
Data Abstraction
Some structures

Questions

Data Abstraction

Jia Xiaodong

September 6, 2021

Jia Xiaodong Data Abstraction

Data Abstraction
Some structures

Questions

Data Structures
What is data?

Data Structures

For example, I want to sort a bunch of numbers:

// returns them in sorted order

function sort(a,b,c,d...) { ??? }

Better?

function sort(list) { ... return list; }

Jia Xiaodong Data Abstraction

So far we have abstracted functions. However even then it might not
be enough. A good example would be the rational number abstrac-
tion introduced in the lectures. That would improve productivity
greatly compared to trying to manage a numerator and denominator
on your own.

Here I also want to suggest another use case. Say we want to sort a
few numbers into ascending order. If we wrote a function that could
only take in numbers, that would be pretty difficult to write (though
not impossible). It would all be so much simpler if there was a notion
of a list, very much like a list of numbers on a sheet of paper. Then
we would do our manipulations on that list and return the updated
list.

Data Abstraction
Some structures

Questions

Data Structures
What is data?

What is data?

...we can think of data as defined by some collection of
selectors and constructors, together with specified condi-
tions that these functions must fulfil in order to be a valid
representation. — SICP §2.1.3

Jia Xiaodong Data Abstraction

The point of this statement is that we need only be concerned with
the outward appearance, or structure of our data, and not how it is
made up of.

Data Abstraction
Some structures

Questions

Data Structures
What is data?

Church encoding *
Ex. 2.6

Give a definition for plus, representing natural numbers in the following way:

const zero = f => x => x;

function succ(n) {

return f => x => f(n(f)(x));

}

const one = succ(zero);

f => x => f(zero(f)(x))

f => x => f((x => x)(x))

f => x => f(x)

const two = succ(one);

f => x => f(one(f)(x))

f => x => f(((x => f(x))(x))

f => x => f(f(x))

const three = succ(two);

f => x => f(two(f)(x))

f => x => f((x => ffx)(x))

f => x => fffx

const four = succ(three);

f => x => f(three(f)(x))

f => x => f((x => fffx)(x))

f => x => ffffx

Jia Xiaodong Data Abstraction

This is a good illustration of what the quote from the textbook means.

With 0 and the successor function the natural numbers can be de-
fined. Let us first see what the numbers look like in this scheme.
Applying the substitution model a few times we see that numbers in
this scheme is defined as the number of self compositions of a func-
tion. (There is some funny business here regarding how we use “number of something” to define numbers, let

us just ignore that.)

Data Abstraction
Some structures

Questions

Data Structures
What is data?

Church encoding *
Cont.

const one = f => x => fx

const three = f => x => fffx

const four = f => x => ffffx

three(f)(x) === fffx

one(f)(fffx) === f fffx

four(f)(x) === one(f)(three(f)(x))

function plus(a, b) {

return f => x => a(f)(b(f)(x));

}

Jia Xiaodong Data Abstraction

Now we can try coming up with the plus function. Look at a
few examples. Say we want to do 1 + 3 = 4, i.e. we want
plus(one, three) ~ four (I use symbol ~ to mean congruency, be-
cause === would not work here. Can you explain why === doesn’t
work?).

What we want to accomplish is quite simple, if somehow we made
the x in one to become fffx of three, we would get what we want.
The way to “expose” fffx is by basically calling the numeral twice
similar to what is done is succ.

Data Abstraction
Some structures

Questions

Data Structures
What is data?

Church encoding *
Cont.

Give a definition for pred.

const one = f => x => f(x);

const two = f => x => f(f(x));

function contain(n) { return p => p(n); }

function extract(c) { return c(u => u); } // c is a container

function inc(c) { return h => h(c(f)); }

const init = u => x
inc(init) = h => h(x) // contain(x)

inc(inc(init)) = i => i(f(x)) // contain(f(x))

function pred(n) { return f => x => extract(n(inc)(init); }

function pred(n) { return f => x =>

extract(n(c => h => h(c(f)))(init); }

Jia Xiaodong Data Abstraction

Let us take a look at some of our values again. What we want to
achieve is to strip off an application of f. We can do so with the
identity function x=>x. However we must apply this only at the right
place. To control this, we wrap our numbers in a container (note the
similarity to pair). Extract releases the container.

Take a look at this inc function. It takes a contained value and incre-
ments the value in the container. init is a base value. Now perhaps
we notice something. Applying inc once gets us to x which is essen-
tially what is inside zero. And so on. Hence what we do is to call
inc n times on init, extract out the value, and we are done.

