
Mutability
Environment Model

Questions

Mutability and advanced control structures

Jia Xiaodong

October 11, 2021

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Two models of computing *

• What can and cannot be computed?
• Church, 1936: λ-calculus.

– Functions can be defined.
– Functions can be called.

• Turing, 1936 (later): Turing machines.

– A machine he devised to abstract “computation through a
purely mechanical process”.

– Consists of a memory tape, a head, a machine state, and a
function that makes decisions.

Jia Xiaodong Mutability and advanced control structures

A brief aside that might help explain why we miss out on a “feature”
(mutability) in the first place. We have already mentioned primitive
recursion before some time ago in another aside. Recursion is an
answer to “what can be computed”. In 1936 two more models were
proposed.

The first is similar to what we have been doing. Functions are the
basis of calculation. We have seen a taste of this in Church encoding.
In the calculus everything can be created from the ground up from a
few simple rules, without needed any “built-in” functions.

The second is the Turing machine, which is more physical. It is a
machine in every sense of the word This is the more common model
used in CS for matters relating to complexity. The power of the ma-
chine comes from the tape. Remove the tape, and the machine will
become what is known as a finite automaton. These automata are
very weak in comparison.

The two models are equivalent. In fact a proposal is that all reason-
able methods of computation are equivalent in power to the Turing
machine.

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

What have we been doing? *

• We have been using a functional programming style, in spirit of
λ-calculus.

• Computers nowadays mostly are in the style of the von
Neumann architecture.

• Most programming languages have a way to mutate data.

• Most data structures and algorithms also mutate data.

• We would also like to mutate data, then.

Jia Xiaodong Mutability and advanced control structures

What we have been doing so far is fairly similar to the λ-calculus.
However most computers do not operate in this fashion. Very
roughly, modern computers consist of a processor that reads and
modifies memory according to instructions, which are also stored in
memory. This is the von Neumann architecture. This is similar to the
Turing machine. There once existed machines (e.g. LISP machines)
that operated in other fashions, but nowadays they are rare.

Most programming languages have a way to mutate (change) data. If
you pick up a programming 101 book in any other language (includ-
ing JS) the first few chapters will introduce you to this already. Most
data structures and algorithms also mutate data. We have also seen
that some things are either troublesome, or become slower if we do
not allow mutation. Mutation seems to be intertwined with our daily
experience and problem solving.

Therefore we would also like to try this out.

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Mutability

• const constant declaration.

• let variable declaration.

• Mutability leads to more complicated reasoning.1. Yet if done
right, is more “natural” to work with.

1See lecture notes for pitfalls.

Jia Xiaodong Mutability and advanced control structures

We introduce a new keyword let that allows mutation. In other
words, we can point the name at something else. const does not al-
lowing reassignment.

The reason why this is added later is because it is harder to reason
about your programs when things are being mutated everywhere. For
example one day if your screen goes blank, you do not know if it’s
your graphics card that failed, the drivers that failed, the port that
failed, the wire that failed, the application that failed, the OS that
failed, the screen that failed, since they are all changing (mutating)
the state of screen. Yet is is quite necessary to do something to the
screen if we are to hope to display anything on it.

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Arrays

The Array

The array is initialized with a list of comma delimited items within
square brackets. The items are 0-indexed. Elements can be accessed
with the dereference operator [].

Example

let arr = [1, 2, 3, 4];

Q: arr[0] = ?, arr[1] = ?, arr[2] = ? arr[0] = 1, arr[1] = 2,
arr[2] = 3

Q: arr[4] = ? arr[4] = undefined

Jia Xiaodong Mutability and advanced control structures

The array is created by writing its elements down between square
brackets, kind of like the same fashion as a list. The elements are
0-indexed, meaning the first element is given the index of 0. The
reason for this is perhaps more easily seen in other languages such as
C, where arrays are just an address to a contiguous chunk of memory
and the first cell is the address + 0.

The square brackets has 2 uses, both as a way to declare arrays and
as a way to access elements of arrays. Accessing elements that do not
exist result in undefined.

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Arrays

Insertion

We can insert or modify any element by simply dereferencing it and
setting it.

Example

let arr = [1, 2, 3, 4];

arr[3] = 3; arr[4] = 4; arr[6] = 6;

Q: arr = ? [1, 2, 3, 3, 4, undefined, 6]

Jia Xiaodong Mutability and advanced control structures

The square brackets also allow us to set any element.

