
MA2101
Linear Algebra II

Jia Xiaodong

April 26, 2020

1 Introduction

These are notes from Linear Algebra II, a more rigorous treatment of concepts introduced in
LA I.

2 Matrices

2.1 Fields

We use Gaussian elimination to solve linear systems. Gaussian elimination works if one can
add, subtract, multiply, and divide the coefficients similar to the real numbers. That is, the
coefficients come from a field.

Definition 2.1. A field (F,+,×) is a set F together with two binary operations + and ×
called addition and multiplication respectively satisfying the field axioms1. �

In summary, the axioms state that the two operations are associative, commutative, have an
identity, and have an inverse. Also multiplication is distributive over addition.

Axioms (A1) - (A4) says that (F,+) forms a commutative group. Axioms (M1) - (M4) says
that (F− {0},×) forms another commutative group.

Example 2.1. R, C, Q are fields. Z is not a field, and neither is R \Q. �

A finite field is a field which contains only finitely many elements. The number of elements in
a finite field is of the form pm, where p is prime and m is a positive integer. There is exactly
one field (up to isomorphism) with q elements. We can safely call this Fq.

Matrices are a familiar concept from Linear Algebra I. We can simply extend addition and
product to any arbitrary field without additional work.

We denote Mmn(F) as the set of all m× n matrices with entries taken from F.

Definition 2.2. A square matrix A is invertible if there is a matrix B such that

AB = BA = I

B is called the inverse of A and we write A−1 = B. �
1These are stated in the Math 115 notes.
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2.2 Determinants

To determine invertibility we previously we had a concept of determinant. We treat it more
rigorously now:

Definition 2.3. A function
D : Mn(F)→ F

is called a determinant function if:

• (D1) it is multilinear:

– For columns of the matrix, D(. . . , αu+ βv, . . .) = αD(. . . , u, . . .) + βD(. . . , v, . . .)

– In other words, it is linear for each individual column with the others held fixed.

• (D2) it is alternating:

– If A′ is formed from A by interchanging two columns, then D(A′) = −D(A).

– Thus if A has two equal columns, D(A) = 0

• (D3) D(1) = 1

�

It can be shown that this definition of the determinant function will give us all the familiar
properties of the determinant. However we will skip this, as well as enumerating through its
properties since we have dealt with determinants plenty already in Linear Algebra I. What we
are more interested in is if our familiar method of calculating determinants is the only way of
doing so.

Example 2.2. The function D : M2(F)→ F given by:

D

(
a11 a12

a21 a22

)
= a11a22 − a12a21

is easily verified as a valid determinant function. �

Let A ∈Mn(F). For 1 ≤ i, j ≤ n, let Ãij be the (n− 1)× (n− 1) matrix obtained by deleting
the i-th row and j-th column from A.

Theorem 2.1 (Cofactor expansion).

E(X) =
n∑
j=1

(−1)i+jxijD(Ãij)

is a determinant function on Mn(F).

Using this fact, we can inductively generate more determinant functions.

Corollary 2.1.1. For each positive integer n, there is at least one determinant function on
Mn(F).
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Theorem 2.2. The determinant function for M2(F) is unique and is the one given in Ex. 2.2.

Proof.

D

(
a11 a12

a21 a22

)
= D

((
a11

a21

)
,

(
a12

a22

))
= D

(
a11

(
1
0

)
+ a21

(
0
1

)
, a12

(
1
0

)
+ a22

(
0
1

))
= a11a12D(e1, e1) + a11a22D(e1, e2) + a21a12D(e2, e1) + a22a22D(e2, e2)

= 0 + a11a22D(e1, e2)− a21a12D(e1, e2) + 0

= (a11a22 − a21a12)D(I)

By construction D(I) = 1. Hence we get that any determinant function has to evaluate to the
one given in Ex. 2.2. �

We need the idea of permutations for higher order determinants.

Definition 2.4. A permutation of {1, 2, . . . , n} is an one-to-one function

σ : {1, 2, . . . , n} → {1, 2, . . . , n}

and we denote it as
σ = (σ1, σ2, . . . , σn)

�

The symmetric group of degree n is denoted as Sn, which is the set of all permutations of
{1, 2, . . . , n}. Sn forms a group under composition of functions.

If we want to extend the expansion above to larger n, we may note that actually we can instead
write

D(A) =
∑
σ∈Sn

aσ1,1 . . . aσn,nD(eσ1, . . . , eσn)

To see this fact, we can stare hard at the proof for Thm. 2.2.

From the original construction of the determinant function, swapping the rows

D(. . . , eσ1, eσ2, . . .) = −D(. . . , eσ2, eσ1, . . .)

Then any permutation of the rows causes

D(eσ1, . . . , eσn) = sgnσD(I)

with the signum function sgn reacting to how many swaps we have performed:

sgnσ =

{
1, if even switches

−1, if odd switches

Theorem 2.3 (Uniqueness of determinants). For each n, there is only one determinant function
on Mn(F), given by

det(A) =
∑
σ∈Sn

(sgnσ)aσ1,1 . . . aσn,n
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Since there is only one determinant function, this is equivalent to our expression obtained from
cofactor expansion in Thm. 2.1.

Theorem 2.4. If a function D : Mn(F)→ Fis multilinear and alternating, then

D(A) = (detA)(D(I))

Theorem 2.5. If A,B ∈Mn(F), then

det(AB) = (detA)(detB)

Proof. Define a function f : Mn(F) → F as f(X) = det(AX). It is easily checked that f is
both alternating and multilinear. Then by Thm 2.4,

f(B) = (det B)f(I)

= (det B)(det A)

�

Theorem 2.6 (Determinant of transposes).

detA = detAT

Proof. First we note that for two permutations σ, τ ∈ Sn, sgn στ = sgn σ sgn τ , where στ
represents their composition. This also implies that if σ−1 is the inverse function of σ, then
sgnσσ−1 = 1, and sgn σ = sgnσ−1. All these statements stem from sgn being an indicator of
the parity of the number of switches we need to create a permutation from (1, 2, . . . , n).

Let A = (aij) and AT = (aTij) = (aji). The determinant of AT is then

det
(
AT
)

=
∑
τ∈Sn

(sgn τ)aTτ1,1 . . . a
T
τn,n =

∑
τ∈Sn

(sgn τ)a1,τ1 . . . an,τn

We can rearrange the terms a1,τ1 . . . an,τn such that they are in the form of aσ1,1 . . . aσn,n without
changing their value. Then it is clear that σ = τ−1, and sgnσ = sgn τ . Thus,

detAT =
∑
τ∈Sn

(sgn τ)a1,τ1 . . . an,τn =
∑
τ∈Sn

(sgnσ)aσ1,1 . . . aσn,n = detA

�

Naturally this leads to the following theorem.

Theorem 2.7 (Cofactor expansion along rows).

detX =
n∑
i=1

(−1)i+jxij det Ãij

Theorem 2.8 (Classical adjoint and inverses). Let A = (aij) ∈ Mn(F) and adjA = (bij) ∈
Mn(F) be defined as

bij = (−1)i+j det Ãji

adjA is the classical adjoint of A, and

(detA)−1(adjA)A = I
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Proof. Let C = (adjA)A = (cij). Then

cij =
∑
k

(adjA)ikakj

=
∑
k

(−1)i+k(det Ãki)akj

We note that for j 6= k, ∑
i

(−1)i+jaik det Ãij = 0

since this is the expression of detB where B is formed by replacing the j-th row of A with the
k-th row of A.

Thus,

cij =

{
0 j 6= i

detA otherwise

Hence C = (detA)I. �

Thm. 2.8 also tells us that a matrix A is invertible iff detA 6= 0.

Theorem 2.9 (Cramer’s Rule). Let A ∈ Mn(F) and y ∈ Fn. If A is invertible, then for the
system of linear equations:

Ax = y

with x ∈ Fn, then for each 1 ≤ j ≤ n,

xj = (detA)−1 detC(j)

where C(j) is the n× n matrix obtained by replacing the j-th row of A by y.

Proof. If A is invertible, then its inverse exists, and from Thm. 2.8, A−1 = (detA)−1 adjA. Now
consider (adjA)y = B = (bi). Using the definition of the classical adjoint,

bi =
n∑
k=1

(adjA)ikyk

=
n∑
k=1

(−1)k+1 det Ãkiyk

Now if we perform cofactor expansion over column k for C(k), we find that

detC(k) =
n∑
j=1

(−1)i+jyj det Ãjk

Hence bi = detC(k).

Ax = y

A−1Ax = A−1y

x = (detA)−1B

Therefore xi = (detA)−1bi = (detA)−1 detC(i) �
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3 Vector spaces

3.1 Vector spaces

Rn consists of tuples of real numbers. In R2 and R3 we could represent them as vectors. We are
quite familiar with them now; but we want to know if we can extend some of those concepts
further:

• Linear combination

• Linear dependence/independence

• Subspaces, bases and dimensions

• Linear transformations

Actually, these concepts come not from Rn, but the operations on Rn. So with these two notions
of vector addition and scalar multiplication, we can generalize beyond Rn.

We shall call any system with a notion of addition and scalar multiplication behaving in a
certain way (like those in Rn) vector spaces and their elements vectors.