Note that in this slide I have used names like f as though they are
fixed globally. This will not work, especially for inc. Please make
sure you are clear which names are bound and which are not, espe-
cially here where there are a so many different names floating around.

Data Abstraction
Some structures

Questions

Data Structures
What is data?

Church encoding *
Quest

New definitions. Implement succ and pred.

const zero = f => x => x;

const one = f => x => f(zero, () => zero(f)(x));

const two = f => x => f(one, () => one(f)(x));

function succ(n) { f => x => f(n, () => x); }

function pred(n) { f => x => n((m, n) => m)(zero); }

function plus(a, b) { a((m, n) => succ(n())) (b); }

Jia Xiaodong Data Abstraction

The last 2 quest questions revolves around speeding up the pred op-
eration through feeding the next numeral information about the pre-
decessor as well.

Notice for pred we return the first item and not the second. Do you
know why?

Try plus out for yourself and confirm that it works.

Data Abstraction
Some structures

Questions

Pair
List

Pair

A pair is a collection of two items. We assign one to the head, and
the other to the tail of the pair.

Ex. 2.4 *

Possible implementation:
function pair(x,y) { return f => f(x, y); }

function head(p) { return p((x, y) => x); }

function tail(p) { return p((x, y) => y); }

Jia Xiaodong Data Abstraction

The simplest structure you can come up is perhaps grouping two
things together.

As mentioned earlier, it does not matter how this is done. Here is a
possible implementation using functions. It does not look like what
you might expect from “a pair of two things”. Another implemen-
tation may be more common-sense, using arrays in native JavaScript
(not available in the current Source chapter you are using).

In any case, these things can be changed at the whim of the imple-
menter and if you base your own programs on the assumption that
it’s going to be implemented in a certain way (breaking abstraction),
your program will fail once this assumption fails to hold true.

Data Abstraction
Some structures

Questions

Pair
List

List

null is a (empty) list. A list is a pair whose tail is a list.

Example

list(1, 2, 3) === pair(1, pair(2, pair(3, null))) 1

1 2 3

Predeclared functions:

• LISTS documentation

• S2 Language Spec
1This actually evaluates to false. What I mean by === here, for the lack of a better way to write it, is that they

mean the same thing.

Jia Xiaodong Data Abstraction

There is no limit on what you pair. A sequence can be made using a
chain of pairs. We recursively define a list to be a pair of something
with another list.

Graphically we use “box and pointer” diagrams to illustrate how
these look like.

This definition also means that a list is just a big pair and we can
continue using the pair operations on lists. We will be seeing plenty
of examples of what we can do with lists.

For a reference of all the predeclared list functions and what they do,
refer to the two links provided.

https://sicp.comp.nus.edu.sg/source/LISTS/
https://sicp.comp.nus.edu.sg/source/source_2.pdf

Data Abstraction
Some structures

Questions

Pair
List

S5 Q1

Draw box and pointer diagram and give the printed representation
for list(list(1, 2, list(3)), list(4, 5), pair(6, 7));

5

4 6 7

3

1

2

Jia Xiaodong Data Abstraction

One tip when trying to parse these expressions: draw whatever you
can first.

The only thing you need to remember is the difference between a pair
and a list. A pair puts 2 things in both of its boxes. A list only has 1
data element in its left box, the right box points to the rest of the list.

As to when you write data elements in, and when you draw an arrow
out, this is (to my knowledge) not really important. The guideline is
for simple values like null, numbers, strings, you write them in, and
for objects like lists, functions, you draw an arrow out.

Data Abstraction
Some structures

Questions

Tutorial questions
In class questions
Extra questions

S5 Q1
Cont.

Draw box and pointer diagram and give the printed representation
for pair(1, list(2, 3, pair(4, null)));

4

2 3

1

Jia Xiaodong Data Abstraction

pair(4, null) is the same as list(4). Also note that
list(1, list(2)) is not list(1, 2). Also pair(1, list(2)) is the
same as list(1, 2).

Data Abstraction
Some structures

Questions

Tutorial questions
In class questions
Extra questions

S5 Q1
Cont.

Draw box and pointer diagram and give the printed representation
for pair(1, pair(2, list(3, list(4, 5))));

4

5

321

Jia Xiaodong Data Abstraction

Data Abstraction
Some structures

Questions

Tutorial questions
In class questions
Extra questions

S5 Q2

function reverse(lst) {

return is_null(lst)

? null

: pair(reverse(tail(lst)), head(lst));

}

Evaluate reverse(list(1, 2, 3, 4));.

