Jia Xiaodong

September 6, 2021

For example, | want to sort a bunch of numbers:

For example, | want to sort a bunch of numbers:

// returns them in sorted order
function sort(a,b,c,d...) { 72?7 }

For example, | want to sort a bunch of numbers:

// returns them in sorted order
function sort(a,b,c,d...) { 72?7 }

Better?

function sort(list) { ... return list; }

Data Abstraction
Some structures
Questions

Data Structures
What is data?

What is data?

...we can think of data as defined by some collection of
selectors and constructors, together with specified condi-
tions that these functions must fulfil in order to be a valid
representation. — SICP §2.1.3

Jia Xiaodong Data Abstraction

Give a definition for plus, representing natural numbers in the following way:

const zero = f => x => x;
function succ(n) {

return f => x => f(n(f) (x));
}

Give a definition for plus, representing natural numbers in the following way:

const zero = f => x => x;
function succ(n) {

return f => x => f(n(f) (x));
}

const one = succ(zero);

Data Structures
What is data?

Give a definition for plus, representing natural numbers in the following way:

const zero = f => x => x;
function succ(n) {

return f => x => f(n(f) (x));
}

const one = succ(zero);
f => x => f(zero(f) (x))

Data Structures
What is data?

Give a definition for plus, representing natural numbers in the following way:

const zero = f => x => x;
function succ(n) {

return f => x => f(n(f) (x));
}

const one = succ(zero);
f => x => f(zero(f) (x))
£f=>x=>f((x => x)([x))

Data Structures
What is data?

Give a definition for plus, representing natural numbers in the following way:

const zero = f => x => x;
function succ(n) {

return f => x => f(n(f) (x));
}

const one = succ(zero);
f => x => f(zero(f) (x))
f=>x=>1f(x = x)(x))
f =>x => f(x)

Data Abstraction
Some structures
Questions

Data Structures
What is data?

Church encoding *
Ex. 2.6

Give a definition for plus, representing natural numbers in the following way:

const zero = f => x => x;
function succ(n) {

return f => x => f(n(f) (x));
}

const one = succ(zero);
f => x => f(zero(f) (x))
f=>x=>f((x => x)([))
f=>x=>f(x)

const two = succ(one);

Jia Xiaodong Data Abstraction

Data Abstraction
Some structures
Questions

Data Structures
What is data?

Church encoding *
Ex. 2.6

Give a definition for plus, representing natural numbers in the following way:

const zero = f => x => x;
function succ(n) {

return f => x => f(n(f) (x));
}

const one = succ(zero);
f => x => f(zero(f) (x))
f=>x=>f((x => x)([))
f=>x=>f(x)

const two = succ(one);
f => x => f(one(f) (x))

Jia Xiaodong Data Abstraction

Data Abstraction
Some structures
Questions

Data Structures
What is data?

Church encoding *
Ex. 2.6

Give a definition for plus, representing natural numbers in the following way:

const zero = f => x => x;
function succ(n) {

return f => x => f(n(f) (x));
}

const one = succ(zero);

f => x => f(zero(f) (x))

f=>x=>f((x => x)([))
f=>x=>f(x)

const two = succ(one);
f => x => f(one(f) (x))
f=>x=>f(((x=>£(x))K)

Jia Xiaodong Data Abstraction

Data Abstraction
Some structures
Questions

Data Structures
What is data?

Church encoding *
Ex. 2.6

Give a definition for plus, representing natural numbers in the following way:

const zero = f => x => x;
function succ(n) {

return f => x => f(n(f) (x));
}

const one = succ(zero);

f => x => f(zero(f) (x))

f=>x=>f((x => x)([))
f=>x=>f(x)

const two = succ(one);

f => x => f(one(f) (x))
f=>x=>f(x=>fx))&)
f =>x => £f(£f(x))

Jia Xiaodong Data Abstraction

Data Abstraction
Some structures
Questions

Data Structures
What is data?

