
Mutability
Environment Model

Questions

Mutability and advanced control structures

Jia Xiaodong

October 11, 2021

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Two models of computing *

• What can and cannot be computed?

• Church, 1936: λ-calculus.

– Functions can be defined.
– Functions can be called.

• Turing, 1936 (later): Turing machines.

– A machine he devised to abstract “computation through a
purely mechanical process”.

– Consists of a memory tape, a head, a machine state, and a
function that makes decisions.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Two models of computing *

• What can and cannot be computed?
• Church, 1936: λ-calculus.

– Functions can be defined.
– Functions can be called.

• Turing, 1936 (later): Turing machines.

– A machine he devised to abstract “computation through a
purely mechanical process”.

– Consists of a memory tape, a head, a machine state, and a
function that makes decisions.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Two models of computing *

• What can and cannot be computed?
• Church, 1936: λ-calculus.

– Functions can be defined.

– Functions can be called.

• Turing, 1936 (later): Turing machines.

– A machine he devised to abstract “computation through a
purely mechanical process”.

– Consists of a memory tape, a head, a machine state, and a
function that makes decisions.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Two models of computing *

• What can and cannot be computed?
• Church, 1936: λ-calculus.

– Functions can be defined.
– Functions can be called.

• Turing, 1936 (later): Turing machines.

– A machine he devised to abstract “computation through a
purely mechanical process”.

– Consists of a memory tape, a head, a machine state, and a
function that makes decisions.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Two models of computing *

• What can and cannot be computed?
• Church, 1936: λ-calculus.

– Functions can be defined.
– Functions can be called.

• Turing, 1936 (later): Turing machines.

– A machine he devised to abstract “computation through a
purely mechanical process”.

– Consists of a memory tape, a head, a machine state, and a
function that makes decisions.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Two models of computing *

• What can and cannot be computed?
• Church, 1936: λ-calculus.

– Functions can be defined.
– Functions can be called.

• Turing, 1936 (later): Turing machines.

– A machine he devised to abstract “computation through a
purely mechanical process”.

– Consists of a memory tape, a head, a machine state, and a
function that makes decisions.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Two models of computing *

• What can and cannot be computed?
• Church, 1936: λ-calculus.

– Functions can be defined.
– Functions can be called.

• Turing, 1936 (later): Turing machines.

– A machine he devised to abstract “computation through a
purely mechanical process”.

– Consists of a memory tape, a head, a machine state, and a
function that makes decisions.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

What have we been doing? *

• We have been using a functional programming style, in spirit of
λ-calculus.

• Computers nowadays mostly are in the style of the von
Neumann architecture.

• Most programming languages have a way to mutate data.

• Most data structures and algorithms also mutate data.

• We would also like to mutate data, then.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

What have we been doing? *

• We have been using a functional programming style, in spirit of
λ-calculus.

• Computers nowadays mostly are in the style of the von
Neumann architecture.

• Most programming languages have a way to mutate data.

• Most data structures and algorithms also mutate data.

• We would also like to mutate data, then.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

What have we been doing? *

• We have been using a functional programming style, in spirit of
λ-calculus.

• Computers nowadays mostly are in the style of the von
Neumann architecture.

• Most programming languages have a way to mutate data.

• Most data structures and algorithms also mutate data.

• We would also like to mutate data, then.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

What have we been doing? *

• We have been using a functional programming style, in spirit of
λ-calculus.

• Computers nowadays mostly are in the style of the von
Neumann architecture.

• Most programming languages have a way to mutate data.

• Most data structures and algorithms also mutate data.

• We would also like to mutate data, then.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

What have we been doing? *

• We have been using a functional programming style, in spirit of
λ-calculus.

• Computers nowadays mostly are in the style of the von
Neumann architecture.

• Most programming languages have a way to mutate data.

• Most data structures and algorithms also mutate data.

• We would also like to mutate data, then.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Mutability

• const constant declaration.

• let variable declaration.

• Mutability leads to more complicated reasoning.1. Yet if done
right, is more “natural” to work with.

1See lecture notes for pitfalls.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Mutability

• const constant declaration.

• let variable declaration.

• Mutability leads to more complicated reasoning.1. Yet if done
right, is more “natural” to work with.

1See lecture notes for pitfalls.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Mutability

• const constant declaration.

• let variable declaration.