1 42 3

Jia Xiaodong Data Abstraction

This is a wrong implementation for reverse, and we will see why by
evaluating it for an example list. Start with the list. This list is not
null, so we evaluate the alternative.

Data Abstraction
Some structures

Questions

Tutorial questions
In class questions
Extra questions

S5 Q2
Cont.

function reverse(lst) {

return is_null(lst)

? null

: pair(reverse(tail(lst)), head(lst));

}

42 3

1

reverse()

Jia Xiaodong Data Abstraction

Data Abstraction
Some structures

Questions

Tutorial questions
In class questions
Extra questions

S5 Q2
Cont.

function reverse(lst) {

return is_null(lst)

? null

: pair(reverse(tail(lst)), head(lst));

}

43

1

reverse()

2

Jia Xiaodong Data Abstraction

Data Abstraction
Some structures

Questions

Tutorial questions
In class questions
Extra questions

S5 Q2
Cont.

function reverse(lst) {

return is_null(lst)

? null

: pair(reverse(tail(lst)), head(lst));

}

4

1

reverse()

2

3

Jia Xiaodong Data Abstraction

Data Abstraction
Some structures

Questions

Tutorial questions
In class questions
Extra questions

S5 Q2
Cont.

function reverse(lst) {

return is_null(lst)

? null

: pair(reverse(tail(lst)), head(lst));

}

1

2

3

4

Jia Xiaodong Data Abstraction

We will just do the last two steps in one go. We end up with a list that
is not reversed, but with pairs that have been reversed, and since it
does not conform with our definition of a list, the output is incorrect.

Now, do you know how to implement a reverse function that works?

Data Abstraction
Some structures

Questions

Tutorial questions
In class questions
Extra questions

S5 Q3

Write expressions using lst, head, tail that will return 1 with
lst = list(7, list(6, 5, 4), 3, list(2, 1));

• head tail tail tail gets us to list(2, 1).

• Then, head tail gets us 1.

head(tail(head(tail(tail(tail(lst)))))).

Jia Xiaodong Data Abstraction

This is fairly straightforward. It’s like navigating a maze. Only make
sure to match the brackets carefully and know which term belongs
where.

Also note that tailing any list gives a list by the definition of a list.

Data Abstraction
Some structures

Questions

Tutorial questions
In class questions
Extra questions

S5 Q3
Cont.

Write expressions using lst, head, tail that will return 1 with
lst = list(list(7), list(6, 5, 4), list(3, 2), 1);

head(tail(tail(tail(lst))))

Jia Xiaodong Data Abstraction

Data Abstraction
Some structures

Questions

Tutorial questions
In class questions
Extra questions

S5 Q3
Cont.

Write expressions using lst, head, tail that will return 1 with

lst = list(7, list(6), list(5, list(4)),

list(3, list(2, list(1))));

• head tail tail tail gets us to list(3, list(...)).

• Then head tail gets us to list(2, list(1)).

• Then head tail gets us to list(1).

• Then head gives us 1.

head(head(tail(head(tail(head(tail(tail(tail(lst)))))))))

Jia Xiaodong Data Abstraction

Data Abstraction
Some structures

Questions

Tutorial questions
In class questions
Extra questions

S5 Q3
Cont.

Write expressions using lst, head, tail that will return 1 with

lst = list(7,

list(list(6, 5), list(4), 3, 2), list(list(1)));

• head tail tail gets us to list(list(1)).

• Then head head gets us 1.

head(head(head(tail(tail(lst)))))

Jia Xiaodong Data Abstraction

Data Abstraction
Some structures

Questions

Tutorial questions
In class questions
Extra questions

S5 IC-Q1

Write function every_second that takes in a list and returns a list
containing every other element, starting from the first element.

function every_second(lst) {

function h(res, n, max) {

return n >= max

? res

: h(pair(list_ref(lst, n), res), n + 2, max);

}

return h(null, 1, length(lst));

}

Jia Xiaodong Data Abstraction

This is actually very easy using the hint regarding list_ref. Simply
count up from 0 to length(lst) - 1, appending to a temporary list
that forms our result.

However, this is extremely inefficient. Look up the time complexity of
list_ref. What is the overall time complexity of this implementation
of every_second? For a problem like this, we should be striving for
Θ(n).

Data Abstraction
Some structures

Questions

Tutorial questions
In class questions
Extra questions

S5 IC-Q1
Cont.