Definition 3.1. A vector space consists of

i. A field F of scalars

ii. A set V of vectors

iii. A rule called vector addition,

∀u,v ∈ V, (u,v) 7→ u + v

iv. A rule called scalar multiplication,

∀k ∈ F,v ∈ V, (k,v) 7→ kv

�

The operations must obey these rules:

(A1) V is closed under vector addition.

(A2) Vector addition is commutative.

(A3) Vector addition is associative.

(A4) A additive identity, the zero vector 0, exists.

(A5) Additive inverses exist for all elements.

(S1) V is closed under scalar multiplication.
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(S2) ∀k, l ∈ F,∀v ∈ V, (kl)v = k(lv)

(S3) ∀v ∈ V, 1v = v.

(S4,S5) Scalar multiplication is distributive over vector addition.

Example 3.1. For any field F,

Fn = {(a1, . . . , an) | a1, . . . , an ∈ F}

with the operations

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

k(a1, . . . , an) = (ka1, . . . , kan)

forms a vector space over F. �

Example 3.2. Take the set of all m× n matrices A with entries taken from field F, Mmn(F).

For A = (aij), B = (bij) ∈Mmn(F) and k ∈ F,

A+B = (aij + bij)

kA = (kaij)

Mmn(F) forms a vector space over F. �

Example 3.3. Let S be a non-empty set, F be a field, and consider F (S,F) as the set of all
functions f : S → F

Define for f, g ∈ F the function f + g with some s, k ∈ S

(f + g)(s) = f(s) + g(s)

(kf)(s) = k(f(s))

F with the above operations form a vector space over F. �

Example 3.4. Let P(F) be the set of all polynomials with coefficients in F.

Define vector addition as resulting in a new polynomials whose coefficients are the sums of the
respective coefficients in both operands.

Define scalar multiplication as returning a polynomial whose coefficients are the results of
multiplying the respective coefficients in the vector with the scalar.

P(F) forms a vector space over F. �

Similar to when we just started with fields, we should prove some of these facts that we usually
take for granted.

Theorem 3.1. Let V be a vector space over F, v ∈ V and k ∈ F. Then

i. 0v = 0
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ii. k0 = 0

iii. (−1)v = −v

iv. kv = 0→ (k = 0 ∧=0).

Proof. i.

0 = 0 + 0

0v = (0 + 0)v

0v = 0v + 0v

0v + (−(0v)) = 0v + 0v + (−(0v))

0 = 0v + 0

0 = 0v

�

3.2 Subspaces

Definition 3.2. Let V be a vector space over a field F.

If a subset W of V forms a vector space of F as well with the same operations as those in V ,
then it is called a subspace. �

It might be noted that the zero vector being present is a necessary condition for a vector space
to be a subspace.

Example 3.5. The xy plane in R3 forms a real vector space with the usual vector addition
and scalar multiplication. Hence it is a subspace of R3. �

Often we want to know if a subset of some vector space is an subspace of it.

Theorem 3.2. Let V be a vector space over F and W be a non-empty subset of V . Then W
is a subspace of V iff ∀u,v ∈ W,∀α, β ∈ F, αu + βv ∈ W .

Proof.
( =⇒ ): If W is a subspace, then it is also a vector space. Hence it is closed under scalar
multiplication and vector addition.

(⇐= ): We need to show that W satisfies all 10 conditions to be qualified as a vector space.

Firstly, associativity, commutativity, distributivity, multiplicative inverse(A2, A3, S2, S3, D1,
D2) are true free of charge since W comes from V .

W is also obviously closed under addition due to our original supposition.

Next we quickly prove the remaining few conditions:

0u + 0v = 0 ∈ W

(−1)u + 0v = −u ∈ W
αu + 0v = αu ∈ W

�
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Example 3.6. Take the solution space of a homogeneous linear system:

W =

x =


x1

x2
...
xn

 ∈ Fn | Ax = 0


W is a subspace of Fn �

Proof. If x = 0, then Ax = 0, so 0 ∈ W and W is non-empty.

Take u, v ∈ W and α, β ∈ F. Then Au = Av = 0.

A(αu + βv) = αAu + βAv

= α0 + β0

= 0 ∈ W

Hence by Thm. 3.2, W is a subspace of F n. �

Example 3.7. Let F{R,R} be the set of all functions f : R → R. Let C{R} be the set
of all continuous functions f : R → R. The zero vector is represented by the zero function
C{R} 3 f0(x) = 0.

We also know that if we have two continuous functions f, g, then f + g is also continuous.
Also, ∀α, αf is continuous. Therefore αf + βg is also continuous. Hence C{R} is a subspace of
F{R,R}. �

Example 3.8. Let V be the set of all sequences of real numbers. For (ab), (bn) ∈ V , α ∈ R,

(an)n + (bn)n = (an + bn)n α(an)n = (αan)n

V with these operations form a vector space. The set of all convergent sequences hence also
form a subspace. �

If we want to combine subspaces, what comes to mind first when is that we may take their
union. However it turns out that most of the time this will not work. For example, the union
of the x and y axes in R3 clearly does not create a subspace.

Theorem 3.3. Let U and W be subspaces of a vector space V .

i. U ∩W is a subspace of V .

ii. If U ∪W is a subspace of V , then either U ⊆ W or W ⊆ U .

Proof.

i. Take u,w ∈ U ∩W . Then u,w ∈ U ∧u,w ∈ W . Hence αu+βw ∈ U and αu+βw ∈ W .
Thus αu + βw ∈ U ∩W .
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ii. Take u ∈ U , and w ∈ W . Then u,w ∈ U ∪W . Since it is a subspace, u + w ∈ U ∪W .
Hence (u+w ∈ U)∨ (u+w ∈ W ). But then since they are both subspaces, (u+w−u ∈
U) ∨ (u + w −w ∈ W ). Thus either U ⊆ W or W ⊆ U .

�

The proper way to combine subspaces is to actually take their sum.

Definition 3.3. Define V + W = {v + w | v ∈ V,w ∈ W}. This can be verified to be a
subspace. �

3.3 Linear spans

Definition 3.4. A vector u of the form u = a1v1 + a2v2 + · · ·+ anvn where a1, . . . , an ∈ F, is
called a linear combination of v1, . . . ,vn. �

Definition 3.5. The span of S is the set of all linear combinations of v1, . . . ,vn ∈ S. It is
defined that span(∅) = {0}. If W = span(S), we say W is spanned by S, or S is the spanning
set for W . �

Theorem 3.4. Let V be a vector space over F and S be a finite subset of vectors in V . Then:

i. span(S) is a subspace of V .

ii. If W is a subspace of V and S ⊆ W , then span(S) ⊆ W .

In other words, the span of S is the smallest subspace containing S.

Proof.

i. Use Thm. 3.2.

ii. Suppose the finite set S = {v1, . . . ,vn} ⊆ W . Take v ∈ span(S). Then v is of the
form v = a1v1 + · · · + anvn. Since S ⊆ W , v1, . . . ,vn ∈ W . W is closed under scalar
multiplication and vector addition. Hence v ∈ W . Thus span(S) ⊆ W .

�

In fact, we may say that

span(S) =
⋂
S⊆W

W is a subspace

W

Example 3.9. Let F be a field. Consider the n-tuples with the ith entry as 1:

ei = (0, . . . , 1︸ ︷︷ ︸
i entries

, 0, . . . , 0)

Fn = span(e1, . . . , en). �

10



Example 3.10. Let Eij be the m× n matrix with its ijth entry as 1 and 0 elsewhere.

If A = (aij) ∈Mmn(F), then

A =
m∑
i=1

n∑
j=1

aijEij

Therefore Mmn(F) = span(Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n). �

Example 3.11. Consider

W =

{(
a b
c d

)
∈M22(R) | a+ b+ c+ d = 0

}
It can be shown that W is a subspace of M22(R).

Let A =

(
a b
c d

)
∈ W . Then using the fact that d = −a− b− c,

A = a

(
1 0
0 −1

)
+ b

(
0 1
0 −1

)
+ c

(
0 0
1 −1

)
Then it is clear what the spanning set of W is. �

Example 3.12. Let Pn(F) be the space of polynomials in F of degree at most n.

Pn(F) = span({1, x, x2, . . . , xn), with 1, x ∈ F. �

However we can also have more complicated spanning sets.

Example 3.13. Consider p1(x) = x2 + 3x − 2, p2(x) = 2x2 + 5x − 3, p3(x) = −x2 − 4x + 4.
They span P2(R).

For any q(x) = ax2+bx+c ∈ P2(R), we want to show that c1p1(x)+c2p2(x)+c3p3(x) = q(x) has
a solution for all a, b, c ∈ R. After simplification, it is easy to show with Gaussian elimination
that there are indeed always solutions. �

Example 3.14. We can also use the rows and columns of matrices as spanning sets. We call
the space spanned by all the rows of a matrix its row space, and the space spanned by all the
columns of a matrix its column space. �

It might be noted that linear combinations are only defined for a finite set of vectors. We will
get into trouble if we try to allow infinite sums. Consider Q as a vector space over Q.

∞∑
n=0

1

n!
= e 6∈ Q

However we can still have spans of infinite sets. We take a finite subset of S, and form all linear
combinations over it. In other words,

span(S) =
⋃
s⊂S
s finite

span(s)

The span of S can also be thus stated as the set of all linear combinations of elements in S.
Thm. 3.4 still holds for this definition.

