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Anonymous functions

const g = param => { /* body */ }

Short aside: difference between parameter and argument:

• A parameter is what the function depends on. For the above,
the parameter of g is param.

• An argument is what you give the function. For example,
g(5), then 5 is the argument.
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A very convenient notation for functions, since we will be dealing
with plenty of them. They are especially good when it’s a simple one
liner that is kept anonymous. We will see uses of them later on.
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Higher order functions

Remember this?

function fact_helper(n, res) {

return n === 1

? res

: fact_helper(n - 1, n * res);

}

function factorial(n) {

return fact_helper(n, 1);

}
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In the previous session we saw this example. For the sake of abstrac-
tion we would like to hide the helper function.
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Higher order functions
Cont.

Makes more sense?

function factorial(n) {

function fact_helper(n, res) {

return n === 1

? res

: fact_helper(n - 1, n * res);

}

return fact_helper(n, 1);

}
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The way to do this is to just put it inside the factorial function. Now
nobody outside this function can access it. Luckily Source allows us
to do this — not all languages support this. But does this actually
hide it? How do we know? We shall see that later. Meanwhile we
should discuss more of our new abilities with functions.
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Higher order functions
Functions as return value

Functions of functions (functionals):

I =

ˆ
f(t) dt
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Functions that return functions aren’t actually that foreign. It is also
not difficult to come up with examples where something like this
might be needed.
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Higher order functions
Functions as arguments

Say I want the smallest of two things.

const min = (a, b) => a < b ? a : b

What if I am comparing timings in HH:MM format and I want the
earliest?

const min = (a, b, f) => f(a) < f(b) ? a : b

function hhmm_to_mins(a) { ... }

min(a, b, hhmm_to_mins);
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Passing in functions as arguments is a good way to further abstract
behaviour. This is a simple example. An ordinary function to find the
minimum of two things is only good for things that can be directly
compared: numbers, strings, etc.

By accepting in a function that converts the objects we are comparing
into their magnitudes, we can make a more robust min function that
can compare anything we like, as long as we can quantify them.



Additions to the language
Examples and enrichment

Tutorial Questions

Anonymous functions
Higher order functions
Scoping

Scoping

• We give names to things.

• We may give many things the same name. (e.g. c: Speed of
light, specific heat capacity, etc.)

• What gives us the context for our names?
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Assigning names to things is a great thing. But sometimes names
can collide. In mathematics this might happen since we don’t have
enough alphabets. When writing our programs bad things happen
not when we run out of names, but when we accidentally use the
wrong name. This can happen for instance if everyone decides to
name their helper functions the same thing. Best case, the program
doesn’t even run. Worst case, you get bugs and don’t even know
where they’re coming from.

So the program needs to know what the names are pointing to.
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Scopes

• A name occurrence refers to the closest surrounding
declaration.

• Scopes are our context where we find our names.

• The most common context are blocks: {...}.

• To find what a name refers to, look at the current scope, and
then outwards. Take the first one you come across.

• Names in an outer scope can be hidden by definitions in an
inner scope.
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The convention for establishing the context for our names is to take
the closest definition. In this case, the “closeness” is defined by the
number of scopes.

Scopes are formed by blocks. The only exceptions are the global
scope, which is just there by default, and the scope of anonymous
function parameters and bodies.

To find definitions for our names, we work our way outwards. What
this means is that we can’t search “into” scopes: there is no way for
an outer scope to access the contents of an inner scope. This justifies
the factorial example shown previously.

Furthermore, this also means that we can hide names by declaring
them again in an inner scope. However, note that you cannot declare
the same thing twice in the same scope (at least for now)! Now why
would you want to hide names? At times, it is a good bit of safety
to do so. Going back to the factorial function, the fact_helper
declares n that hides the parameter n of the factorial function.
This is good safety — the helper function should not have access
to the actual parameter, and leave that up to the wrapper function
instead.
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Exercise

hello = "world"

function n(hello){

const g = hello => display;

g(hello);

}

n("hello")(hello);

const n = 1;

{

const n = 2;

{

const n = 3;

{

display(n);

}

const n = 4;

}

}
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The first example makes use of the fact that Source treats functions
as first-class citizens. So you can return functions, take functions in
as arguments, etc. just like any other variable. The naming in this
example is quite poor to cause some confusion. n("hello") passes
"hello" to function n as the parameter hello. Now remember
that the hello of g is completely independent! So is that in the
global scope. So when we call g(hello), we actually call it with
g("hello"). This causes g to return display which may or may
not be what you expected. . .