Write function every_second that takes in a list and returns a list
containing every other element, starting from the first element.

function every_second(lst) {

return is_null(lst) || is_null(tail(lst))

? null

: pair(head(tail(lst)), every_second(tail(tail(lst))));

}

}

Jia Xiaodong Data Abstraction

We do not need list_ref at all. list_ref has to run through the list
from the start each time we call it. We can simply go through the list
one by one, eliminating the repetitive work list_ref does.

The base case occurs when it is a list of 1 element, or no elements.
Then there is no second element and we return null.

Data Abstraction
Some structures

Questions

Tutorial questions
In class questions
Extra questions

S5 IC-Q2

Write a function that takes in a list of numbers and returns a list
containing (1) the sum of even-ranked numbers and (2) the sum of
odd-ranked numbers.

function every_second_odd(lst) ...

function every_second_even(lst) ...

function sum(lst) ...

Jia Xiaodong Data Abstraction

One way to do it is to use the results from the previous question
and sum over the even and the odd lists. However you should learn
to feel a bit odd about doing things this way. For one, it is wasted
work since you traverse the list twice (yes it is still linear time, but
if you do double the work, and run twice as slow, then you are still
very slow). It also wastes space by creating new lists. Furthermore,
every_second_* operates by skipping over elements. Why don’t we
compute a sum while doing the skipping?

Data Abstraction
Some structures

Questions

Tutorial questions
In class questions
Extra questions

S5 IC-Q2

Write a function that takes in a list of numbers and returns a list
containing (1) the sum of even-ranked numbers and (2) the sum of
odd-ranked numbers.

function sum(lst){

function s(e, o, lst, iseven) {

return is_null(lst)

? list(e, o)

: iseven

? s(e + head(lst), o, tail(lst), false)

: s(e, o + head(lst), tail(lst), true);

}

return s(0, 0, lst, true);

}

Jia Xiaodong Data Abstraction

We can ignore the list part first. The requirement of the two sums
being in a list might as well not be a requirement because it is easy
to put two things in a list. So let us make a helper function keeping
track of running sums of even and odd items. We also keep a flag
iseven that tells us are we at an even-ranked element or not.

In this case the base case is fairly simple, if we hit an empty list then
we return the running sums.

Otherwise, if we are at an even item, we add to the even sum, oth-
erwise, we add to the odd sum, and move on to the rest of the list,
flipping the flag so we track the parity correctly.

Data Abstraction
Some structures

Questions

Tutorial questions
In class questions
Extra questions

Q6
Lexicographic order

Write a function lexico(xs, ys) that takes in lists of characters
xs and ys and returns true iff xs > ys lexicographically.

function lexico(xs, ys) {

if (is_null(xs)) {

return false;

} else if (is_null(ys)) {

return true;

} else if (head(xs) === head(ys)) {

return lexico(tail(xs), tail(ys));

} else if (head(xs) > head(ys)) {

return true;

} else {

return false;

}

}

Jia Xiaodong Data Abstraction

If xs ends prematurely then there is no chance it can be larger than
ys. Similarly, if ys ends prematurely then it must be smaller than xs.

After we confirm that the strings are not empty, we check their heads.
If they are the same then we will delegate the check to the rest of the
string. Otherwise we can make a decision now and return the result.

Data Abstraction
Some structures

Questions

Tutorial questions
In class questions
Extra questions

Q7
Substring

Write a function substr(xs, ys) that takes in lists of characters
xs and ys and returns true iff ys is a substring of xs.

function substr(xs, ys) {
function trial(xs, ys) {

if (is_null(xs)) { return is_null(ys); }

else if (is_null(ys)) { return true; }

else if (head(xs) === head(ys)) {

return trial(tail(xs), tail(ys));

} else { return false; }

}
function step(xs) {

if (is_null(xs)) { return false; }

else {

return trial(xs, ys) || step(tail(xs));

}

}
return step(xs);

}

Jia Xiaodong Data Abstraction

This is a little trickier than first meets the eye. It is not enough to check
the heads and then move to the tails, for example for "hhello" and
"hell", this will result in checking "hello" and "ell" and so on
which will be wrong. Furthermore, doing so might cause an error
where "hell" is a substring of "helllo" since they are only in the
right sequence but not contiguous.

The correct (and naive) way is to just run a test for every character,
one by one. The test will go step through both the string and ys and
confirm that they match. We return true if any one of the tests pass.

	Data Abstraction
	Data Structures
	What is data?

	Some structures
	Pair
	List

	Questions
	Tutorial questions
	In class questions
	Extra questions