It can be seen that every subspace spans itself. However, realistically we want more useful, or
even better, the smallest spanning set possible.
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Example 3.15. P(F) = span({1, x, x2, x3, . . .}). �

To achieve this we need the idea of linear dependence.

3.4 Linear dependence

Let v1,vn ∈ V , where V is a vector space. Consider the equation

a1v1 + · · ·+ anvn = 0

A trivial solution is to let all a1, . . . , an = 0

Definition 3.6. The vectors v1,vn ∈ V are linearly dependent if there exists a non-trivial
solution to the following equation:

a1v1 + · · ·+ anvn = 0

If there are not linearly dependent, we say they are linearly independent, i.e only the trivial
solution can satisfy the equation above �

Any finite set containing the zero vector is linearly dependent since we can cheat by doing

0v1 + · · ·+ 0vn + 1 · 0 = 0

Also, if we only have one vector, it is linearly independent, by the uniqueness of the 0 element.

Definition 3.7. Let S be a subset (potentially infinite) of a vector space. If S has a finite
subset that is linearly dependent, we also say that S is linearly dependent. If every finite subset
of S is linearly independent, then we also say S is linearly independent. Since the empty set is
in all sets, it is linearly independent. �

Theorem 3.5. If A ∈Mn(F) is invertible, then its columns form a linearly independent set in
Fn.

Proof. Let the i-th column of A be represented as ai. Consider the linear system

c1a1 + · · ·+ cnan = 0

We can rewrite this as

A


c1

c2
...
cn

 = 0

Since A is invertible, multiplying A−1 on both sides gets us that every ci is 0. �

Theorem 3.6. If a subspace W of a vector set is spanned by S and S is linearly dependent,
then there exists a vector vi ∈ S such that W = span(S \ {vi}).
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Proof. Since S is linearly dependent, ∃1, · · · , cn ∈ F, which are not all 0, such that c1v1 + · · ·+
cnvn = 0.

Assume ci 6= 0. Then after some arrangement we can obtain vi = − c1
ci

v1 − · · · − cn
ci

vn. This
means that vi is a linear combination of the other vectors in S.

Now we have to show that removing vi does not change the set spanned by S.

Take some w ∈ W = span(S \ {vi}). Then w = k1v1 + · · · + knvn for some k1, . . . , kn ∈ F.
But we could just replace vi with the expression found above and obtain w = (k1 − kic1

ci
)v1 +

· · ·+ (ki−1− kici−1

ci
)vi−1 + . . .+ (ki+1− kici+1

ci
)vi+1 + (kn− kicn

ci
)vn. This shows that w is a linear

combination of vectors in S \ {vi}. �

In other words, linearly dependent spanning sets contain redundant vectors that can be re-
moved. Furthermore, the smallest spanning set should therefore be linearly independent.

3.5 Bases and dimensions

Definition 3.8. A subset B of a vector space V is called a basis for V if

i. B spans V .

ii. B is linearly independent.

If V has a finite basis, then we say V is finite dimensional. Otherwise it is infinite dimensional.
�

Theorem 3.7. Let B = {v1, . . . ,vn} be a basis for the vector space V . Then every vector ∈V
can be expressed in the form of

v = a1v1 + . . .+ anvn

uniquely.

Proof. Since B spans V , there should be at least one way to express v as a linear combination
of the vectors in B.

Now suppose there are two ways of writing such a linear combination.

v = a1v1 + . . .+ anvn

v = b1v1 + . . .+ bnvn

Consider their difference:

0 = (a1 − b1)v1 + . . .+ (an − bn)vn

Since B is linearly independent, all the coefficients a1 − b1, . . . , an − bn should all be 0. Hence
a1 = b1, . . . , an = bn. �
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Example 3.16. We have encountered the spanning set for Fn before,

ei = (0, . . . , 1︸ ︷︷ ︸
i entries

, 0, . . . , 0)

They are all linearly independent, and we call them the standard basis for Fn �

Example 3.17. Let Eij be the m × n matrix with its ijth entry as 1 and 0 elsewhere. Then
{Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is the standard basis for Mmn(F). �

Example 3.18. The set {1, x, . . . , xn} is the standard basis for Pn(F). The set {1, x, x2, . . .}
is the standard basis for P (F). �

Example 3.19. Since the empty set spans the zero vector space, it is also its basis. �

Theorem 3.8. Consider the homogeneous linear system

Ax = 0

where A ∈Mmn(F), If m < n, that is, there are more variables than equations, then the system
will have non-trivial solutions.

Proof. If we imagine performing Gaussian elimination on such a matrix, then we will see why
this is so. �

Theorem 3.9. Suppose that the vector space V is spanned by a finite set S. Then any subset
L of V such that |L| > |S| is linearly dependent.

Proof. Say we have some L = {u1, . . . ,um} and S = {v1, . . . ,vn}, with m > n. Since S spans
V , we can write

u1 = a1v1 + · · ·+ anvn

u2 = b1v1 + · · ·+ bnvn
...

We want to find α1, α2, . . . not all zero that satisfies

α1u1 + α2u2 + . . . = 0

Substituting,
α1(a1v1 + · · ·+ anvn) + α2(b1v1 + · · ·+ bnvn) + · · · = 0

We can consider the linear system
a1α1 + b1α2 + · · · = 0

a2α1 + b2α2 + · · · = 0
...

There are more variables than equations. By Thm. 3.8, there exists a non-trivial solution, and
therefore L is linearly dependent. �
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Corollary 3.9.1. If a vector space V is spanned by a finite set S and L is a linearly independent
subset of V , then |L| ≤ |S|.

Theorem 3.10 (Dimension theorem). If V is a finite dimensional vector space, then every
basis of V is finite and as the same number of elements.

Proof. Since V is finite dimensional vector space, it has a finite basis B.

Let B′ be another basis of V . By Cor. 3.9.1, B is a spanning set, and B′ is linearly independent.
So |B| ≥ |B′|. But we can also reverse their roles and say |B′| ≥ |B|. Hence |B| = |B′|. �

Definition 3.9. Let V be a finite dimensional vector space. The dimension of V , denoted by

dimV

is the number of elements of any basis of V . �

Example 3.20. dimFn = n �

Theorem 3.11. Suppose dimV = n.

i. Any subset S of V which contains more than n elements is linearly dependent.

ii. No subset of V with less than n elements span V .

Proof. Let B be a basis of V . Then |B| = n.

i. By Thm. 3.9.

ii. By Cor. 3.9.1.

�

Theorem 3.12. Let {v1, . . . ,vn} be a linearly independent subset of a vector space V . If w ∈ V
such that w 6∈ span{v1, . . . ,vn}, then the set {v1, . . . ,vn,w} is linearly independent.

Proof. Suppose not. Suppose that {v1, . . . ,vn,w} is instead linearly dependent. Then

a1v1 + · · ·+ anvn + an+1w = 0

has non-trivial solutions. an+1 6= 0 since {v1, . . . ,vn} are linearly independent, and an+1 = 0
would suggest otherwise. Then we have

w = − a1

an+1

v1 − · · · −
an
an+1

vn

which means w ∈ span{v1, . . . ,vn}, contradiction. �

Corollary 3.12.1. Suppose dimV = n and S = {v1, . . . ,vn} is a set of vectors in V .

i. If S is linearly independent, then it is a basis for V .

ii. If S spans V , then S is a basis for V .
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Proof.

i. Assume S is linearly independent but it does not span V . By Thm. 3.12, we can add some
vector w ∈ V into S. However now |S ∪ {w}| = n+ 1 > n, which contradicts Thm. 3.11.

ii. Assume S spans V but S is linearly dependent. By Thm. 3.6, we can remove a vector
from S, but then then V will be spanned by n− 1 < n vectors, contradicting Thm. 3.11.

�

Corollary 3.12.2. Let V be a finite n-dimensional vector space and {v1, . . . ,vm} is a linearly
independent subset of V where m < n. There exists n−m vectors {w1, . . . ,wm} ∈ V such that
{v1, . . . ,vn,w1, . . . ,wm} is a basis for V .

Proof. We can iteratively perform Thm. 3.12 (m− n) times, and from Cor. 3.12.1 this new set
is a basis. �

Theorem 3.13. Let V be a finite dimensional vector space and W1,W2 be two subspaces of V .
Then

dimW1 + dimW2 = dim(W1 +W2) + dim(W1 ∩W2).

Proof. The proof is simple, but long. We provide a sketch here.

Let {a1, . . . , ar} be a basis for W1 ∩W2. Then we can add more vectors using Thm. 3.12 to
form a basis B1 for W1 and a basis B2 for W2. It can then be shown that B1 ∪B2 forms a basis
for W1 +W2. �

Theorem 3.14. Let V be a vector space and let B1 = {u1, . . . ,un} and B2 = {v1, . . . ,vn} be
two bases for V . There exists vj ∈ B2 such that {vj,u2, . . . ,un} is again a basis of V .