Church encoding *
Ex. 2.6

Give a definition for plus, representing natural numbers in the following way:

const zero = f => x => x;
function succ(n) {
return f => x => f(n(f) (x));

}
const one = succ(zero); const three = succ(two);
f => x => f(zero(f) (x)) f => x => f(two(f) (%))
f =>x = f((x => x)(x)) f =>x = f((x => ffx) (x))
f =>x => f(x) f =>x => fffx

const two = succ(one);

f => x => f(one(f) (x))
f=>x=>f(x=>fx))&)
f =>x => £f(£f(x))

Jia Xiaodong Data Abstraction

Data Abstraction
Some structures
Questions

Data Structures
What is data?

Church encoding *
Ex. 2.6

Give a definition for plus, representing natural numbers in the following way:

const zero = f => x => x;
function succ(n) {
return f => x => f(n(f) (x));

}
const one = succ(zero); const three = succ(two);
f => x => f(zero(f) (x)) f => x => f(two(f) (%))
f =>x = f((x => x)(x)) f =>x = f((x => ffx) (x))
f =>x => £(x) f =>x => fffx
const two = succ(one); const four = succ(three);
f => x => f(one(f) (x)) f => x => f(three(f) (x))

f=>3x=> f(((x => £f(x))(x)) T =>x=> f((x => fffx) (x))
f=>x => £(f(x)) f =>x => ffffx

Jia Xiaodong Data Abstraction

const one = f => x => fx
const three = f => x => fffx
const four = £ => x => ffffx

const one = f => x => fx
const three = f => x => fffx
const four = £ => x => ffffx

three(f) (x) === fffx
one(f) (fffx) === f fffx

Data Abstraction
Some structures
Questions

Data Structures
What is data?

Church encoding *
Cont.

const one = f => x => fx
const three = f => x => fffx
const four = £ => x => ffffx

three(f) (x) === fffx
one(f) (fffx) === f fffx
four (f) (x) === one(f) (three(f) (x))

function plus(a, b) {
return f => x => a(f) (b(f) (x));
}

Jia Xiaodong Data Abstraction

Give a definition for pred. J]

Give a definition for pred. J]

const one = f => x => f(x);
const two => f(£(x));

[
H
\II/
i

Give a definition for pred.

const one = f => x => f(x);
const two => f(£(x));

]
H
\II/
i

function contain(n) { return p => p(n); }
function extract(c) { return c(u => u); }

// ¢ is a container

Give a definition for pred.

const one = f => x => f(x);
const two => f(£(x));

]
H
\II/
i

function contain(n) { return p => p(n); }
function extract(c) { return c(u => u); }

function inc(c) { return h => h(c(f)); }
const init = u => x

// ¢ is a container

Give a definition for pred.)

const one = f => x => f(x);
const two => f(£(x));

]
H
\II/
i

function contain(n) { return p => p(n); }
function extract(c) { return c(u => u); } // ¢ is a container

function inc(c) { return h => h(c(f)); }

const init = u => x

inc(init) = h => h(x) // contain(z)
inc(inc(init)) =i => i(f(x)) // contain(f(z))

Data Abstraction
Some structures
Questions

Data Structures
What is data?

Church encoding *
Cont.

Give a definition for pred.)

]
h

= x => f(x);
= x => f(f(x));

const one
const two

]
Hh

function contain(n) { return p => p(n); }
function extract(c) { return c(u => u); } // ¢ is a container

function inc(c) { return h => h(c(£f)); }

const init = u => x

inc(init) = h => h(x) // contain(zx)
inc(inc(init)) = i => i(f(x)) // contain(f(z))

function pred(n) { return f => x => extract(n(inc) (init); }

Jia Xiaodong Data Abstraction

Data Abstraction
Some structures
Questions

Data Structures
What is data?

Church encoding *
Cont.

Give a definition for pred.)

