thrice(thrice(f))))(0)
g(g(g(0))) // g = thrice(thrice(f))
g(g(h(h(h(0))))) // h = thrice(f)
g(g(h(h(f(f(f(0)))))))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3
Cont.

const compose = (f, g) => x => f(g(x));

function thrice(f) {

return compose(compose(f, f), f);

}

For what value of n will ((thrice(thrice))(f))(0) return
the same value as (repeated(f, n))(0)?

// thrice(h)(z) ---> h(h(h(z)))

(thrice(thrice))(f);
thrice(thrice(thrice(f)))

((thrice(thrice))(f))(0);

(thrice(thrice(thrice(f))))(0)
g(g(g(0))) // g = thrice(thrice(f))
g(g(h(h(h(0))))) // h = thrice(f)
g(g(h(h(f(f(f(0)))))))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3
Cont.

const compose = (f, g) => x => f(g(x));

function thrice(f) {

return compose(compose(f, f), f);

}

For what value of n will ((thrice(thrice))(f))(0) return
the same value as (repeated(f, n))(0)?

// thrice(h)(z) ---> h(h(h(z)))

(thrice(thrice))(f);
thrice(thrice(thrice(f)))

((thrice(thrice))(f))(0);

(thrice(thrice(thrice(f))))(0)

g(g(g(0))) // g = thrice(thrice(f))
g(g(h(h(h(0))))) // h = thrice(f)
g(g(h(h(f(f(f(0)))))))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3
Cont.

const compose = (f, g) => x => f(g(x));

function thrice(f) {

return compose(compose(f, f), f);

}

For what value of n will ((thrice(thrice))(f))(0) return
the same value as (repeated(f, n))(0)?

// thrice(h)(z) ---> h(h(h(z)))

(thrice(thrice))(f);
thrice(thrice(thrice(f)))

((thrice(thrice))(f))(0);

(thrice(thrice(thrice(f))))(0)
g(g(g(0))) // g = thrice(thrice(f))

g(g(h(h(h(0))))) // h = thrice(f)
g(g(h(h(f(f(f(0)))))))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3
Cont.

const compose = (f, g) => x => f(g(x));

function thrice(f) {

return compose(compose(f, f), f);

}

For what value of n will ((thrice(thrice))(f))(0) return
the same value as (repeated(f, n))(0)?

// thrice(h)(z) ---> h(h(h(z)))

(thrice(thrice))(f);
thrice(thrice(thrice(f)))

((thrice(thrice))(f))(0);

(thrice(thrice(thrice(f))))(0)
g(g(g(0))) // g = thrice(thrice(f))
g(g(h(h(h(0))))) // h = thrice(f)

g(g(h(h(f(f(f(0)))))))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3
Cont.

const compose = (f, g) => x => f(g(x));

function thrice(f) {

return compose(compose(f, f), f);

}

For what value of n will ((thrice(thrice))(f))(0) return
the same value as (repeated(f, n))(0)?

// thrice(h)(z) ---> h(h(h(z)))

(thrice(thrice))(f);
thrice(thrice(thrice(f)))

((thrice(thrice))(f))(0);

(thrice(thrice(thrice(f))))(0)
g(g(g(0))) // g = thrice(thrice(f))
g(g(h(h(h(0))))) // h = thrice(f)
g(g(h(h(f(f(f(0)))))))

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3
Cont.

// thrice(h)(z) ---> h(h(h(z)))

((thrice(thrice))(f))(0);

(thrice(thrice(thrice(f))))(0)

g(g(g(0))) // g = thrice(thrice(f))

g(g(h(h(h(0))))) // h = thrice(f)

g(g(h(h(f(f(f(0)))))))

g(g(h(f(f(f(a)))))) // a = f(f(f(0)))

g(g(f(f(f(b))))) // b = f(f(f(a)))

g(g(c)) // c = f(f(f(b))) = ffffffa = fffffffff0

g(fffffffffc)

fffffffffd // d = fffffffffc = fffffffff fffffffff0

fffffffff fffffffff fffffffff0

27.

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q4a

((thrice(thrice))(add1))(6);

aaaaaaaaa aaaaaaaaa aaaaaaaaa6

33.

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q4a

((thrice(thrice))(add1))(6);

aaaaaaaaa aaaaaaaaa aaaaaaaaa6

33.

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q4b

((thrice(thrice))(x => x))(compose);

fffffffff fffffffff fffffffffc

fffffffff fffffffff ffffffffc

c

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q4b

((thrice(thrice))(x => x))(compose);

fffffffff fffffffff fffffffffc

fffffffff fffffffff ffffffffc

c

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q4b

((thrice(thrice))(x => x))(compose);

fffffffff fffffffff fffffffffc

fffffffff fffffffff ffffffffc

c

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q4b

((thrice(thrice))(x => x))(compose);

fffffffff fffffffff fffffffffc

fffffffff fffffffff ffffffffc

c

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q4c,d

((thrice(thrice))(square))(2);

sssssssss sssssssss sssssssss2 // 2^1

sssssssss sssssssss ssssssss4 // 2^2

sssssssss sssssssss sssssss16 // 2^4

22
27

' 2100 million

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q4c,d

((thrice(thrice))(square))(2);

sssssssss sssssssss sssssssss2 // 2^1

sssssssss sssssssss ssssssss4 // 2^2

sssssssss sssssssss sssssss16 // 2^4

22
27

' 2100 million

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q4c,d

((thrice(thrice))(square))(2);

sssssssss sssssssss sssssssss2 // 2^1

sssssssss sssssssss ssssssss4 // 2^2

sssssssss sssssssss sssssss16 // 2^4

22
27

' 2100 million

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q4c,d

((thrice(thrice))(square))(2);

sssssssss sssssssss sssssssss2 // 2^1

sssssssss sssssssss ssssssss4 // 2^2

sssssssss sssssssss sssssss16 // 2^4

22
27

' 2100 million

Jia Xiaodong More functions and recursion

Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q4c,d

((thrice(thrice))(square))(2);

sssssssss sssssssss sssssssss2 // 2^1

sssssssss sssssssss ssssssss4 // 2^2

sssssssss sssssssss sssssss16 // 2^4

22
27

' 2100 million

Jia Xiaodong More functions and recursion

	Additions to the language
	Anonymous functions
	Higher order functions
	Scoping

	Examples and enrichment
	Series
	I heard you like recursion

	Tutorial Questions
	Tutorial questions
	In class questions