Proof. Let W = span{u2, . . . ,un}. B2 * W , because otherwise V = spanB2 ⊆ W . Then by
Thm. 3.12, there exists some vj ∈ B2 such that {vj,u2, . . . ,un} is a linearly independent set
with n = dimV vectors, hence it is also a basis by Cor. 3.12.1. �

3.6 Direct sums of subspaces

If we have subspaces W1, W2 in V , W1 +W2 forms another subspace in V . We ask: how many
ways are there to write v ∈ W1 +W2 in the form of v = w1 + w2, with w1 ∈ W1 and w2 ∈ W2.

Example 3.21. Take W1 as the xy-plane and W2 as the yz-plane in R3. There is more than
one way to write (1, 2, 3) as a sum w1 + w2 with w1 ∈ W1 and w2 ∈ W2. �

Definition 3.10. W1 +W2 is the direct sum of W1 and W2, as every vector v ∈ W1 +W2 can
be expressed uniquely as the sum v = w1 + w2, with w1 ∈ W1 and w2 ∈ W2. We denote it as
W1 ⊕W2. �

Example 3.22. The previous example with the xy and yz planes in R3 is not a direct sum.
However, the xy plane and the z axis can form a direct sum that equals R3 itself. �

Theorem 3.15. The subspace W1 +W2 is a direct sum of W1 and W2 iff W1 ∩W2 = {0}.
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Proof.

( =⇒ ) Take w1 ∈ W1, w2 ∈ W2, w ∈ W1 ∩W2. We can write

w1 + w2 = (w1 + w) + (w2 −w)

Now (w1 + w) ∈ W1 and (w2−w) ∈ W2. If W1 +W2 is a direct sum, then w1 = (w1 + w) and
w2 = (w2 + w). Then w = 0.

(⇐=) If W1 ∩W2 = {0}, and there are two ways of writing the same vector v ∈ W1 +W2:

v = w1 + w2 = w′1 + w′2

with w1,w
′
1 ∈ W1 and w2,w

′
2 ∈ W2.

Then we can also write
w1 −w′1 = w′2 −w2

Then (w1 − w′1) ∈ W1 and (w′2 − w2) ∈ W2 so they are both in W1 ∩W2, which means that
they are equal to 0. Therefore w1 = w′1 and w2 = w′2 and the sum of W1 and W2 is direct. �

Definition 3.11. Let W1, . . . ,Wk be subspaces in V . The sum of W1, . . . ,Wk is the subspace

W1 + · · ·+Wk = {w1 + · · ·+ wk | ∀1 ≤ i ≤ k,wi ∈ wi}

�

Definition 3.12. We say the subspace W1 + · · ·+Wk is the direct sum of W1, . . . ,Wk if every
vector v in W1 + · · ·+Wk can be expressed uniquely as

v = w1 + · · ·+ wk

with wi ∈ Wi, 1 ≤ i ≤ k. We write the direct sum as

W1 ⊕ · · · ⊕Wk

�

We see that the left hand side here is actually equal to the span of the unions of all the sets:

W1 + · · ·+Wk = span(W1 ∪ · · · ∪Wk)

Hence when a sum is a direct sum, there is a notion of linear independence between the sub-
spaces.

Example 3.23. R3 is the direct sum of the x, y, and z axes. �

Theorem 3.16. Let W1, . . . ,Wk be subspaces of the vector space V and W = W1 + · · · + Wk.
Then the following are equivalent:

i. W = W1 ⊕ · · · ⊕Wk

ii. For 2 ≤ j ≤ k, Wk ∩ (W1 + · · ·+Wj−1) = {0}
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iii. If Bi is a basis for Wi for 1 ≤ i ≤ k and Bi ∩Bj = ∅ for all i 6= j, then B = B1 ∪ · · · ∪Bk
is a basis for W .

Proof.

((i) =⇒ (ii)) Assume W = W1 ⊕ · · · ⊕Wk. Let 2 ≤ j ≤ k and v ∈ Wj ∪ (W1 + · · · + Wj−1).
Then v ∈ Wj and v ∈ W1 + · · ·+Wj−1.

We can write v = w1 + · · · + wj−1 for some w1 ∈ W1,w2 ∈ W2, . . . ,wj−1 ∈ Wj−1. We claim
that v has 2 expressions.

v = 0 + · · ·+ 0 + v︸ ︷︷ ︸
j-th

+0 + · · ·+ 0

= w1 + · · ·+ wj−1 + 0 + · · ·+ 0

But since the expression for v is unique, we get that w1 = 0, . . . ,wj−1 = 0,v = 0. Therefore
Wj ∩ (W1 + · · ·+Wj−1) = {0}.

((ii) =⇒ (i)) Assume Wj ∩ (W1 + · · ·+Wj−1) = {0} for 2 ≤ j ≤ k. Let w ∈ (W1 + · · ·+Wk).
Suppose w = w1 + · · ·+ wk = w′1 + · · ·+ w′k, with w1,w

′
1 ∈ W1, . . . ,wk,w

′
k ∈ Wk. Then

∈W1+···+Wk−1︷ ︸︸ ︷
(w1 −w′1)︸ ︷︷ ︸

∈W1

+ · · ·+ (wk−1 −w′k−1)︸ ︷︷ ︸
∈Wk−1

= (w′k −wk)︸ ︷︷ ︸
∈Wk

∈ Wk ∩ (W1 + · · ·+Wk−1) = {0}

We get w′k = wk. We can apply this repeatedly to show that all wi = w′i, and so W1 + · · ·+Wk

is a direct sum.

((i) =⇒ (iii)) B = B1∪· · ·∪Bk spans W . We only need to show that it is linearly independent.
Suppose not. Let B = {w1, . . . ,wn}. Then

α1w1 + · · ·+ αnwn = 0

has non-trivial solutions. But this means that there are multiple ways of writing the zero vector
in W , which contradicts the fact that W is created by direct sums. Hence B is a basis of V .

((iii) =⇒ (ii)) Let Bk = {u1, . . . ,um}. W1 + · · · + Wj−1 = span{B1 ∪ · · · ∪ Bj−1}, so let
B = B1 ∪ · · · ∪ Bj−1 = {v1, . . . ,vn}.

Take w ∈ Wk ∩ (W1 + · · ·+Wj−1) for any 2 ≤ j ≤ k. Then we can write

α1u1 + · · ·+ αmum = w = β1v1 + · · ·+ βnvn

for some α, . . . , αn, β1, . . . , βn ∈ F.

Rearranging, we get
α1u1 + · · ·+ αmum − β1v1 − · · · − βnvn = 0

The vectors {u1, . . . , um, v1, . . . , vn} = Wk ∪ B are all unique and linearly independent, since
they are mutually disjoint and form a basis together. Hence only the trivial solution exists, and
w = 0. Therefore Wk ∩ (W1 + . . .+Wj−1) = {0}. �

In a way, direct sums are a way to break up and organize larger vector spaces into “components”.
We can break them up into smaller pieces that have minimal interaction with one another.
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4 Linear transformations

4.1 Linear transformations

Definition 4.1. Let V,W be vector spaces over F. A function T : V → W is called a linear
transformation if:

i. ∀v1,v2 ∈ V, T (v1 + v2) = T (v1) + T (v2)

ii. ∀c ∈ F,v ∈ V, T (cv) = cT (v).

More concisely,
T (c1v1 + c2v2) = c1T (v1) + c2T (v2)

�

Roughly speaking linear transformations respects the vector space operations. Note that above
V and W are defined over the same field. That is the only constraint imposed on the choice of
V and W .

Definition 4.2. A linear transformation T : V → V is called a linear operator on V . A linear
transformation T : V → F is called a linear functional on V . �

Example 4.1. Define T : Fn → Fm by T (x) = Ax, for some m× n matrix A.

T



x1

x2
...
xn


 =


a11x1 + · · ·+ a1nxn
a21x1 + · · ·+ a2nxn

...
am1x1 + · · ·+ amnxn


Using the rules for matrix multiplication it is easy to see that T is a linear transformation. In
fact, every linear transformation T : Fn → Fm must be of this form. �

Theorem 4.1. Let F be a field and let T : Fn → Fm be a linear transformation. Then there
exists an unique A ∈Mm(F) such that

T (u) = Au

for every u ∈ Fn.

Proof. First we show existence. Let {e1, . . . , en} be the standard basis for Fn. Then for any
u ∈ Fn, we can express it in terms of the standard basis:

u =

u1
...
un

 = u1e1 + · · ·+ unen

And therefore
T (u) = u1T (e1) + · · ·+ unT (en)
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Consider the following matrix with its columns as such

A =

 ↑ ↑ ↑
T (e1) T (e2) · · · T (en)
↓ ↓ ↓


It can be easily verified that this matrix is what we are looking for.

Suppose there are matrices A, B such that T (u) = Au = Bu. Then more specifically,

T (e1) = Ae1 = Be1, . . . , T (en) = Aen = Ben

Then A and B have the same columns. Therefore A is unique. �

Example 4.2. Let the zero transformation be T0 : V → W be T0(v) = 0, ∀v ∈ V . �

Example 4.3. Let the identity operator be IV : V → V be IV (v) = v, ∀v ∈ V . �

Example 4.4. Let C(R) denote the set of all continuous real functions, and C1(R) be the set
of all continuously differentiable functions. They are both real vector spaces, as we have shown
before.

Define D : C1(R) → C(R) as D(f) = df
dx

, ∀f ∈ C1(R). Using the rules for derivatives, we can
see that D is a linear transformation.

