
More List Operations
Trees

Questions

More list processing

Jia Xiaodong

September 13, 2021

Jia Xiaodong More list processing

More List Operations
Trees

Questions

Admin matters

• Code style

• Plagiarism

• Mastery check

Jia Xiaodong More list processing

More List Operations
Trees

Questions

More List Operations
Map
Accumulate

Built in operations

• append(xs, ys)

• reverse(xs)

• for_each(f, xs)

• map(f, xs)

• filter(pred, xs)

• accumulate(f, init, xs)

• Online reference

Jia Xiaodong More list processing

This week we will cover more advanced list manipulations and oper-
ations after last week’s introduction to pairs and lists. Please refer to
the online reference for all the built in operations on lists. Of course
all of these can be done with recursion and head/tail, but take them
as another layer of convenience and abstraction.

What we will mainly focus on are map, filter, and accumulate.

https://sicp.comp.nus.edu.sg/source/LISTS/global.html

More List Operations
Trees

Questions

More List Operations
Map
Accumulate

Map

• map takes in parameters (f, xs)

– xs is a list of type T

– f is a function of type T => any.

• In short: map(f, xs) brings xs from list(e1, e2, ...) to
list(f(e1), f(e2), ...).

Ex: Negating a list

map(x => -x, xs)

Jia Xiaodong More list processing

Map is in fact quite simple. Map takes in a function f and a list
xs. f must be able to operate on the contents of xs. For example
if xs is a list of numbers then f cannot be a function operating on
strings. Nothing is stopping you from having a list of both numbers
and strings for example, but then again f must be able to operate on
both numbers and strings.

What map does is simply apply f to every single element in the list
xs, and returns the result. The original list is not changed. This also
explains the restriction on f. The restriction may seem quite obvious
but very often it is a good sanity check on your program.

More List Operations
Trees

Questions

More List Operations
Map
Accumulate

Accumulate

• accumulate takes in 3 parameters, (f, init, xs).

– xs is a list of type T.
– init is a variable of type U.
– f is a function of type (T, U) => U

• Imagine xs, init as a flat sequence of elements:
list(n1, n2, ..., nk, init). Then accumulate returns
f(n1, f(n2, ... f(nk-1, f(nk, init)) ...))

Jia Xiaodong More list processing

Accumulate is also called folding or reducing. It takes in a list xs,
a initial value init, and a reducing function f. The purpose of the
function is to move gobble the list from right to left, 2 elements at a
time. Note that accumulate does not necessarily return a list.

Most of the time init and the elements of xs will be of the same
type, i.e. numbers, strings, etc. But there can be a little freedom here.
Again this is just a check on if your function f makes sense.

The reason why there needs to be an init is to provide the rightmost
element to be gobbled (remember f works on 2 elements at a time).
Given list(n1, n2, ..., nk), here is what happens:

• temp = f(nk, init)

• temp = f(nk-1, temp)

• f(nk-2, temp)

• and so on until the list is exhausted, where we return temp.

More List Operations
Trees

Questions

More List Operations
Map
Accumulate

Filter

• filter takes in 2 parameters, (pred, xs).

– xs is a list of type T.
– pred is a function of type T => true/false

Get even elements

filter(x => x % 2 === 0, list(1, 2, 3, 4, 5))

Jia Xiaodong More list processing

Filter may be commonly used. It takes a predicate pred, and goes
through the whole list testing each element with it. Those that evalu-
ate to false are excluded from the final return result.

More List Operations
Trees

Questions
Trees

Trees

Definition

A tree is a list of either elements or trees.

Example

Draw list(list(1, 2), 3, 4). Compare with Fig. 2.6 in the
textbook.

Jia Xiaodong More list processing

We have actually seen something like trees before. Back when we
were drawing box and pointer diagrams, we encountered lists of lists,
and in fact today we know they are in fact trees.

Since trees are in fact lists, it is very convenient to simply utilize
recursion together with the list operations on them. See textbook
§2.2.2 for more details. Ex. 2.32 is recommended.

More List Operations
Trees

Questions

Tutorial questions
Extra questions

S6 Q1

Implement map using accumulate.

• accumulate(pair, init, xs) ~ identity 1.

function my_map(f, xs) {

return accumulate((x, y) => pair(f(x), y), null, xs);

}

Challenge

Implement filter with accumulate.

1Here again ~ is used to represent something like equals() or ∼=.

Jia Xiaodong More list processing

The hint tells us this is a one-liner so it has to do with f.

Notice that using pair as the accumulating function gives us the iden-
tity function.

Once we have this settled then f = (x, y) => pair(g(x), y) gets
us what we want.

As a challenge try implementing some other list operations in terms
of other list operations.

More List Operations
Trees

Questions

Tutorial questions
Extra questions

S6 Q2

Use filter to write remove_duplicates.

function remove_duplicates(xs) {

function pred(v) {

function f(x, y) {

return x === v ? y + 1 : y;

}

// return accumulate(f, *, xs) ... ?

return accumulate(f, 0, xs) < 2;

}

return filter(pred, xs);

}

Jia Xiaodong More list processing

The idea behind this is to use accumulate to run through the list and
check for the number of occurrences of v.

(If you have looked through the online reference for LISTS, you would find a particular function member that has

not been mentioned before. An easy but slow way of checking for uniqueness is member(v, member(v, xs)). See

if you know how this works. Exactly what is it’s time complexity?)