• Mutability leads to more complicated reasoning.1. Yet if done
right, is more “natural” to work with.

1See lecture notes for pitfalls.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Arrays

The Array

The array is initialized with a list of comma delimited items within
square brackets. The items are 0-indexed. Elements can be accessed
with the dereference operator [].

Example

let arr = [1, 2, 3, 4];

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Arrays

The Array

The array is initialized with a list of comma delimited items within
square brackets. The items are 0-indexed. Elements can be accessed
with the dereference operator [].

Example

let arr = [1, 2, 3, 4];

Q: arr[0] = ?, arr[1] = ?, arr[2] = ?

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Arrays

The Array

The array is initialized with a list of comma delimited items within
square brackets. The items are 0-indexed. Elements can be accessed
with the dereference operator [].

Example

let arr = [1, 2, 3, 4];

arr[0] = 1, arr[1] = 2, arr[2] = 3

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Arrays

The Array

The array is initialized with a list of comma delimited items within
square brackets. The items are 0-indexed. Elements can be accessed
with the dereference operator [].

Example

let arr = [1, 2, 3, 4];

arr[0] = 1, arr[1] = 2, arr[2] = 3

Q: arr[4] = ?

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Arrays

The Array

The array is initialized with a list of comma delimited items within
square brackets. The items are 0-indexed. Elements can be accessed
with the dereference operator [].

Example

let arr = [1, 2, 3, 4];

arr[0] = 1, arr[1] = 2, arr[2] = 3

arr[4] = undefined

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Arrays

Insertion

We can insert or modify any element by simply dereferencing it and
setting it.

Example

let arr = [1, 2, 3, 4];

arr[3] = 3; arr[4] = 4; arr[6] = 6;

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Arrays

Insertion

We can insert or modify any element by simply dereferencing it and
setting it.

Example

let arr = [1, 2, 3, 4];

arr[3] = 3; arr[4] = 4; arr[6] = 6;

Q: arr = ?

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Arrays

Insertion

We can insert or modify any element by simply dereferencing it and
setting it.

Example

let arr = [1, 2, 3, 4];

arr[3] = 3; arr[4] = 4; arr[6] = 6;

[1, 2, 3, 3, 4, undefined, 6]

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

While loops

Definition

A while loop is made as such:

while (expression) {

statements

}

This is something like expression ? statements : undefined, over
and over again.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

For loops

Definition

A for loop is made as such:

for (expr a; expr b; expr c) {

statements

}

This is like

expr a;

while(expr b;) {

expr c;

statements;

}

Traversing arrays

for (let i = 0; i < array_length(arr); i = i + 1) {...}

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

For loops

Definition

A for loop is made as such:

for (expr a; expr b; expr c) {

statements

}

This is like

expr a;

while(expr b;) {

expr c;

statements;

}

Traversing arrays

for (let i = 0; i < array_length(arr); i = i + 1) {...}

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Loop controls

Control statements

If you wish to escape the closest loop prematurely, use break. If you
wish to skip one iteration immediately, use continue.

Question

Two nested loops:

while(...) {

while(...) {

//I am here

}

}

How to break out of both loops?

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Crisis

Substitution model does not work any more. We need a new way to
keep track of our names!

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Remember that time...

• Every new context creates a new scope.

• The most common context are blocks:

• Names in an inner scope inherit those defined outside of it.

• Names can be overridden by definitions in the current scope.

• You cannot go “into” an inner scope from an outer scope to
retrieve definitions!

• In conclusion: To find what a name refers to, look at the
current scope, and then outwards. Take the first one you come
across.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Environment Model

• We use environments (boxes) to denote our scopes.

• Name definitions add an entry to the environment they are in.

• Functions have some weird syntax (refer to lecture notes).
• New scopes create child environments.

– All whole program resides in the program environment.
– The parent is the closest enclosing environment.

• Duplicate names in the same environment cannot exist.

– However, they can be overwritten depending on the statement.

• Environments are never destroyed.

• When evaluating a name, search outwards starting from the
current environment. First match is returned. Otherwise,
invalid name.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Environment Model

• We use environments (boxes) to denote our scopes.

• Name definitions add an entry to the environment they are in.

• Functions have some weird syntax (refer to lecture notes).
• New scopes create child environments.

– All whole program resides in the program environment.
– The parent is the closest enclosing environment.

• Duplicate names in the same environment cannot exist.

– However, they can be overwritten depending on the statement.