]
h

= x => f(x);
= x => f(f(x));

const one
const two

]
Hh

function contain(n) { return p => p(n); }
function extract(c) { return c(u => u); } // ¢ is a container

function inc(c) { return h => h(c(£f)); }

const init = u => x

inc(init) = h => h(x) // contain(zx)
inc(inc(init)) = i => i(f(x)) // contain(f(z))

function pred(n) { return f => x => extract(n(inc) (init); }

function pred(n) { return f => x =>
extract(n(c => h => h(c(£))) (init); }

Jia Xiaodong Data Abstraction

New definitions. Implement succ and pred.

const zero = £ => x => x;
const one = £ => x => f(zero, () => zero(f) (x));
const two = £ => x => f(one, () => one(f) (x));

New definitions. Implement succ and pred.

const zero = £ => x => x;
const one = £ => x => f(zero, () => zero(f) (x));
const two = £ => x => f(one, () => one(f) (x));

function succ(n) { f => x => f(n, () => x); }

Data Abstraction
Some structures
Questions

Data Structures
What is data?

Church encoding *
Quest

New definitions. Implement succ and pred.

const zero = f => x => x;

const one = f => x => f(zero, () => zero(f)(x));
const two = £ => x => f(one, () => one(f) (x));

function succ(n) { £ => x => f(n, () => x); }
function pred(n) { £ => x => n((m, n) => m)(zero); }

function plus(a, b) { a((m, n) => succ(n())) (M®); }

Jia Xiaodong Data Abstraction

A pair is a collection of two items. We assign one to the head, andJ

the other to the tail of the pair.

Data Abstraction
Some structures
Questions

Pair
List

Pair

A pair is a collection of two items. We assign one to the head, and
the other to the tail of the pair.

v

Possible implementation:

function pair(x,y) { return f => f(x, y); }
function head(p) { return p((x, y) => x); }
function tail(p) { return p((x, y) => y); }

Jia Xiaodong Data Abstraction

Data Abstraction

Pair
somestuctue [,
List
null is a (empty) list. A list is a pair whose tail is a list. J
list(1, 2, 3) === pair(l, pair(2, pair(3, null))) L

1 This actually evaluates to false. What | mean by === here, for the lack of a better way to write it, is that they
mean the same thing.

Jia Xiaodong Data Abstraction

https://sicp.comp.nus.edu.sg/source/LISTS/
https://sicp.comp.nus.edu.sg/source/source_2.pdf

Data Abstraction

Some structures P?ir
Qtuestions List
List
null is a (empty) list. A list is a pair whose tail is a list. J
list(1, 2, 3) === pair(l, pair(2, pair(3, null))) L
1 2 3
y
Predeclared functions:
® LISTS documentation
® S2 Language Spec
1 This actually evaluates to false. What | mean by === here, for the lack of a better way to write it, is that they

mean the same thing.

Jia Xiaodong Data Abstraction

https://sicp.comp.nus.edu.sg/source/LISTS/
https://sicp.comp.nus.edu.sg/source/source_2.pdf

Draw box and pointer diagram and give the printed representation
for 1ist(list(1, 2, 1ist(3)), list(4, 5), pair(6, 7));

Data Abstraction
Some structures
Questions

Pair
List

S5 Q1

Draw box and pointer diagram and give the printed representation
for list (1ist(1, 2, 1list(3)), list(4, 5), pair(6, 7)); J

Jia Xiaodong Data Abstraction

for pair(1, list(2, 3, pair(4, null)));

Draw box and pointer diagram and give the printed representation J

Data Abstraction Tutorial questions
Some structures In class questions
Questions Extra questions

S5 Q1

Cont.

Draw box and pointer diagram and give the printed representation
for pair(1, list(2, 3, pair(4, null))); J

Jia Xiaodong Data Abstraction

for pair(1l, pair(2, 1list(3, list(4, 5))));

Draw box and pointer diagram and give the printed representation J

Draw box and pointer diagram and give the printed representation
for pair(1l, pair(2, 1list(3, list(4, 5))));

Tutorial questions
In class questions
Extra questions

function reverse(lst) {
return is_null(lst)
? null
: pair(reverse(tail(lst)), head(lst));

}

Evaluate reverse(list(1, 2, 3, 4));.

