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Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Anonymous functions

const g = param => { /* body */ }

Short aside: difference between parameter and argument:

• A parameter is what the function depends on. For the above,
the parameter of g is param.

• An argument is what you give the function. For example,
g(5), then 5 is the argument.
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Higher order functions

Remember this?

function fact_helper(n, res) {

return n === 1

? res

: fact_helper(n - 1, n * res);

}

function factorial(n) {

return fact_helper(n, 1);

}
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Higher order functions
Cont.

Makes more sense?

function factorial(n) {

function fact_helper(n, res) {

return n === 1

? res

: fact_helper(n - 1, n * res);

}

return fact_helper(n, 1);

}
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Higher order functions
Functions as return value

Functions of functions (functionals):

I =

ˆ
f(t) dt
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Higher order functions
Functions as arguments

Say I want the smallest of two things.

const min = (a, b) => a < b ? a : b

What if I am comparing timings in HH:MM format and I want the
earliest?

const min = (a, b, f) => f(a) < f(b) ? a : b

function hhmm_to_mins(a) { ... }

min(a, b, hhmm_to_mins);
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Scoping

• We give names to things.

• We may give many things the same name. (e.g. c: Speed of
light, specific heat capacity, etc.)

• What gives us the context for our names?
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Scopes

• A name occurrence refers to the closest surrounding
declaration.

• Scopes are our context where we find our names.

• The most common context are blocks: {...}.

• To find what a name refers to, look at the current scope, and
then outwards. Take the first one you come across.

• Names in an outer scope can be hidden by definitions in an
inner scope.
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Exercise

hello = "world"

function n(hello){

const g = hello => display;

g(hello);

}

n("hello")(hello);

const n = 1;

{

const n = 2;

{

const n = 3;

{

display(n);

}

const n = 4;

}

}
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Series
I heard you like recursion

Example: series *

Let us make a polynomial series generator. A series is something like

S(x) =

k∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · ·

A disposable solution:

function sum(x) {

return a0 + a1 * x + a2 * x * x + ...

}
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I heard you like recursion

Example: series *
Cont.

function series_generator(k, coeff) {

function gen_helper(n, series) {

return n === k

? series

: gen_helper(n + 1,

x => series(x) + coeff(n) * math_pow(x, n));

}

return gen_helper(0, x => 0);

}
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Series
I heard you like recursion

Example: series *
Demonstration

ex ≈
k∑

n=0

xn

n!

function exp_coeff(n) {

return 1 / factorial(n);

}

const exp_series = series_generator(5, exp_coeff);

Try it out!
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Series
I heard you like recursion

Example: series *
Demonstration, cont.

sin(x) ≈
k∑

n=0

(−1)nx2n+1

(2n+ 1)!

function sin_coeff(n) {

function minus_one(n) {

return ((n - 1) / 2) % 2 === 0 ? 1 : -1;

}

return n % 2 === 0 ? 0 : minus_one(n) / factorial(n);

}

const sin_series = series_generator(5, sin_coeff);

Try it out! (same link as before)
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Series
I heard you like recursion

Example: series *
Challenge

Fourier trigonometric series for function f with period 2L:

f(x) =
a0
2

+

∞∑
n=1

an sin
(nπx
L

)
+

∞∑
n=1

bn cos
(nπx
L

)
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Series
I heard you like recursion

Primitive recursion *

Definition

The following are primitive recursive:

• Constant function: 0

• Successor function: S(x) = x+ 1

• Projection function1: Pi(x) = xi

Recursion: if f, g are primitive recursive, h is primitive recursive if

h(0,x) = f(x)

h(S(y),x) = g(y, h(y,x),x)

1In subsequent slides x is the vector of arguments given to the function (i.e. represents x1, x2, . . .), and xi is
the i-th element of the vector (i.e. xi).
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Series
I heard you like recursion

Primitive recursion *

Definition

A function f is defined from t by iteration if

f(x, n) = tn(x)

Theorem

Minus some formalities, primitive recursion and iteration are
equivalent.

Proof.

Iteration is primitive recursion because

f(x, 0) = x

f(x, n+ 1) = t(f(x, n))
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I heard you like recursion

Primitive recursion *

Proof.

Primitive recursion can be converted into recursion. Take

t(x, n, z) := (x, n+ 1, h(x, n, z))

Then
(x, n, f(x, n)) = tn(x, 0, g(x))

Example: factorial

Factorial is defined as follows:

f(0) = g := 1

f(n+ 1) = h(n, f(n)) := (n+ 1) · f(n)
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I heard you like recursion

Primitive recursion *

Example: factorial

Let us make it iterative. Then using the recipe,

t(n, z) := (n+ 1, (n+ 1) · z)
(n+ 1, n!) = tn(0, 1)
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Tutorial questions
In class questions

S4 Q1

Write a function computing elements of Pascal’s triangle, i.e.
(row
col

)
.