• Environments are never destroyed.

• When evaluating a name, search outwards starting from the
current environment. First match is returned. Otherwise,
invalid name.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Environment Model

• We use environments (boxes) to denote our scopes.

• Name definitions add an entry to the environment they are in.

• Functions have some weird syntax (refer to lecture notes).

• New scopes create child environments.

– All whole program resides in the program environment.
– The parent is the closest enclosing environment.

• Duplicate names in the same environment cannot exist.

– However, they can be overwritten depending on the statement.

• Environments are never destroyed.

• When evaluating a name, search outwards starting from the
current environment. First match is returned. Otherwise,
invalid name.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Environment Model

• We use environments (boxes) to denote our scopes.

• Name definitions add an entry to the environment they are in.

• Functions have some weird syntax (refer to lecture notes).
• New scopes create child environments.

– All whole program resides in the program environment.
– The parent is the closest enclosing environment.

• Duplicate names in the same environment cannot exist.

– However, they can be overwritten depending on the statement.

• Environments are never destroyed.

• When evaluating a name, search outwards starting from the
current environment. First match is returned. Otherwise,
invalid name.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Environment Model

• We use environments (boxes) to denote our scopes.

• Name definitions add an entry to the environment they are in.

• Functions have some weird syntax (refer to lecture notes).
• New scopes create child environments.

– All whole program resides in the program environment.

– The parent is the closest enclosing environment.

• Duplicate names in the same environment cannot exist.

– However, they can be overwritten depending on the statement.

• Environments are never destroyed.

• When evaluating a name, search outwards starting from the
current environment. First match is returned. Otherwise,
invalid name.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Environment Model

• We use environments (boxes) to denote our scopes.

• Name definitions add an entry to the environment they are in.

• Functions have some weird syntax (refer to lecture notes).
• New scopes create child environments.

– All whole program resides in the program environment.
– The parent is the closest enclosing environment.

• Duplicate names in the same environment cannot exist.

– However, they can be overwritten depending on the statement.

• Environments are never destroyed.

• When evaluating a name, search outwards starting from the
current environment. First match is returned. Otherwise,
invalid name.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Environment Model

• We use environments (boxes) to denote our scopes.

• Name definitions add an entry to the environment they are in.

• Functions have some weird syntax (refer to lecture notes).
• New scopes create child environments.

– All whole program resides in the program environment.
– The parent is the closest enclosing environment.

• Duplicate names in the same environment cannot exist.

– However, they can be overwritten depending on the statement.

• Environments are never destroyed.

• When evaluating a name, search outwards starting from the
current environment. First match is returned. Otherwise,
invalid name.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Environment Model

• We use environments (boxes) to denote our scopes.

• Name definitions add an entry to the environment they are in.

• Functions have some weird syntax (refer to lecture notes).
• New scopes create child environments.

– All whole program resides in the program environment.
– The parent is the closest enclosing environment.

• Duplicate names in the same environment cannot exist.

– However, they can be overwritten depending on the statement.

• Environments are never destroyed.

• When evaluating a name, search outwards starting from the
current environment. First match is returned. Otherwise,
invalid name.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Environment Model

• We use environments (boxes) to denote our scopes.

• Name definitions add an entry to the environment they are in.

• Functions have some weird syntax (refer to lecture notes).
• New scopes create child environments.

– All whole program resides in the program environment.
– The parent is the closest enclosing environment.

• Duplicate names in the same environment cannot exist.

– However, they can be overwritten depending on the statement.

• Environments are never destroyed.

• When evaluating a name, search outwards starting from the
current environment. First match is returned. Otherwise,
invalid name.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Environment Model

• We use environments (boxes) to denote our scopes.

• Name definitions add an entry to the environment they are in.

• Functions have some weird syntax (refer to lecture notes).
• New scopes create child environments.

– All whole program resides in the program environment.
– The parent is the closest enclosing environment.

• Duplicate names in the same environment cannot exist.

– However, they can be overwritten depending on the statement.

• Environments are never destroyed.

• When evaluating a name, search outwards starting from the
current environment. First match is returned. Otherwise,
invalid name.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q1

function change(x, new_value) {

x = new_value;

}

let x = 0;

change(x, 1);

What is the value of x after evaluation?

x = 0.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q1

function change(x, new_value) {

x = new_value;

}

let x = 0;

change(x, 1);

What is the value of x after evaluation?

x = 0.