More List Operations
Trees

Questions

Tutorial questions
Extra questions

S6 Q2
Alternative

function remove_duplicates(xs) {

return is_null(xs)

? null

: pair(head(xs),

remove_duplicates(

filter(x => !equal(x, head(xs)), tail(xs))

);

}

Jia Xiaodong More list processing

Here is an alternative implementation. The idea behind this is to take
one item, and attach it to a “cleaned” version of the remaining items.

More List Operations
Trees

Questions

Tutorial questions
Extra questions

S6 Q3

function makeup_amount(x, coins) {

if (x === 0) {

return list(null);

} else if (x < 0 || is_null(coins)) {

return null;

} else {

// Combinations that don't use the head coin.

const combi_A = makeup_amount(x, tail(coins));

// Combinations after we remove the head coin.

const combi_B = makeup_amount(x - head(coins), tail(coins));

// Combinations that use the head coin.

const combi_C = map(x => pair(head(coins), x), combi_B);

return append(combi_A, combi_C);

}

}

Jia Xiaodong More list processing

We have been given a hint to complete makeup_amount. This function
takes in a list of coins and outputs all the possible ways to makeup x

with those coins.

This is a recursive function that just considers two cases: you use the
head coin, or you don’t.

If we use don’t use the head coin, we can just discard it.

On the other hand, by using the head coin, the problem is equivalent
to swallowing the head coin and making x smaller by that amount.
However, we have to remember to append the head coin back to our
solution list. That is the difference between combi_B and combi_C.

More List Operations
Trees

Questions

Tutorial questions
Extra questions

S6 Q4

Use accumulate to write remove_duplicates.

function remove_duplicates(xs) {

return

accumulate(

(x, ys) => is_null(member(x, ys))

? pair(x, ys)

: ys,

null, xs);

}

Jia Xiaodong More list processing

This is also quite simple. We just run through the list, and if we can
find another x in the tail of the list, we ignore it.

More List Operations
Trees

Questions

Tutorial questions
Extra questions

S6 Q5

Write a function subsets(xs) that returns the set (a list) of all
subsets of xs.

function subsets(xs) {

if (is_null(xs)) {

return list(null)

}

else {

const subset_a = subsets(tail(xs));

const subset_b =

map(x => pair(head(xs), x), subset_a);

return append(subset_a, subset_b);

}

}

Jia Xiaodong More list processing

A good source of inspiration would be coin change. A subset can
either not contain the head, or it can contain it.

First let us fill in the base case. This is simple enough. Moving on, not
using the head element is also fairly easy. How do we construct the
subsets that contain the head element? Note that subset_a already
contains all the subsets without the head element (wishful thinking).
So actually what we have to do is to just add the head element in to
every one of these elements.

Finally we just return both of the lists. Do they have conflicting ele-
ments? Try to convince yourself if they do or do not.

More List Operations
Trees

Questions

Tutorial questions
Extra questions

S6 Q6

Write a function permute(xs) that returns a list of all
permutations of xs.

function permutations(xs) {

if(is_null(xs) {

return list(xs);

}

else {

return map(x =>

map(z => pair(x, z),

permutations(remove(x, xs))),

xs);

}

}

Jia Xiaodong More list processing

There is one easier way of thinking about this problem. What we do
is to hold a single element at the front, and then permute the rest.

The base case is fairly easy to fill out. Next, we can use wishful
thinking on the “permute the rest” part. What follows next is then

1. Put x at the front of every permutation.

2. Run this for every possible item x in the list xs.

More List Operations
Trees

Questions

Tutorial questions
Extra questions

Q7

Write accumulate_n that accumulates a list of lists.

function accumulate_n(op, init, seqs) {

return is_null(head(seqs))

? null

: pair(

accumulate(op, init, map(head, seqs)),

accumulate_n(op, init, map(tail, seqs))

);

}

Jia Xiaodong More list processing

accumulate_n works like accumulate but for a list of lists. Imagine
it as creating a new list out of all the first elements and applying ac-
cumulate on them. Then, do the same thing for the second elements,
and so on.

The hint already tells us what is to be done. The check for
is_null(head(seqs)) tell us that we are going to go through the in-
ner lists element by element, recursively calling accumulate_n. There-
fore it would be a pair of the result of accumulating on all the heads,
and the recursive call to accumulate_n with all the tails.

How do we get all the heads and all the tails? We can simply map
those functions across the list.

More List Operations
Trees

Questions

Tutorial questions
Extra questions

Q8

Write insert(x, xs) that puts x at the correct spot in xs.

function insert(x, xs) {

if (is_null(xs)) {

return list(x);

}

else {

const y = head(xs);

return x < y

? pair(x, pair(y, tail(xs)))

: pair(y, insert(x, tail(xs)));

}

}

Jia Xiaodong More list processing

When comparing x with the head of the list, if x is smaller then we
can put it down right now and return the result. Otherwise, we will
insert x somewhere after y.

More List Operations
Trees

Questions

Tutorial questions
Extra questions

Q8

Implement insertion sort using insert.

function sort(xs) {

return accumulate(

(x, acc) => insert(x, acc),

list(),

xs);

}

Jia Xiaodong More list processing

We just insert each element into an empty list, starting from the first
one. What is the complexity of this sorting procedure?

	More List Operations
	More List Operations
	Map
	Accumulate

	Trees
	Trees

	Questions
	Tutorial questions
	Extra questions