We can also have another transformation T : C(R) → C1(R), given by T (f) =
´ x

0
f(t) dt.

Using the rules for integrals, we can see that T is also a linear transformation. �

Below are a few observations. They are fairly straightforward so the proofs have been left out.

Theorem 4.2. A linear transformation can be completely determined by its image of basis basis
vectors.

Theorem 4.3. A linear transformation sends the zero vector to the zero vector.

Theorem 4.4. If

i. {vi, . . . ,vn} is a basis for V , and

ii. {w1, . . . ,wn} is any set of vectors in W ,

then there is exactly one linear transformation T : V → W , with the property that

T (vi) = wi i = 1, 2, . . . , n

Proof. For v ∈ V , we can write it as a linear combination of the basis v = c1v1 + · · · + cnvn.
Then

T (v) = c1T (v1) + · · ·+ cnT (vn)

= c1w1 + · · ·+ cnwn

�
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4.2 Range and Kernel

Definition 4.3. Let T : V → W be a linear transformation.

i. The kernel of T is the subset {v ∈ V | T (v) = 0}. They are all the vectors being sent to
the zero vector. We denote it as ker(T ).

ii. The range of T is the subset {T (v) | v ∈ V } of W . It is the set of all images of T . We
denote it as R(T ). �

0 ∈ ker(T ) always. Also, T is surjective if R(T ) = W . T is injective if ∀v1,v2 ∈ V, T (v1) =
T (v2) =⇒ v1 = v2. In other places, injective linear transformations may be called nonsingular
linear transformations.

Lemma 4.5. Let T : V → W be a linear transformation. Then T is injective iff ker(T ) = {0}.

Proof.

( =⇒ ) Assume T is injective. Take v ∈ ker(T ). Then T (v) = 0 = T (0). Since T is injective,
v = 0.

(⇐= ) Assume ker(T ) = {0}. Take any v1,v2 ∈ V . T (v1) = T (v2) implies that T (v1)−T (v2) =
0 since T is linear. This implies that v1 − v2 ∈ ker(T ) = {0}. Therefore v1 = v2. �

Theorem 4.6. Let T : V → W be an injective linear transformation. If {v, . . . ,vn} is a basis
for V , then B = {T (v1), . . . , T (vn)} is a basis for R(T ).

Proof. First we show that B spans R(T ). It is quite clear that spanB ⊆ R(T ). On the other
hand, for any u ∈ R(T ), there exists some w ∈ V such that T (w) = v. It follows that since
w can be expressed as a1v1 + · · ·+ anvn, therefore T (w) = a1T (v1) + · · ·+ anT (vn) ∈ spanB.
This shows that R(T ) ⊆ spanB, and therefore R(T ) = spanB.

Now we show that B is linearly independent. Consider the equation

a1T (v1) + · · ·+ anT (vn) = 0

T (a1v1 + · · ·+ anvn) = 0 = T (0)

Since T is injective this means that a1v1 + · · · + anvn = 0. But as v1, . . . ,vn are linearly
independent, we get that a1 = · · · = an = 0 and hence B is linearly independent. �

Theorem 4.7. Let T : V → W be a linear transformation. Then

i. ker(T ) is a subspace of V , and

ii. R(T ) is a subspace of W .

Proof.
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i. ker(T ) is non-empty since 0 ∈ ker(T ) at least. Also by definition ker(T ) ⊆ V . Now take
any u,v ∈ ker(T ). Then for any scalars α, β, T (αu + βv) = αT (u) + βT (v) = 0 so
αu + βv ∈ ker(T ), and it is a subspace.

ii. Now 0 ∈ R(T ), and R(T ) ⊆ W by definition. Taking any u,v ∈ R(T ), there must exist
some u′,v′ ∈ V such that T (u′) = u and T (v′) = v. Hence αu + βv = T (αu′+ βv′), and
since αu′ + βv′ ∈ V , αu + βv ∈ R(T ) and so it is also a subspace.

�

Theorem 4.8. Let A be an m × n matrix over F, and let T : Fn → Fm. Consider T (u) =
Au,∀u ∈ Fn. Some observations:

i. ker(T ) is the solution space of the system Ax = 0.

ii. R(T ) is the column space of A.

iii. Every subspace of Rn (or Fn) is the solution space of a linear system Ax = 0.

Proof.

i. u ∈ ker(T ) ⇐⇒ Au = T (u) = 0 ⇐⇒ u solves Ax = 0.

ii. v ∈ R(T ) ⇐⇒ ∃u ∈ Fn, Au = T (u) = v.

iii. This is claiming that every subspace of Fn is the kernel of some linear transformation
T : Fn → Fn.

Call the subspace V . Let a basis for the subspace be {v1, . . . ,vm}. We can extend it to
be a basis for Fn, {v1, . . . ,vn,vm+1, . . . ,vn}. Consider the linear transformation given by

T (vi) =

{
0, if 1 ≤ i ≤ m

vi, otherwise

Then it is easy to see that in this case T (u) = 0 ⇐⇒ u ∈ V , i.e. ker(T ) = V .

�

Example 4.5. The map T : P2(R) → M2(R) from the vector space of real polynomials of
degree two f(x) = ax2 + bx+ c to the vector space of real 2× 2 matrices defined by

T (f(x)) =

(
f(1)− f(2) 0

0 f(0)

)
=

(
−b− 3c 0

0 a

)
is a linear transformation.

Assume f(x) ∈ ker(T ). Then T (f(x)) = 0 ∈M2(R). Then we have constraints{
−b− 3c = 0

a = 0
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Then every f(x) = c(x2 − 3x). Then {x2 − 3x} forms a basis for ker(T ). By Lemma 4.5, T is
not injective.

R(T ) = {T (f(x)) | f(x) ∈ P2(R)} 3 T (f(x)). We can go through the same process to find a
basis for the range:

R(T ) = span

{(
1 0
0 0

)
,

(
0 0
0 1

)}
�

Definition 4.4. Let T : V → W be a linear transformation. Assume V is finite dimensional.
Then

i. The rank of T is the dimension of the range of T .

ii. The nullity of T is the dimension of the kernel of T .

�

rank(T ) = dimW iff T is surjective. nullity(T ) = 0 iff T is injective.

Theorem 4.9 (Rank Nullity Theorem). Let T : V → W be a linear transformation. Suppose
V is finite dimensional. Then

rank(T ) + nullity(T ) = dimV

Proof. Let n = dimV , r = nullity(T ) Let the basis for ker(T ) be {v1, . . . ,vr}. By Thm. 3.12,
we can extend this to a basis for V . Let the new basis be {v1, . . . ,vr,vr+1, . . .vn}. The vectors
{v1, . . .vr} are mapped to 0 ∈ W . We claim that the other vectors {vr+1, . . . ,vn} are mapped
to a basis for the range.

Take w ∈ R(T ). Then ∃v ∈ V, T (v) = w. We can write v = α1v1 + · · · + αnvn. Therefore
T (v) = α1T (v1) + · · · + αrT (vr) + . . . + αnT (vn). But the first r terms are all sent to zero.
Therefore {T (vr+1), . . . , T (vn)} spans the range.

Now consider the homogeneous system

βr+1T (vr+1) + · · ·+ βnT (vn) = 0

Since T is linear, we can write

T (βr+1vr+1 + · · ·+ βnvn︸ ︷︷ ︸
∈ker(T )=span{v1,...,vr}

) = 0

Then we can write βr+1vr+1 + · · ·+ βnvn = γ1v1 + · · ·+ γrvr, for some γ1, . . . , γr ∈ F. We can
shift them around, −γ1v1 − · · · − γrvr + βr+1vr+1 + · · ·+ βnvn = 0. But since all the v’s form
a basis, all the coefficients must be zero. Hence βr+1 = · · · = βn = 0, and {T (vr+1, . . . , T (vn)}
is linearly independent. Hence it spans the range.

We get that the range is of dimension n− r and the kernel is of dimension r. �
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Example 4.6. Referring back to Ex. 4.5, we can see that rank(T ) = 2 and nullity(T ) = 1, and
dimP2(R) = 3. �

Corollary 4.9.1. If V and W are finite dimensional vector spaces, with

dimV = dimW

and we have a linear transformation T : V → W , then the following are equivalent:

i. T is injective

ii. T is surjective

iii. T is bijective

Proof.

((i) =⇒ (ii)) Let n = dimV = dimW . From Thm. 4.9, rank(T ) + nullity(T ) = n. Since T
is injective, by Lemma 4.5, ker(T ) = {0} and therefore nullity(T ) = 0. Hence rank(T ) = n =
dimW . It follows that W = R(T ), and so T is surjective.

((ii) ⇐= (i)) In this case, dimW = rank(T ). Then with Thm. 4.9, we end up with nullity(T ) =
0. Therefore T is injective.

The other equivalences then come from definition. �

Very intuitively, we also have the following relation.

Corollary 4.9.2. Let V and W be finite dimensional vector spaces and T : V → W a linear
transformation. Then

i. If dimV < dimW , then T is not surjective.

ii. If dimV > dimW , then T is not injective.