The second example shows that in Source, programs aren’t just in-
terpreted blindly from top to down. If that were so, then display
would fire at least once. But it does not, and an error is given imme-
diately as it detects the redeclaration of names.
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Let us make a polynomial series generator. A series is something like

S(x) =

k∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · ·

A disposable solution:

function sum(x) {

return a0 + a1 * x + a2 * x * x + ...

}
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Let us consider a more useful problem. Most of you might be familiar
with series expansions of functions. So let us try to make an all-
purpose series generator. Of course the naive approach is to just hard
code everything, but this would be only good for one purpose. We
want something more robust.

How do we do this? First of all, of course we need to terminate the
sum at k. Next, the coefficients have to be created dynamically and
not hard coded. The perfect solution would be to accept a function
passed in as an argument. Finally, we don’t want to evaluate the
generator again every time we feed in a different x. Optimally we
want the generator to return a function like sum so that we don’t
have to regenerate the entire series.
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Example: series *
Cont.

function series_generator(k, coeff) {

function gen_helper(n, series) {

return n === k

? series

: gen_helper(n + 1,

x => series(x) + coeff(n) * math_pow(x, n));

}

return gen_helper(0, x => 0);

}
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So, after our discussion let us write down the form of the generator.
For the series to terminate at k we would need some kind of counter.
One way to do this is with a helper function. The base case is quite
clear here.

Now, how do we add a term to the series? We get into some trouble.
Remember that we want series to actually be a function, so if you
just did 1 + series it would be wrong. So we have to redefine
series to be an extension of the old series. That’s it!

How do we call the helper? What are the default arguments? Well
we start from k = 0 and the series defaults to 0.
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ex ≈
k∑

n=0

xn

n!

function exp_coeff(n) {

return 1 / factorial(n);

}

const exp_series = series_generator(5, exp_coeff);

Try it out!
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Let us start with a simple example. The definition of the exponential
function is as given. It is fairly easy to create this. Here are the errors
with our approximation using 5 terms,

• Delta @ 0.5 : 0.00028377070012819416

• Delta @ 1 : 0.009948495125712054

• Delta @ 1.5 : 0.08325157033806452

• Delta @ 2 : 0.3890560989306504

And using 10 terms.

• Delta @ 0.5 : 2.818771882573401e-10

• Delta @ 1 : 3.0288585284310443e-7

• Delta @ 1.5 : 0.000018363725341252746

• Delta @ 2 : 0.0003435768847959153

https://share.sourceacademy.nus.edu.sg/seriesgen
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Demonstration, cont.

sin(x) ≈
k∑

n=0

(−1)nx2n+1

(2n+ 1)!

function sin_coeff(n) {

function minus_one(n) {

return ((n - 1) / 2) % 2 === 0 ? 1 : -1;

}

return n % 2 === 0 ? 0 : minus_one(n) / factorial(n);

}

const sin_series = series_generator(5, sin_coeff);

Try it out! (same link as before)

Jia Xiaodong More functions and recursion

Another example is the sine function, it is usually given in odd pow-
ers of x so we have to do a bit of converting to suite our purposes.
Note that here if we generate up to the fifth term we actually only get
2 terms due to that fact.

https://share.sourceacademy.nus.edu.sg/seriesgen
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Fourier trigonometric series for function f with period 2L:

f(x) =
a0
2

+

∞∑
n=1

an sin
(nπx
L

)
+

∞∑
n=1

bn cos
(nπx
L

)
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A challenge. So far we have only generated series in terms of polyno-
mials. This is only good for power series. There are plenty of other
series. One such example is the Fourier series. The Fourier series
expansion can be found for any periodic function in terms of other
orthogonal functions. Without getting too much into the mathemat-
ics, this means that we forgot to abstract one thing — the function of
x. Therefore the challenge is for you to abstract that functionality out.
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Definition

The following are primitive recursive:

• Constant function: 0

• Successor function: S(x) = x+ 1

• Projection function1: Pi(x) = xi

Recursion: if f, g are primitive recursive, h is primitive recursive if

h(0,x) = f(x)

h(S(y),x) = g(y, h(y,x),x)

1In subsequent slides x is the vector of arguments given to the function (i.e. represents x1, x2, . . .), and xi is
the i-th element of the vector (i.e. xi).
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If I asked you what do you think can someone compute given all the
resources in the world you would perhaps either say that of course
there might be ridiculous questions not even an omnipotent deity
can compute. For example the task of enumerating all real numbers
is something even a god with infinite time and space will not be able
to accomplish.