In fact, as this example demonstrates, the elements do not even need
to be contiguous. However one thing is that the index must be a
natural number.

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

While loops

Definition

A while loop is made as such:

while (expression) {

statements

}

This is something like expression ? statements : undefined, over
and over again.

Jia Xiaodong Mutability and advanced control structures

The while loop checks the expression in brackets, and if it is true,
then it executes the statements. Otherwise it returns undefined and
the program carries on. Please be careful with your reasoning when
using loops. It is very common to commit off-by-one errors where
the loop runs either an extra step or one step too little especially due
to fumbling between things like < and <=.

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

For loops

Definition

A for loop is made as such:

for (expr a; expr b; expr c) {

statements

}

This is like

expr a;

while(expr b;) {

expr c;

statements;

}

Traversing arrays

for (let i = 0; i < array_length(arr); i = i + 1) {...}

Jia Xiaodong Mutability and advanced control structures

A for loop is a more compact while loop since most of the time in a
loop you want to (a) initialize a counter, (b) check the conditions, and
(c) modify the counter.

The example demonstrates it in action. We count from i = 0 until
i = array_length(arr) - 1, which allows us to operate on the entire ar-
ray element by element using arr[i] in the body.

Mutability
Environment Model

Questions

Mutability
Arrays
Loops

Loop controls

Control statements

If you wish to escape the closest loop prematurely, use break. If you
wish to skip one iteration immediately, use continue.

Question

Two nested loops:

while(...) {

while(...) {

//I am here

}

}

How to break out of both loops?

Jia Xiaodong Mutability and advanced control structures

It is not very recommended to use these controls all the time since it
makes things hard to reason about. There are cases where they are
useful though. For example, an infinite loop waiting for things to
happen.

In any case, there is a limitation in that they only apply to the closest
enclosing loop. To break out of two loops at once, you will have to
use a guard variable or something like that. What this means is to
have the outer loop test for if (notgood) { break; } and the inner loop
set notgood = true; break;.

Mutability
Environment Model

Questions

Crisis

Substitution model does not work any more. We need a new way to
keep track of our names!

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Remember that time...

• Every new context creates a new scope.

• The most common context are blocks:

• Names in an inner scope inherit those defined outside of it.

• Names can be overridden by definitions in the current scope.

• You cannot go “into” an inner scope from an outer scope to
retrieve definitions!

• In conclusion: To find what a name refers to, look at the
current scope, and then outwards. Take the first one you come
across.

Jia Xiaodong Mutability and advanced control structures

These are the scoping rules we have covered previously.

Mutability
Environment Model

Questions

Environment Model

• We use environments (boxes) to denote our scopes.

• Name definitions add an entry to the environment they are in.

• Functions have some weird syntax (refer to lecture notes).
• New scopes create child environments.

– All whole program resides in the program environment.
– The parent is the closest enclosing environment.

• Duplicate names in the same environment cannot exist.

– However, they can be overwritten depending on the statement.

• Environments are never destroyed.

• When evaluating a name, search outwards starting from the
current environment. First match is returned. Otherwise,
invalid name.

Jia Xiaodong Mutability and advanced control structures

The environment rules are the same as the scoping rules we have pre-
viously covered. The only addition is the drawing of environments.
This is more straightforward than you think it is. A good way to
practice is to come up with complicated programs (perhaps those in
midterms or RAs) and draw them, and check against the visualiser in
SA.

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q1

function change(x, new_value) {

x = new_value;

}

let x = 0;

change(x, 1);

What is the value of x after evaluation?

x = 0.

Jia Xiaodong Mutability and advanced control structures

Using the environment model it should be clear that the x inside and
outside the function body are two different things. In the environ-
ment model, calling a function will create a new frame with the cor-
rect values assigned to parameters.

This is slightly more complicated. We will be seeing more of this in
the future. You can try writing a similar function using lists. Does it
modify the argument that way?

If you are interested, you can look up call by value and call by reference.
This means, on a function call, sometimes parameters are assigned
values (like numbers), and sometimes parameters are assigned refer-
ences (like arrows to a piece of data, like a list).