Proof. We use Thm. 4.9 throughout the proof for both parts.

i. dimV = rank(T ) + nullity(T ) =⇒ rank(T ) ≤ dimV . Then rank(T ) < dimW so T
cannot be surjective.

ii. Suppose not. Suppose T is injective, then nullity(T ) = 0. Then

dimV = rank(T )︸ ︷︷ ︸
≤dimW

+ nullity(T )︸ ︷︷ ︸
0

≤ dimW.

Contradiction.

�

Theorem 4.10 (Equality of Row Rank and Column Rank). Let A ∈Mmn(F). The rank of the
row space of A (row rank) is equal to the rank of the column space of A (column rank).
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Proof. Let us denote the rows of the matrix A with r1, . . . , rn, and the columns with c1, . . . , cm.
Let there be a T : Fn → Fm with T (x) = Ax. Then ker(T ) is the solution space of Ax = 0.
Let B be the reduced row echelon form of A. Then ker(T ) is also the solution space of Bx = 0.
Also, the row space (and hence the row rank) of A is the same as that of B. The row rank of
B is determined by the number of non-zero rows of B. Call this value r. Then the dimension
of the solution space is n− r.

By Thm.4.9, with rank(T ) being the column rank of A, and nullity(T ) being the dimension of
the solution space, we see that the column rank is also r. �

Due to this fact, we can simply call the row rank and column rank the rank of a matrix.

Suppose we have two linear transformations and we wish to create new ones from them. There
are two obvious ways to do this.

Definition 4.5. Let T1, T2 : V → W be linear transformations. Define T1 + T2 : V → W by

(T1 + T2)(v) = T1(v) + T2(v)

�

Definition 4.6. Let T : V → W be linear transformation, α ∈ F. Define αT : V → W by

(αT )(v) = αT (v)

�

At first glance, it may seem that there is a hint of vector spaces in these two definitions. Indeed!

Theorem 4.11. Let L(V,W ) be the set of all linear transformations T : V → W . Then
L(V,W ) forms a vector space over F with vector addition and scalar multiplication as defined
in Def. 4.5 and Def. 4.6, and with the zero transformation as the zero vector.

In addition, if V and W are finite dimensional, then

dimL(V,W ) = (dimV )(dimW )

Proof. It is easy (perform the routine) to check that L(V,W ) is indeed a vector space. This
part is left out.

Let dimV = n and dimW = m. Assume that {v1, . . . ,vn} is a basis for V and {w1, . . . ,wm}
is a basis for W . For 1 ≤ i ≤ m, 1 ≤ j ≤ n, define Tij : V → W as the linear transformation
that maps vj to wi and everything else to 0.

Take the set A = {Tij | 1 ≤ j ≤ m, 1 ≤ j ≤ n} . It spans L(V,W ) since all linear transforma-
tions in L(V,W ) can be defined by its images on the basis vectors of V , and the images can
also be defined in terms of the basis vectors for W . A is also obviously linearly independent.
Thus A forms a basis for L(V,W ). Then dimL(V,W ) = ‖A‖ = mn = (dimV )(dimW ). �

Example 4.7. Consider L(V,F), the set of all linear functionals f : V → F. This is called the
dual space of V and is denoted by V ∗. By Thm. 4.11, dimV ∗ = (dimV )(dimF) = dimV . The
basis constructed in the way detailed in the proof of Thm. 4.11 is called the dual basis for the
basis of V . �
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Definition 4.7. Let T : V → W and S : W → U be linear transformations. Define the
composite function

S ◦ T : V → U (S ◦ T )(v) = S[T (v)]

We may just write S ◦ T as ST . �

It can be shown that ST : V → U is also a linear transformation.

In a special case S, T ∈ L(V, V ) =⇒ ST ∈ L(V, V ). Hence L(V, V ) has more structure
than L(V,W ) since it has an additional operation of multiplication. We say that L(V, V ) is an
algebra over F.

Definition 4.8. If T ∈ L(V, V ), we will denote TT as T 2. We may define recursively T 0 = I
and T n = TT n−1. �

Example 4.8. If f(x) = a0 + a1x+ . . .+ anx
n is a polynomial, we can consider f(T ), with T

being a linear operator. Then f(T ) : V → V is also a linear operator, since it is made up of the
sum of linear operators. �

Example 4.9. If T : P (R)→ P (R) is given by the derivative

T (f) =
df

dx

Then in general

T n(f) =
dnf

dxn

�

Example 4.10 (Application to Differential Equations). Take the set F (R,C), the set of all
functions f : R → C. Such functions are in the form of f(t) = u(t) + iv(t). C∞(R,C) ⊂
F (R,C). Let D : C∞ → C∞ be the operator D(f) = df

dx
= u′ + iv′.

Consider the differential equation

y(n) + an−1y
n−1 + · · ·+ a1y

′ + a0y = 0

with a0, a1, . . . an−1 ∈ C. We can recast it in this form

(Dn + an−1D
n−1 + · · ·+ a1D + a0I)(y) = f(D)(y)

with f(x) is a polynomial with complex coefficients of degree n, called the auxiliary polynomial
of the differential equation. f(D) : C∞ → C∞ is a linear operator.

y ∈ C∞ is a solution to this equation iff f(D)(y) = 0 iff y ∈ ker f(D). There are a few more
properties we will state but will not prove since they are out of scope.

i. It is not immediately clear that the kernel is finite dimensional, since it is a subspace of
a infinite dimensional vector space. But it can be shown that dim ker f(D) = n.

ii. If f(x) has n distinct zeroes, c1, . . . , cn, then {ec1t, ec2t, . . . , ecnt} is a basis for ker f(D).
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�

Theorem 4.12. Let U and V be finite dimensional vector spaces over a field F and let W be
a subspace of V . Suppose that T : U → V is a linear transformation and S = {u ∈ U | T (u) ∈
W}. Then

dimS ≥ dimU − dimV + dimW

Proof. S is a subspace. We skip the proof for this part.

We claim that ker(T ) ⊆ S. Let u ∈ ker(T ). Then T (u) = 0 ∈ W , and thus u ∈ S.

Now pick a basis for ker(T ), say {k1, . . . ,kn}, and extend it to a basis for S, {k1, . . . ,kn,
u1, . . . ,up}. Then we can extend it further to become a basis for U , {k1, . . . ,kn,u1, . . . ,up,
u′1, . . . ,u

′
q}. Now consider the action of T on this basis of U :

{0, . . . ,0, T (u1), . . . , T (up)︸ ︷︷ ︸
∈W

, T (u′1), . . . , T (u′q)︸ ︷︷ ︸
6∈W

}

We also claim that {T (u1), . . . , T (up)} is linearly independent. Consider the equation

α1T (u1) + · · ·+ αpT (up) = T (α1u1 + · · ·+ αpup) = 0.

Therefore α1u1 + · · ·+ αpup ∈ ker(T ) = span{k1, . . . ,kn}. Therefore

α1u1 + · · ·αpup = β1k1 + · · ·+ βnkn = 0.

We can rearrange this to show that indeed there is only the trivial solution.

Now we extend this to a basis for W , {T (u1), . . . , T (up),w1, . . . ,wl}. We have three groups
of vectors that we can now put together, {T (u1), . . . , T (up),w1, . . . ,wl, T (u′1), . . . , T (u′q)}. We
claim that this is a linearly independent subset of V . Again, consider the equation

α1T (u1) + · · ·+ αpT (up) + β1w1 + · · · βlwl︸ ︷︷ ︸
w∈W

+ γ1T (u′1) + · · ·+ γqT (u′q)︸ ︷︷ ︸
T (γ1u′1+···+γqu′q)

= 0

Therefore T (γ1u
′
1 + · · · + γqu

′
q) = −w ∈ W . Then γ1u

′
1 + · · · + γqu

′
q ∈ S = span{k1, . . . ,kn,

u1, . . . ,up}. We can write

γ1u
′
1 + · · ·+ γqu

′
q = δ1k1 + · · ·+ δnkn + ε1u1 + · · ·+ εpup

Performing more arrangements, we will find that only the trivial solution exists.

The number of vectors in this big set, p + l + q ≤ dimV . But dimW = p + l, dimS = n + p,
and dimU = n+ p+ q. Substituting, we get that dimW + dimU − dimS ≤ dimV . �

Theorem 4.13. Let V be a finite dimensional vector space and T : V → V and S : V → V be
linear operators.

i. ker(T ) ⊆ ker(ST ).

ii. R(ST ) ⊆ R(S).
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iii. Let nT = nullity(T ), nS = nullity(S) and nST = nullity(ST ). Then

max(nS, nT ) ≤ nST ≤ nS + nT

Proof.

Take any v ∈ ker(T ). Then S(T (v)) = S(0) = 0. Thus v ∈ ker(ST ).

i.ii.