Anyway our goal here is not to answer that question, but to address
what it means to even compute. Of course if you were a god perhaps
you would not be able to enumerate the real numbers but you could
do some startling things that humans might not be able to do. So
what is something to represent a reasonable human computation?

One of the earliest concepts of this came in the form of primitive recur-
sion.
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Definition

A function f is defined from t by iteration if

f(x, n) = tn(x)

Theorem

Minus some formalities, primitive recursion and iteration are
equivalent.

Proof.

Iteration is primitive recursion because

f(x, 0) = x

f(x, n+ 1) = t(f(x, n))
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Another very simple idea is just doing something over and over again.
That is called iteration. The two are pretty much the same.

Iteration can be easily converted to primitive recursion, with h as the
identity and g as t.
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Primitive recursion *

Proof.

Primitive recursion can be converted into recursion. Take

t(x, n, z) := (x, n+ 1, h(x, n, z))

Then
(x, n, f(x, n)) = tn(x, 0, g(x))

Example: factorial

Factorial is defined as follows:

f(0) = g := 1

f(n+ 1) = h(n, f(n)) := (n+ 1) · f(n)
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Continuing with the proof, primitive recursion can also be converted
to iteration, minus some details.

An example: factorial. As primitive recursion, factorial seems very
familiar to us. Something to note is that we don’t need x here so we
omitted it.
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Primitive recursion *

Example: factorial

Let us make it iterative. Then using the recipe,

t(n, z) := (n+ 1, (n+ 1) · z)
(n+ 1, n!) = tn(0, 1)
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This is what we get using the recipe. Quite expected and unsurpris-
ing, since this function is quite a simple one. Unfortunately, I have
quietly pulled a fast one — the · operation was used as though we
knew what it was. In fact, as an exercise you can find how to write
multiplication in a recursive form.
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S4 Q1

Write a function computing elements of Pascal’s triangle, i.e.
(row
col

)
.

The following relationships might be helpful:(
r

c

)
=

(
r − 1

c− 1

)
+

(
r − 1

c

) (
r

1

)
=

(
r

r

)
= 1

function pascal(row, col) {

return col === 1 || col === row

? 1

: pascal(row - 1, col - 1) + pascal(row - 1, col);

}
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From the equation provided we see that this is quite similar to the
Fibonacci numbers.
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S4 Q2

Draw the tree illustration the process generated by
pascal(5, 4).

pascal(5, 4)

pascal(4, 4) + pascal(4, 3)

1 pascal(3, 3) + pascal(3, 2)

1

pascal(2, 2) + pascal(2, 1)

1 1

Recursive.

Jia Xiaodong More functions and recursion

Quite standard. If this diagram confuses you, try covering up the
1’s. Instead, replace the function call directly with the 1’s instead
of drawing another arrow. That should give you a clear idea of the
number of deferred operations.
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S4 IC-Q1

What do the following evaluate to?

compose(math_sqrt, math_log)(math_E)

compose(math_log, math_sqrt)(math_E * math_E)

(z => math_sqrt(math_log(z)))(math_E)

(y => math_log(math_sqrt(z)))(math_E * math_E)
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This is simply substituting in the return results. Here perhaps we also
highlight the fact that the bound variable names do not matter.
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S4 IC-Q2

const compose = (f, g) => x => f(g(x));

function thrice(f) {

return compose(compose(f, f), f);

}

thrice(h);

compose(compose(h, h), h)

compose(x => h(h(x)), h)

y => (x => h(h(x))(h(y))

thrice(h)(z);

(x => h(h(x))(h(z))

h(h(h(z)))
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Let us evaluate a call to thrice. It may seem complicated but really
we have done nothing but substitution.

• Substitute return value of thrice.

• Evaluate first argument (applicative order reduction).

• Substitute return value of compose with argument
f <- x=>h(h...) and g<-h

• Substitute return value of thrice, and then substituting
argument y<-z.

• Substitute return value of x=>... using argument x<-h(z).
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S4 IC-Q3

const compose = (f, g) => x => f(g(x));

function repeated(f, n) {

return n === 0

? x => x

: compose(f, repeated(f, n - 1));

}

repeated(f, 2);

compose(f, repeated(f, 1))
compose(f, compose(f, repeated(f, 0)))
compose(f, compose(f, x => x))
compose(f, y => f((x => x)(y)))
z => f((y => f((x => x)(y)))(z))

repeated(f, 2)(a);

f((y => f((x => x)(y)))(a))
f((f((x => x)(a))))
f((f((a))))
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Again the name gives it away. But let us perform the analysis anyway.
It is just careful work, but as long as you follow the rules, it is like
clockwork.