Tutorial questions
In class questions
Extra questions

function reverse(lst) {
return is_null(lst)
? null
: pair(reverse(tail(lst)), head(lst));

}

Evaluate reverse(list(1, 2, 3, 4));.

function reverse(lst) {
return is_null(lst)
? null
: pair(reverse(tail(lst)), head(lst));

reverse(| 2 3 4)

function reverse(lst) {
return is_null(lst)
? null
: pair(reverse(tail(lst)), head(lst));

reverse(| 3 4)

function reverse(lst) {
return is_null(lst)
? null
: pair(reverse(tail(lst)), head(lst));

reverse(| 4)

function reverse(lst) {
return is_null(lst)
? null
: pair(reverse(tail(lst)), head(lst));

Write expressions using 1st, head, tail that will return 1 with J

1st = 1list(7, list(6, 5, 4), 3, list(2, 1));

Write expressions using 1st, head, tail that will return 1 with J

1st = 1list(7, list(6, 5, 4), 3, list(2, 1));

® head tail tail tail gets us to list(2, 1).

Tutorial questions
In class questions
Extra questions

Write expressions using 1st, head, tail that will return 1 with J

1st = 1list(7, list(6, 5, 4), 3, list(2, 1));

® head tail tail tail gets us to list(2, 1).
® Then, head tail gets us 1.

Data Abstraction Tutorial questions
Some structures In class questions
Questions Extra questions

S5 Q3

Write expressions using 1st, head, tail that will return 1 with
1st = 1list(7, list(6, 5, 4), 3, list(2, 1));

® head tail tail tail gets us to 1ist(2, 1).
® Then, head tail gets us 1.

head(tail (head(tail(tail(tail(1lst)))))).

Jia Xiaodong Data Abstraction

1st = 1list(list(7), list(6, 5, 4), 1list(3, 2), 1);

Write expressions using 1st, head, tail that will return 1 with J

Write expressions using 1st, head, tail that will return 1 with J

1st = 1list(list(7), list(6, 5, 4), 1list(3, 2), 1);

head(tail(tail(tail(lst))))

Write expressions using 1st, head, tail that will return 1 with

1st = 1list(7, 1list(6), list(5, list(4)),
list (3, 1list(2, 1list(1))));

Write expressions using 1st, head, tail that will return 1 with

1st = 1list(7, 1list(6), list(5, list(4)),
list (3, 1list(2, 1list(1))));

® head tail tail tail gets us to 1ist(3, list(...)).

Data Abstraction Tutorial questions
Some structures In class questions
Questions Extra questions

S5 Q3

Cont.

Write expressions using 1st, head, tail that will return 1 with

1st = 1list(7, list(6), list(5, list(4)),
list(3, list(2, 1list(1))));

® head tail tail tail gets us to 1ist(3, list(...)).
® Then head tail gets us to 1ist(2, 1list(1)).

Jia Xiaodong Data Abstraction

Data Abstraction Tutorial questions
Some structures In class questions
Questions Extra questions

S5 Q3

Cont.

Write expressions using 1st, head, tail that will return 1 with

1st = 1list(7, list(6), list(5, list(4)),
list(3, list(2, 1list(1))));

® head tail tail tail gets us to 1ist(3, list(...)).
® Then head tail gets us to 1ist(2, 1list(1)).
® Then head tail gets us to list(1).

Jia Xiaodong Data Abstraction

Data Abstraction Tutorial questions
Some structures In class questions
Questions Extra questions

S5 Q3

Cont.

Write expressions using 1st, head, tail that will return 1 with

1st = 1list(7, list(6), list(5, list(4)),
list(3, list(2, 1list(1))));

® head tail tail tail gets us to 1ist(3, list(...)).
Then head tail gets us to 1ist(2, 1list(1)).
Then head tail gets us to 1ist(1).

Then head gives us 1.