R(S) = {S(v) | v ∈ V }
R(ST ) = {ST (v) | v ∈ V }

= {S(v) | v ∈ R(T )}

Since R(T ) ⊆ V , it follows that R(ST ) ⊆ R(S).

iii. From the above two points, nT ≤ nST , and rank(ST ) ≤ rank(S). Using Thm. 4.9,

nS = dimV − rank(S) ≤ dimV − rank(ST ) = nST

The other part of the inequality is more tedious. Let {u1, . . . ,ur} be a basis for ker(T ).
Note that this means r = nT . We can extend this to be a basis of ker(ST ), {u1, . . . ,ur,
v1, . . . ,vs}. Now T (v1), . . . , T (vs) ∈ ker(S). We can verify that {T (v1), . . . , T (vs)} is
linearly independent, and this part is skipped. This tells us that s ≤ nS. Hence,

nST = r + s ≤ nT + nS

�

4.3 Isomorphisms

Definition 4.9. We say T : V → W is invertible if there exists a function S : W → V

S ◦ T = IV : V → V T ◦ S = IW : W → W

in other words,
∀v ∈ V,w ∈ W, S[T (v)] = v T [S(w)] = w

We write S = T−1. �

Also note that T is invertible iff it is bijective.

Lemma 4.14. If T : V → W is an invertible linear transformation, then T−1 is also a linear
transformation.

Proof. T is surjective. Suppose T (v1) = w1, and T (v2) = w2. Then T−1(w1) = v1 and
T−1(w2) = v2.

Since T is linear, we have

T (αv1 + α2v2) = α1T (v1) + α2T (v2) = α1w1 + α2w2

By the definition of the inverse,

T−1(α1w1 + α2w2) = α1T
−1(w1) + α2T

−1(w2)

�
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Definition 4.10. An invertible linear transformation T : V → W is called an isomorphism of
V onto W . �

So for a linear transformation T , T is bijective iff T is invertible iff T is an isomorphism.
Furthermore, by Lemma 4.14, T is an isomorphism iff T−1 is an isomorphism.

Definition 4.11. We say that the vector spaces V and W are isomorphic if there is an iso-
morphism T : V → W . We write

V ∼= W

�

Isomorphism means that two vector spaces may be different on the surface, but have identical
structures.

Theorem 4.15. If V and W are finite dimensional vector spaces over the same field, then

V ∼= W ⇐⇒ dimV = dimW

Proof.

( =⇒ ) Cor. 4.9.2.

( ⇐= ). Assume dimV = dimW = n. Let {v1, . . . ,vn} be a basis for V and {w1, . . . ,wn} be
a basis for W . Let T : V → W be the linear transformation such that

T (vi) = wi.

It can be checked that W = span{w1, . . . ,wn} = R(T ). So T is surjective, and by Cor. 4.9.1,
T is bijective and hence is an isomorphism. �

Example 4.11. Here are some isomorphisms:

• If dimV = n then V ∼= Fn

• M2(R) ∼= R4

• P2(C) ∼= C3

• L(Rn,Rm) ∼= Mmn(R).

�

4.4 Coordinates

From the previous section we have learned that a vector space V with dimension n has the
same structure as Fn. This section will aim to describe an explicit way to connect these two
spaces together.
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Definition 4.12. An ordered basis of a vector space V is a basis of V with a specific ordering.
�

We will write it the same way as a normal basis, but it will be made clear when a basis is
ordered. The purpose of this ordering can be seen in the next part.

For some ordered basis B = {v1, . . . ,vn} of V , then for any v ∈ V ,

v = α1v1 + · · ·+ αnvn

with unique α1, . . . , αn. Let

[v]B =

α1
...
αn


If the basis was not ordered then there would be ambiguity in the writing of this matrix.

Definition 4.13. The column matrix [v]B is called the coordinate matrix of v relative to the
ordered basis B. �

Example 4.12. Take R3 and its ordered basis B = {e1, e2, e3}, the standard basis. Then for
any v = ae1 + be2 + ce3 ∈ R3:

[v]B =

ab
c

 = v

It seems like we have done nothing. In fact, if B is the standard basis for Fn, then [v]B = v for
all v ∈ Fn. �

Actually, the association of a vector to its coordinate matrix is an isomorphism.

Theorem 4.16. Every n-dimensional vector space V over the field F is isomorphic to Fn.

Proof. Let B = {v1, . . . ,vn} be an ordered basis for V . Define a transformation T : V → Fn

such that
∀v ∈ V, T (v) = [v]B

Firstly, T is linear. The following can be easily checked:

T (αu + βv) = [αu + βv]B = α[u]B + β[v]B = αT (u) + βT (v)

Next, T is injective. Let u ∈ ker(T ). Then

[u]B = T (u) =

0
...
0

 ∈ Fn

So ker(T ) = {0} and therefore T is injective. Since dimV = dimFn, T is bijective by Cor. 4.9.1.
�
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4.5 Representation with matrices

Thm. 4.16 tells us that vectors in a finite dimensional vector space behaves like column matrices.
We like a space to look like column matrices since they have a simple structure and are easier
to manipulate.

Let T : V → W be a linear transformation, and B = {v1, . . . ,vn} be an ordered basis for V ,
and B′ = {w1, . . . ,wm} be an ordered basis for W . For any vj ∈ V and 1 ≤ j ≤ n,

T (vj) =
m∑
i=1

aijwi

Let v ∈ V . v =
∑n

j=1αjvj. We can them obtain

T (v) =
n∑
j=1

αjT (vj)

=
n∑
j=1

αj

m∑
i=1

aijwi

=
m∑
i=1

n∑
j=1

aijαjwi

Then

[T (v)]B′ =


∑n

j=1a1jαj∑n
j=1a2jαj

...∑n
j=1amjαj



=


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



α1

α2
...
αn


Then we see that [T (v)]B′ = A[v]B, with A being the first matrix on the right hand side.

Definition 4.14. The matrix we called A in the exposition above is called the matrix of T
relative to the ordered bases B and B′. We write

A = [T ]B′,B

Then [T (v)]B′ = [T ]B′,B[v]B.

If V = W and B = B′ then we just call [T ]B′,B = [T ]B. �

We also have to keep in mind that in the definition above, B′ is for the co-domain and B is for
the domain. A helpful mnemonic is to keep the same symbols together, for example above we
keep the B facing each other.
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The way to understand the long calculation above is as follows. For two finite dimensional
vector spaces V,W , they both have isomorphisms to some Fn and Fm respectively. Now if we
have a T : V → W , for any v ∈ V , [v]B ∈ F n and [T (v)]B′ ∈ Fm. Then what we have done is
find some linear map A that sends [v]B to [T (v)]B′ . It transfers the computations in the general
vector spaces to Fn and Fm.

V W

A

T

v T (v)

[v]B [T (v)]B′

Fn Fm

Figure 1: An illustration of the effect of A.

Now of course we want to know how to construct A. For 1 ≤ j ≤ n, we have T (vj) =
∑m

i=1aijwi,
so

[T (vj)]B′ =

 aij
...
amj


Then looking at the definition of A above, we have

A = [T ]B′,B =
(

[T (v1)]B′ [T (v2)]B′ · · · [T (vn)]B′
)

Example 4.13. Consider the identity IV : V → V and let B = {v1, . . . ,vn} be an ordered
basis for V . Then [IV ]B of IV with respect to B is the identity matrix in Mn(F), since

[IV ]B =
(

[v1]B [v2]B · · · [vn]B
)

= I

�

Let us consider another question: how much information is needed to specify a vector v in a
vector space V ? Let B = {v1, . . . ,vn} be an ordered basis for V . Then v =

∑n
i=1αivi. The

information is recorded in the coordinate matrix of v. This correspondence is an isomorphism.

Theorem 4.17. Let V,W be vector spaces over F with dimV = n and dimW = m. Let B be
an ordered basis for V and B′ an ordered basis for W . Then the map ϕ : L(V,W )→ Mmn(F)
given by

ϕ(T ) = [T ]B′,B

is an isomorphism. So L(V,W ) ∼= Mmn(F).
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Proof. ϕ is linear. It follows from the linearity of matrix addition:

ϕ(c1T1 + c2T2) = [c1T1 + c2T2]B′,B = c1[T1]B′,B + c2[T2]B′,B = c1ϕ(T1) + c2ϕ(T2)

ϕ is bijective. dimL(V,W ) = (dimV )(dimW ) = nm = dimMmn(F) by Thm. 4.11. Then we
only need to show that ϕ is injective due to Cor. 4.9.1. So let T ∈ ker(ϕ). Then ϕ(T ) = 0mn =
[T ]B′,B. From the way we constructed [T ]B′,B above, we can see that [T (vj)]B′ = 0 for all vj ∈ B.
So T must be the zero transformation. Hence ϕ is injective and is thus bijective. �

The isomorphism ϕ depends on ordered bases B and B′. A different choice would give us a
different ϕ.

Theorem 4.18. Let A ∈Mmn(F) and let T : Fn → Fm be given by

∀v ∈ Fn, T (v) = Av

Let B and B′ be the standard ordered bases for Fn and Fm respectively. Then

[T ]B′,B = A

Proof.

[T ]B′,B =
(

[T (e1)]B′ · · · [T (en)]B′
)

We can check that for all 1 ≤ i ≤ n,

T (ei) = Aei =


a1i

a2i
...
ami


Then the result follows. �

Example 4.14. Let D : P3(R)→ P3(R) be

D(a0 + a1x+ a2x
2 + a3x

3) =
d

dx

(
a0 + a1x+ a2x

2 + a3x
3
)

Let B = {f1 = 1, f2 = x, f3 = x2, f4 = x3} be the standard basis for P3(R).