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q2

Write d_filter(xs) that acts like filter but modifies the list xs in
place.

function d_filter(pred, xs) {

if (is_null(xs)) {

return xs;

}

else if (pred(head(xs))) {

set_tail(xs, d_filter(pred, tail(xs)));

return xs;

}

else {

return d_filter(pred, tail(xs));

}

}

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q2

Write d_filter(xs) that acts like filter but modifies the list xs in
place.

function d_filter(pred, xs) {

if (is_null(xs)) {

return xs;

}

else if (pred(head(xs))) {

set_tail(xs, d_filter(pred, tail(xs)));

return xs;

}

else {

return d_filter(pred, tail(xs));

}

}

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q2

Write d_filter(xs) that acts like filter but modifies the list xs in
place.

function d_filter(pred, xs) {

if (is_null(xs)) {

return xs;

}

else if (pred(head(xs))) {

set_tail(xs, d_filter(pred, tail(xs)));

return xs;

}

else {

return d_filter(pred, tail(xs));

}

}

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q2

Write d_filter(xs) that acts like filter but modifies the list xs in
place.

function d_filter(pred, xs) {

if (is_null(xs)) {

return xs;

}

else if (pred(head(xs))) {

set_tail(xs, d_filter(pred, tail(xs)));

return xs;

}

else {

return d_filter(pred, tail(xs));

}

}

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q2

Write d_filter(xs) that acts like filter but modifies the list xs in
place.

function d_filter(pred, xs) {

if (is_null(xs)) {

return xs;

}

else if (pred(head(xs))) {

set_tail(xs, d_filter(pred, tail(xs)));

return xs;

}

else {

return d_filter(pred, tail(xs));

}

}

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q3

Draw the environment at the breakpoints.
let a = 10;

function foo(x) {

let b = 0;

function goo(x) {

let a = 30;

}

if (x <= 2) {

a = a + x;

b = b + x;

// Breakpoint #4

} else {

// Breakpoint #3

goo(x - 1);

}

a = a + x;

b = b + x;

// Breakpoint #2

goo(3);

}

// Breakpoint #1

foo(1);

// Breakpoint #5

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q3
Breakpoint 1

let a = 10;

function foo(x) {

let b = 0;

function goo(x) {

let a = 30;

}

if (x <= 2) {

a = a + x;

b = b + x;

} else {

goo(x - 1);

}

a = a + x;

b = b + x;

goo(3);

}

// Breakpoint #1

foo(1);

a: 10
foo

param: x
body:

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q3
Breakpoint 2

let a = 10;

function foo(x) {

let b = 0;

function goo(x) {

let a = 30;

}

if (x <= 2) {

a = a + x;

b = b + x;

} else {

goo(x - 1);

}

a = a + x;

b = b + x;

// Breakpoint #2

goo(3);

}

foo(1);

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q3
Breakpoint 3

let a = 10;

function foo(x) {

let b = 0;

function goo(x) {

let a = 30;

}

if (x <= 2) {

a = a + x;

b = b + x;

} else {

// Breakpoint #3

goo(x - 1);

}

a = a + x;

b = b + x;

goo(3);

}

foo(1);

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q3
Breakpoint 4

let a = 10;

function foo(x) {

let b = 0;

function goo(x) {

let a = 30;

}

if (x <= 2) {

a = a + x;

b = b + x;

// Breakpoint #4

} else {

goo(x - 1);

}

a = a + x;

b = b + x;

goo(3);

}

foo(1);

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

Q1

Write d_reverse(xs), just like d_filter you did just now.

const L = list(1, 2, 3, 4, 5, 6);

d_reverse(L); // returns [6, [5, [4, [3, [2, [1, null]]]]]]

3 2 1

1 23

1 32

function d_reverse(xs) {

if (is_null(xs) || is_null(tail(xs))) {

return xs;

}

else {

const temp = d_reverse(tail(xs));

set_tail(tail(xs), xs);

set_tail(xs, null);

return temp;

}

}

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

Q1

Write d_reverse(xs), just like d_filter you did just now.

const L = list(1, 2, 3, 4, 5, 6);

d_reverse(L); // returns [6, [5, [4, [3, [2, [1, null]]]]]]

3 2 1

1 23

1 32

function d_reverse(xs) {

if (is_null(xs) || is_null(tail(xs))) {

return xs;