Jia Xiaodong Data Abstraction

Data Abstraction Tutorial questions
Some structures In class questions
Questions Extra questions

S5 Q3

Cont.

Write expressions using 1st, head, tail that will return 1 with

1st = 1list(7, list(6), list(5, list(4)),
list(3, list(2, 1list(1))));

® head tail tail tail gets us to 1ist(3, list(...)).
Then head tail gets us to 1ist(2, 1list(1)).
Then head tail gets us to 1ist(1).

Then head gives us 1.

head(head(tail (head(tail (head(tail(tail(tail(lst)))))))))

Jia Xiaodong Data Abstraction

Write expressions using 1st, head, tail that will return 1 with

1st = 1list (7,
list(list(6, 5), list(4), 3, 2), list(list(1)));

Write expressions using 1st, head, tail that will return 1 with

1st = 1list (7,
list(1list(6, 5), list(4), 3, 2), list(1list(1)));

® head tail tail gets us to list(1list(1)).

Write expressions using 1st, head, tail that will return 1 with

1st = 1list (7,
list(1list(6, 5), list(4), 3, 2), list(1list(1)));

® head tail tail gets us to list(1list(1)).
® Then head head gets us 1.

Data Abstraction Tutorial questions
Some structures In class questions
Questions Extra questions

S5 Q3

Cont.

Write expressions using 1st, head, tail that will return 1 with
1st = 1list(7,

list(list(6, 5), list(4), 3, 2), list(list(1)));

® head tail tail gets us to 1ist(1list(1)).
® Then head head gets us 1.

head (head(head(tail(tail(1lst)))))

Jia Xiaodong Data Abstraction

Write function every_second that takes in a list and returns a IistJ

containing every other element, starting from the first element.

Data Abstraction Tutorial questions
Some structures In class questions
Questions Extra questions

S5 1C-Q1

Write function every_second that takes in a list and returns a list
containing every other element, starting from the first element. J

function every_second(1lst) {
function h(res, n, max) {
return n >= max
? res
: h(pair(list_ref(lst, n), res), n + 2, max);
}
return h(null, 1, length(lst));

Jia Xiaodong Data Abstraction

Write function every_second that takes in a list and returns a IistJ

containing every other element, starting from the first element.

Data Abstraction Tutorial questions
Some structures In class questions
Questions Extra questions

S5 1C-Q1

Cont.

Write function every_second that takes in a list and returns a list
containing every other element, starting from the first element. J

function every_second(lst) {
return is_null(lst) || is_null(tail(lst))
7 null
: pair(head(tail(lst)), every_second(tail(tail(lst))));

Jia Xiaodong Data Abstraction

Tutorial questions
In class questions
Extra questions

Write a function that takes in a list of numbers and returns a list
containing (1) the sum of even-ranked numbers and (2) the sum of
odd-ranked numbers.

Data Abstraction Tutorial questions
Some structures In class questions
Questions Extra questions

S5 1C-Q2

Write a function that takes in a list of numbers and returns a list

containing (1) the sum of even-ranked numbers and (2) the sum of
odd-ranked numbers.

function every_second_odd(lst)
function every_second_even(lst)
function sum(lst)

Jia Xiaodong Data Abstraction

Tutorial questions
In class questions
Extra questions

Write a function that takes in a list of numbers and returns a list
containing (1) the sum of even-ranked numbers and (2) the sum of
odd-ranked numbers.

Data Abstraction Tutorial questions
Some structures In class questions
Questions Extra questions

S5 1C-Q2

Write a function that takes in a list of numbers and returns a list

containing (1) the sum of even-ranked numbers and (2) the sum of
odd-ranked numbers.

function sum(lst){
function s(e, o, 1lst, iseven) {

Jia Xiaodong Data Abstraction

Data Abstraction Tutorial questions
Some structures In class questions
Questions Extra questions

S5 1C-Q2

Write a function that takes in a list of numbers and returns a list

containing (1) the sum of even-ranked numbers and (2) the sum of
odd-ranked numbers.