• Substitute return value for repeated.

• Evaluate arguments. Substitute return value.

• Evaluate arguments of second compose.

• Evaluate second compose with arguments f<-f and g<-x=>x.

• Evaluate final compose with arguments f<-f and
g<-y => ....

• Substitute in return value, and call function with argument
z<-a.

• Call y => ... with argument y<-a.

• Call x => ... with argument x<-a.
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S4 IC-Q3
Cont.

const compose = (f, g) => x => f(g(x));

function thrice(f) {

return compose(compose(f, f), f);

}

For what value of n will ((thrice(thrice))(f))(0) return
the same value as (repeated(f, n))(0)?

// thrice(h)(z) ---> h(h(h(z)))

(thrice(thrice))(f);
thrice(thrice(thrice(f)))

((thrice(thrice))(f))(0);

(thrice(thrice(thrice(f))))(0)
g(g(g(0))) // g = thrice(thrice(f))
g(g(h(h(h(0))))) // h = thrice(f)
g(g(h(h(f(f(f(0)))))))
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The first expression may seem quite complex but actually we already
know the behaviour of thrice. Using our previously established
results, we can evaluate this easily.

• A substitution. The only difference is some brackets.

• Substitute using previous results.

• Introduce an abbreviation to reduce clutter. Also substitute in
the first thrice using the same result (the commented line).

• Introduce another abbreviation. Evaluate the most inner
thrice since it is being called with an argument.

• Evaluate the most inner thrice since it is being called with an
argument.

The pattern emerges. f(0) is just a number, and so is f(f(f(0))).
The h(f...) will be expanded into f(f(f(f...))). How many
compositions of f is this? How many will there be after we evaluate
all the h’s? How many will have occurred after evaluating all 3 g’s?
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S4 IC-Q3
Cont.

// thrice(h)(z) ---> h(h(h(z)))

((thrice(thrice))(f))(0);

(thrice(thrice(thrice(f))))(0)

g(g(g(0))) // g = thrice(thrice(f))

g(g(h(h(h(0))))) // h = thrice(f)

g(g(h(h(f(f(f(0)))))))

g(g(h(f(f(f(a)))))) // a = f(f(f(0)))

g(g(f(f(f(b))))) // b = f(f(f(a)))

g(g(c)) // c = f(f(f(b))) = ffffffa = fffffffff0

g(fffffffffc)

fffffffffd // d = fffffffffc = fffffffff fffffffff0

fffffffff fffffffff fffffffff0

27.
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The expansion follows the same rules as before so I will not
write it all out again. The only thing to note is the slightly
different notation. Here, because the number of brackets
would be utterly disgusting, I have just dropped them. Thus
f(f(f(f(f(f(f(f(f(0))))))))) === fffffffff0. In fact
this is always fine as long as we follow certain rules, which we will
not get into here.



Additions to the language
Examples and enrichment

Tutorial Questions

Tutorial questions
In class questions

S4 IC-Q4a

((thrice(thrice))(add1))(6);

aaaaaaaaa aaaaaaaaa aaaaaaaaa6

33.
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Using the previous result the next question is fairly easy.
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S4 IC-Q4b

((thrice(thrice))(x => x))(compose);

fffffffff fffffffff fffffffffc

fffffffff fffffffff ffffffffc

c
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Again this is of the same form as the previous question. However
the function being composed this time is the identity function. This
is quite silly — even if you got the number of compositions wrong,
you can still get this correct. The identity function remains as itself
regardless of the number of times it self-composes.
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S4 IC-Q4c,d

((thrice(thrice))(square))(2);

sssssssss sssssssss sssssssss2 // 2^1

sssssssss sssssssss ssssssss4 // 2^2

sssssssss sssssssss sssssss16 // 2^4

22
27

' 2100 million
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Part c is quite trivial for the same reason as part b. In any way it is
the exact same question as part d.

You probably won’t be able to check your answers to this question by
running it on the interpreter. Using our previous results we conclude
that this expression is equivalent to 27 repeated squarings. A hasty
conclusion would be a result of 227. However if it was such a small
number, the interpreter would not have failed. The following makes
it clear that the answer is instead 22

27

.

(2)2 = 22

(22)2 = 24

(24)2 = 28

(28)2 = 216

Just for your info

210 ≈ 103 220 ≈ 106 230 ≈ 109
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