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q2

Write d_filter(xs) that acts like filter but modifies the list xs in
place.

function d_filter(pred, xs) {

if (is_null(xs)) {

return xs;

}

else if (pred(head(xs))) {

set_tail(xs, d_filter(pred, tail(xs)));

return xs;

}

else {

return d_filter(pred, tail(xs));

}

}

Jia Xiaodong Mutability and advanced control structures

This is very similar to the actual definition of filter, just that we add
in set_tail.

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q3

Draw the environment at the breakpoints.
let a = 10;

function foo(x) {

let b = 0;

function goo(x) {

let a = 30;

}

if (x <= 2) {

a = a + x;

b = b + x;

// Breakpoint #4

} else {

// Breakpoint #3

goo(x - 1);

}

a = a + x;

b = b + x;

// Breakpoint #2

goo(3);

}

// Breakpoint #1

foo(1);

// Breakpoint #5

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q3
Breakpoint 1

let a = 10;

function foo(x) {

let b = 0;

function goo(x) {

let a = 30;

}

if (x <= 2) {

a = a + x;

b = b + x;

} else {

goo(x - 1);

}

a = a + x;

b = b + x;

goo(3);

}

// Breakpoint #1

foo(1);

a: 10
foo

param: x
body:

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q3
Breakpoint 2

let a = 10;

function foo(x) {

let b = 0;

function goo(x) {

let a = 30;

}

if (x <= 2) {

a = a + x;

b = b + x;

} else {

goo(x - 1);

}

a = a + x;

b = b + x;

// Breakpoint #2

goo(3);

}

foo(1);

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q3
Breakpoint 3

let a = 10;

function foo(x) {

let b = 0;

function goo(x) {

let a = 30;

}

if (x <= 2) {

a = a + x;

b = b + x;

} else {

// Breakpoint #3

goo(x - 1);

}

a = a + x;

b = b + x;

goo(3);

}

foo(1);

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

S9 Q3
Breakpoint 4

let a = 10;

function foo(x) {

let b = 0;

function goo(x) {

let a = 30;

}

if (x <= 2) {

a = a + x;

b = b + x;

// Breakpoint #4

} else {

goo(x - 1);

}

a = a + x;

b = b + x;

goo(3);

}

foo(1);

Jia Xiaodong Mutability and advanced control structures

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

Q1

Write d_reverse(xs), just like d_filter you did just now.

const L = list(1, 2, 3, 4, 5, 6);

d_reverse(L); // returns [6, [5, [4, [3, [2, [1, null]]]]]]

3 2 1

1 23

1 32

function d_reverse(xs) {

if (is_null(xs) || is_null(tail(xs))) {

return xs;

}

else {

const temp = d_reverse(tail(xs));

set_tail(tail(xs), xs);

set_tail(xs, null);

return temp;

}

}

Jia Xiaodong Mutability and advanced control structures

The simplest way of doing this is actually with something like append.
You would traverse the whole list and set_tail on the last element
with the current head. However this is very slow. A better solution
comes with the observation that if you keep track of the first item in
the tail, after reversing the tail, it will become the last item. So that
is how we can append the head to the last item in the list without
traversing the entire list.

Mutability
Environment Model

Questions

Tutorial questions
Extra questions

Q2
Ex. 3.16

Consider the following function that counts the number of pairs in a list. Give
examples of lists made of 3 pairs that will cause the function to return 3, 4, 7, or
never return at all.
function count_pairs(x) {

if (!is_pair(x)) {

return 0;

} else {

return 1 + count_pairs(head(x)) + count_pairs(tail(x));

}

}

// returns 3

const three = list(1, 2, 3);

count_pairs(three);

// infinite loop

const loop = list(1, 2, 3);

set_tail(tail(tail(loop)), loop);

count_pairs(loop);

// returns 4

const four_a = pair(null, null);

const four_b = pair(four_a, four_a);

const four = pair(four_b, null);

count_pairs(four);

// returns 7

const seven_a = pair(null, null);

const seven_b = pair(seven_a, seven_a);

const seven = pair(seven_b, seven_b);

count_pairs(seven);

Jia Xiaodong Mutability and advanced control structures

The problem with this procedure is of course it does not know if it
has counted a pair previously. The scenario where the function never
terminates is the easiest — we just create a list that points back at
itself, which will cause an infinite loop. It is a good exercise to draw
these lists out and trace the execution of the function.

	Mutability
	Mutability
	Arrays
	Loops

	Environment Model
	Questions
	Tutorial questions
	Extra questions