function sum(lst){
function s(e, o, 1lst, iseven) {
return is_null(lst)
? list(e, o)

Jia Xiaodong Data Abstraction

Data Abstraction Tutorial questions
Some structures In class questions
Questions Extra questions

S5 1C-Q2

Write a function that takes in a list of numbers and returns a list

containing (1) the sum of even-ranked numbers and (2) the sum of
odd-ranked numbers.

function sum(1lst){
function s(e, o, lst, iseven) {
return is_null(lst)
? list(e, o)
iseven
? s(e + head(lst), o, tail(lst), false)
s(e, o + head(1st), tail(lst), true);

Jia Xiaodong Data Abstraction

Data Abstraction Tutorial questions
Some structures In class questions
Questions Extra questions

S5 1C-Q2

Write a function that takes in a list of numbers and returns a list

containing (1) the sum of even-ranked numbers and (2) the sum of
odd-ranked numbers.

function sum(1lst){
function s(e, o, lst, iseven) {
return is_null(lst)
? list(e, o)
iseven
? s(e + head(lst), o, tail(lst), false)

s(e, o + head(1st), tail(lst), true);
}

return s(0, 0, lst, true);

Jia Xiaodong Data Abstraction

Data Abstraction
Some structures
Questions

Q6

Lexicographic order

Tutorial questions
In class questions
Extra questions

xs and ys and returns true iff xs > ys lexicographically.

Write a function lexico(xs, ys) that takes in lists of characters J

function lexico(xs, ys) {
if (is_null(xs)) {
return false;
} else if (is_null(ys)) {
return true;

} else if (head(xs) === head(ys)) {
return lexico(tail(xs), tail(ys));
} else if (head(xs) > head(ys)) {

return true;
} else {
return false;

Jia Xiaodong

Data Abstraction

xs and ys and returns true iff ys is a substring of xs.

Write a function substr(xs, ys) that takes in lists of characters J

function substr(xs, ys) {

Data Abstraction
Some structures
Questions

Q7

Substring

Tutorial questions
In class questions
Extra questions

xs and ys and returns true iff ys is a substring of xs.

Write a function substr(xs, ys) that takes in lists of characters J

function substr(xs, ys) {
function trial(xs, ys) {

if (is_null(xs)) { return is_null(ys); }
else if (is_null(ys)) { return true; }
else if (head(xs) === head(ys)) {

return trial(tail(xs), tail(ys));

} else { return false; }

Jia Xiaodong

Data Abstraction

Data Abstraction Tutorial questions
Some structures In class questions
Questions Extra questions

Q7

Substring

Write a function substr(xs, ys) that takes in lists of characters
xs and ys and returns true iff ys is a substring of xs. J

function substr(xs, ys) {
function trial(xs, ys) {
if (is_null(xs)) { return is_null(ys); }
else if (is_null(ys)) { return true; }
else if (head(xs) === head(ys)) {
return trial(tail(xs), tail(ys));
} else { return false; }
}
function step(xs) {
if (is_null(xs)) { return false; }
else {
return trial(xs, ys) || step(tail(xs));
}

Jia Xiaodong Data Abstraction

Data Abstraction Tutorial questions
Some structures In class questions
Questions Extra questions

Q7

Substring

Write a function substr(xs, ys) that takes in lists of characters
xs and ys and returns true iff ys is a substring of xs. J

function substr(xs, ys) {
function trial(xs, ys) {
if (is_null(xs)) { return is_null(ys); }
else if (is_null(ys)) { return true; }
else if (head(xs) === head(ys)) {
return trial(tail(xs), tail(ys));
} else { return false; }
}
function step(xs) {
if (is_null(xs)) { return false; }
else {
return trial(xs, ys) || step(tail(xs));
}
}

return step(xs);

Jia Xiaodong Data Abstraction

	Data Abstraction
	Data Structures
	What is data?

	Some structures
	Pair
	List

	Questions
	Tutorial questions
	In class questions
	Extra questions