The following relationships might be helpful:(
r

c

)
=

(
r − 1

c− 1

)
+

(
r − 1

c

) (
r

1

)
=

(
r

r

)
= 1

function pascal(row, col) {

return col === 1 || col === row

? 1

: pascal(row - 1, col - 1) + pascal(row - 1, col);

}
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S4 Q2

Draw the tree illustration the process generated by
pascal(5, 4).

pascal(5, 4)

pascal(4, 4) + pascal(4, 3)

1 pascal(3, 3) + pascal(3, 2)

1

pascal(2, 2) + pascal(2, 1)

1 1

Recursive.
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S4 IC-Q1

What do the following evaluate to?

compose(math_sqrt, math_log)(math_E)

compose(math_log, math_sqrt)(math_E * math_E)

(z => math_sqrt(math_log(z)))(math_E)

(y => math_log(math_sqrt(z)))(math_E * math_E)
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S4 IC-Q2

const compose = (f, g) => x => f(g(x));

function thrice(f) {

return compose(compose(f, f), f);

}

thrice(h);

compose(compose(h, h), h)

compose(x => h(h(x)), h)

y => (x => h(h(x))(h(y))

thrice(h)(z);

(x => h(h(x))(h(z))

h(h(h(z)))
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S4 IC-Q3

const compose = (f, g) => x => f(g(x));

function repeated(f, n) {

return n === 0

? x => x

: compose(f, repeated(f, n - 1));

}

repeated(f, 2);

compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x)(y)))
z => f((y => f((x => x)(y)))(z))

repeated(f, 2)(a);

f((y => f((x => x)(y)))(a))
f((f((x => x)(a))))
f((f((a))))
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compose(f, y => f((x => x)(y)))

z => f((y => f((x => x)(y)))(z))

repeated(f, 2)(a);

f((y => f((x => x)(y)))(a))
f((f((x => x)(a))))
f((f((a))))

Jia Xiaodong More functions and recursion



Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3

const compose = (f, g) => x => f(g(x));

function repeated(f, n) {

return n === 0

? x => x

: compose(f, repeated(f, n - 1));

}

repeated(f, 2);

compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x)(y)))
z => f((y => f((x => x)(y)))(z))

repeated(f, 2)(a);

f((y => f((x => x)(y)))(a))
f((f((x => x)(a))))
f((f((a))))

Jia Xiaodong More functions and recursion



Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3

const compose = (f, g) => x => f(g(x));

function repeated(f, n) {

return n === 0

? x => x

: compose(f, repeated(f, n - 1));

}

repeated(f, 2);

compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x)(y)))
z => f((y => f((x => x)(y)))(z))

repeated(f, 2)(a);

f((y => f((x => x)(y)))(a))

f((f((x => x)(a))))
f((f((a))))

Jia Xiaodong More functions and recursion



Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3

const compose = (f, g) => x => f(g(x));

function repeated(f, n) {

return n === 0

? x => x

: compose(f, repeated(f, n - 1));

}

repeated(f, 2);

compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x)(y)))
z => f((y => f((x => x)(y)))(z))

repeated(f, 2)(a);

f((y => f((x => x)(y)))(a))
f((f((x => x)(a))))

f((f((a))))

Jia Xiaodong More functions and recursion



Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3

const compose = (f, g) => x => f(g(x));

function repeated(f, n) {

return n === 0

? x => x

: compose(f, repeated(f, n - 1));

}

repeated(f, 2);

compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x)(y)))
z => f((y => f((x => x)(y)))(z))

repeated(f, 2)(a);

f((y => f((x => x)(y)))(a))
f((f((x => x)(a))))
f((f((a))))

Jia Xiaodong More functions and recursion



Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q3
Cont.

const compose = (f, g) => x => f(g(x));

function thrice(f) {

return compose(compose(f, f), f);

}

For what value of n will ((thrice(thrice))(f))(0) return
the same value as (repeated(f, n))(0)?

// thrice(h)(z) ---> h(h(h(z)))

(thrice(thrice))(f);
thrice(thrice(thrice(f)))

((thrice(thrice))(f))(0);

(thrice(thrice(thrice(f))))(0)
g(g(g(0))) // g = thrice(thrice(f))
g(g(h(h(h(0))))) // h = thrice(f)
g(g(h(h(f(f(f(0)))))))
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S4 IC-Q3
Cont.

// thrice(h)(z) ---> h(h(h(z)))

((thrice(thrice))(f))(0);

(thrice(thrice(thrice(f))))(0)

g(g(g(0))) // g = thrice(thrice(f))

g(g(h(h(h(0))))) // h = thrice(f)

g(g(h(h(f(f(f(0)))))))

g(g(h(f(f(f(a)))))) // a = f(f(f(0)))

g(g(f(f(f(b))))) // b = f(f(f(a)))

g(g(c)) // c = f(f(f(b))) = ffffffa = fffffffff0

g(fffffffffc)

fffffffffd // d = fffffffffc = fffffffff fffffffff0

fffffffff fffffffff fffffffff0

27.
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aaaaaaaaa aaaaaaaaa aaaaaaaaa6

33.
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S4 IC-Q4c,d

((thrice(thrice))(square))(2);

sssssssss sssssssss sssssssss2 // 2^1

sssssssss sssssssss ssssssss4 // 2^2

sssssssss sssssssss sssssss16 // 2^4

22
27

' 2100 million
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