}

else {

const temp = d_reverse(tail(xs));

set_tail(tail(xs), xs);

set_tail(xs, null);

return temp;

}

}

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

Q1

Write d_reverse(xs), just like d_filter you did just now.

const L = list(1, 2, 3, 4, 5, 6);

d_reverse(L); // returns [6, [5, [4, [3, [2, [1, null]]]]]]

3 2 1

1 23

1 32

function d_reverse(xs) {

if (is_null(xs) || is_null(tail(xs))) {

return xs;

}

else {

const temp = d_reverse(tail(xs));

set_tail(tail(xs), xs);

set_tail(xs, null);

return temp;

}

}

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

Q2
Ex. 3.16

Consider the following function that counts the number of pairs in a list. Give
examples of lists made of 3 pairs that will cause the function to return 3, 4, 7, or
never return at all.
function count_pairs(x) {

if (!is_pair(x)) {

return 0;

} else {

return 1 + count_pairs(head(x)) + count_pairs(tail(x));

}

}

// returns 3

const three = list(1, 2, 3);

count_pairs(three);

// infinite loop

const loop = list(1, 2, 3);

set_tail(tail(tail(loop)), loop);

count_pairs(loop);

// returns 4

const four_a = pair(null, null);

const four_b = pair(four_a, four_a);

const four = pair(four_b, null);

count_pairs(four);

// returns 7

const seven_a = pair(null, null);

const seven_b = pair(seven_a, seven_a);

const seven = pair(seven_b, seven_b);

count_pairs(seven);

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

Q2
Ex. 3.16

Consider the following function that counts the number of pairs in a list. Give
examples of lists made of 3 pairs that will cause the function to return 3, 4, 7, or
never return at all.
function count_pairs(x) {

if (!is_pair(x)) {

return 0;

} else {

return 1 + count_pairs(head(x)) + count_pairs(tail(x));

}

}

// returns 3

const three = list(1, 2, 3);

count_pairs(three);

// infinite loop

const loop = list(1, 2, 3);

set_tail(tail(tail(loop)), loop);

count_pairs(loop);

// returns 4

const four_a = pair(null, null);

const four_b = pair(four_a, four_a);

const four = pair(four_b, null);

count_pairs(four);

// returns 7

const seven_a = pair(null, null);

const seven_b = pair(seven_a, seven_a);

const seven = pair(seven_b, seven_b);

count_pairs(seven);

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

Q2
Ex. 3.16

Consider the following function that counts the number of pairs in a list. Give
examples of lists made of 3 pairs that will cause the function to return 3, 4, 7, or
never return at all.
function count_pairs(x) {

if (!is_pair(x)) {

return 0;

} else {

return 1 + count_pairs(head(x)) + count_pairs(tail(x));

}

}

// returns 3

const three = list(1, 2, 3);

count_pairs(three);

// infinite loop

const loop = list(1, 2, 3);

set_tail(tail(tail(loop)), loop);

count_pairs(loop);

// returns 4

const four_a = pair(null, null);

const four_b = pair(four_a, four_a);

const four = pair(four_b, null);

count_pairs(four);

// returns 7

const seven_a = pair(null, null);

const seven_b = pair(seven_a, seven_a);

const seven = pair(seven_b, seven_b);

count_pairs(seven);

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

Q2
Ex. 3.16

Consider the following function that counts the number of pairs in a list. Give
examples of lists made of 3 pairs that will cause the function to return 3, 4, 7, or
never return at all.
function count_pairs(x) {

if (!is_pair(x)) {

return 0;

} else {

return 1 + count_pairs(head(x)) + count_pairs(tail(x));

}

}

// returns 3

const three = list(1, 2, 3);

count_pairs(three);

// infinite loop

const loop = list(1, 2, 3);

set_tail(tail(tail(loop)), loop);

count_pairs(loop);

// returns 4

const four_a = pair(null, null);

const four_b = pair(four_a, four_a);

const four = pair(four_b, null);

count_pairs(four);

// returns 7

const seven_a = pair(null, null);

const seven_b = pair(seven_a, seven_a);

const seven = pair(seven_b, seven_b);

count_pairs(seven);

Jia Xiaodong Mutability and advanced control structures

	Mutability
	Mutability
	Arrays
	Loops

	Environment Model
	Questions
	Tutorial questions
	Extra questions