[D]B =
(

[D(f1)]B · · · [D(f4)]B
)

=




0
0
0
0




1
0
0
0




0
2
0
0




0
0
3
0




�
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We now wish to generalize the results to more numbers of vector spaces. Let T : U → V and
S : V → W be linear transformations. Also let B, B′, and B′′ be the ordered bases for U, V,W
respectively. Consider the composition ST : U → W . What is the relationship between [T ]B′,B,
[S]B′′,B′ and [ST ]B′′,B?

To find out, take u ∈ U and

[ST (u)]B′′ = [ST ]B′′,B[u]B

However,

[ST (u)]B′′ = [S(T (u))]B′′

= [S]B′′,B′ [T (u)]B′

= [S]B′′,B′ [T ]B′,B[u]B

Since this is true for any u, we can pick u as the basis vectors and then [ST ]B′′,B = [S]B′′,B′ [T ]B′,B.
Of course we can generalize this procedure for any number of transformations. Here, the
mnemonic mentioned earlier again comes in handy.

Theorem 4.19. Let F be a field. For 1 ≤ i ≤ r+ 1, let Vi be a finite dimensional vector space
over F and let Bi be an ordered basis for Vi. For 1 ≤ j ≤ r, let Tj : Vj → Vj+1 be a linear
transformation. Consider the composition

T =©1
k=rTk

Then
[T ]Br+1,B1 = [Tr]Br+1,Br [Tr−1]Br,Br−1 · · · [T1]B2,B1

Corollary 4.19.1. Let T : V → W be an invertible linear transformation. Then [T ]−1
B′,B =

[T−1]B,B′.

Proof. T−1 : W → V is also an invertible linear transformation. TT−1 = IW and T−1T = IV
are the identity operators. Then by Thm. 4.19, we get the result. �

4.6 Change of basis

A special case may be interesting. If we take the identity operator IV on V , and let B and B′
be two ordered bases for V , then

[IV ]B,B′ = [IV ]−1
B′,B

Perhaps now we can ask, if we have two bases B and B′ for a vector space V , what are the
relationships between [v]B and [v]B′ , and between [T ]B and [T ]B′?

Theorem 4.20 (Change of basis). Let V be a finite dimensional vector space and let B and
B′ be two ordered bases of V . Then for any v ∈ V ,

[v]B = [IV ]B,B′ [v]B′

34



Proof.
[v]B = [IV (v)]B = [IV ]B,B′ [v]B′

�

Definition 4.15. The matrix P = [IV ]B,B′ is called the transition matrix from B′ to B. �

Theorem 4.21 (Change of matrix). Let V be a finite dimensional vector space and let T :
V → V be a linear operator. If B and B′ are two ordered bases of V and P = [IV ]B,B′ is the
transition matrix from B′ to B, then

[T ]B′ = P−1[T ]BP

Proof. T = IV ◦ T ◦ IV . Then with Thm. 4.19,

[T ]B′ = [IV ◦ T ◦ IV ]B′

= [IV ]B′,B[T ]B[IV ]B,B′

= P−1[T ]BP

�

Example 4.15. Let T : R2 → R2 be the linear operator given by

T

[(
x
y

)]
=

(
x+ y
−2x+ 4y

)
=

(
1 1
2 4

)(
x
y

)

and B = {e1, e2} and B′ =
{

u1 =

(
1
1

)
,u2 =

(
1
2

)}
. Then [T ]B =

(
1 1
2 4

)
.

Let P be the transition matrix from B′ to B. Then

P = [I]B,B′ =
(

[u1]B [u2]B
)

=

(
1 1
1 2

)
.

Using Thm. 4.21,

[T ]B′ = P−1[T ]BP =

(
2 0
0 3

)

This illustrates a reason why we may be interested in a change in basis. The new [T ]B′ is
diagonal and much simpler than the original. This would be something we will take on in a
future section. �

Definition 4.16. Let A and B be two n×n matrices over the field F. We say that B is similar
to A over F if there is an invertible n× n matrix P such that

B = P−1AP.

This is an equivalence relation on Mn(F). �

The meaning of this definition is apparent from the following theorem.

Theorem 4.22. Let V be a vector space and T : V → V be a linear operator. Then matrices
A, B, are similar iff A, B represent the same operator T .
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Proof.

( =⇒ ) Let B be an ordered basis of V such that [T ]B = A, and some invertible P such
that B = P−1AP . We want to find another ordered basis B′ of V such that [T ]B′ = B. Now
since P is invertible, by Thm. 3.5 its columns are linearly independent. Hence if we write
P =

(
[v1]B · · · [vn]B

)
, it can be shown that B′ = {v1, . . . ,vn} is also linearly independent

and hence forms a basis for V , and thus P = [I]BB′ .

(⇐= ) Thm. 4.21. �

This allows us to define the determinant of a linear transformation. From Thm. 4.22, we can
see that it is well defined.

Definition 4.17 (Determinant of a linear transformation). Let T : V → V be a linear operator.
Let B be an ordered basis of V . We define

detT = det[T ]B

�

5 Diagonalization and Jordan canonical form

5.1 Diagonalization

In this chapter we shall focus only on linear operators T : V → V where V is a finite dimensional
vector space.

Using ordered bases, T can be represented by matrices. Each basis will give us a different
matrix. Naturally, we will want to know how to choose the basis to find the “nicest” matrices
to represent T .

Example 5.1. Let T : V → V be a linear operator. Let B = {v1, . . . ,vn} be an ordered basis
of V , and let [T ]B = D such that D is diagonal.

D =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λn

 = [T ]B =
(

[T (v1)]B [T (v2)]B . . . [T (vn)]B
)

Then

T (v1) = λ1v1 + 0v2 + · · ·+ 0vn = λ1v1

T (v2) = 0v1 + λ2v2 + · · ·+ 0vn = λ2v2

...

T (vn) = λnvn

36



Assume that λ1, . . . , λr 6= 0, and λr+1 = λn = 0. For any v ∈ V , we can write v =
∑n

i civi.
Then

T (v) =
n∑
i=1

ciT (vi)

=
r∑
i−1

ciλivi

Therefore,R(T ) = span{v1, . . . ,vr} and ker(T ) = span{vr+1, . . . ,vn}. Diagonal matrices make
it convenient if we want to know the range and kernel for an operator. Another convenience
brought about by diagonal matrices is

[T k]B = Dk =

λ
k
1 . . . 0
...

. . .
...

0 . . . λkn


�

This motivates us to the following definition:

Definition 5.1. A linear operator T : V → V is called diagonalizable if V has an ordered basis
B such that the matrix [T ]B is diagonal. �

Moving forward, we will address these questions.

1. Is every linear operator diagonalizable?

2. If not, which linear operators are diagonalizable?

3. If operator T is diagonalizable, how do we find a basis B for which [T ]B is diagonal?

4. If operator T is not diagonalizable, what is the simplest form of their matrix representa-
tion?

The way we answer these questions is to consider diagonalizing matrices instead of linear
transformations, and move the computation to something more familiar.

Definition 5.2. Let V be a vector space over a field F and T : V → V be a linear operator.
A scalar λ ∈ F is an eigenvalue of T is there exists a non-zero vector v ∈ V such that

T (v) = λv

and v is called the eigenvector of T corresponding to the eigenvalue λ. �

Then we can make the observation that T : V → V is diagonalizable iff V has a basis B
consisting entirely of eigenvectors of T . Then the diagonal entries of [T ]B are the eigenvalues
of T . Therefore in order to determine if T is diagonalizable, we have to find all the eigenvalues
and eigenvectors and check if there are enough to make up a basis. This begs the question, how
do we find the eigenvectors?
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Let IV : V → V denote the identity operator on V . Then

T (v) = λv ⇐⇒ T (v) = λIV (v)

⇐⇒ (T − λIV )(v) = 0

⇐⇒ v ∈ ker(T − λIV )

Therefore,

λ is an eigenvalue of T ⇐⇒ ∃v ∈ ker(T − λIV ),v 6= 0

⇐⇒ ker(T − λIV ) 6= {0}
⇐⇒ T − λIV not invertible (∵ not injective)

⇐⇒ det(T − λIV ) = 0

Definition 5.3. If λ is an eigenvalue of the linear operator T : V → V then the subspace of V

Eλ = ker(T − λIV ) = {v ∈ V | T (v) = λv}

called the eigenspace corresponding to the eigenvalue λ. It contains all eigenvectors associated
with λ and the zero vector. �

If B is an ordered basis of V and A = [T ]B, then

[T − λIV ]B = A− λI

From Def. 4.17, we know that

det(T − λI) = det(A− λI)

and

λ is an eigenvalue of T ⇐⇒ det(A− λI) = 0

⇐⇒ x = λ is a solution of det(xI− A) = 0

Let

cA(x) = det(xI− A) = det


x− a11 −a12 −a13 . . . −a1n

−a21 x− a22 −a23 . . . −a2n

−a31 −a32 x− a23 . . . −a3n
...

...
...

. . .
...

x− an1 −an2 −an3 . . . −ann


cA(x) is a monic polynomial of degree n. A monic polynomial is one whose leading coefficient
is 1, that is cA(x) = xn + bn−1x

n−1 + · · ·+ b1x+ b0. The eigenvalues of T are the roots of cA(x).

Definition 5.4. Let A ∈Mn(F). Then

i. The characteristic polynomial of A is cA(x) = det(xI− A).

ii. The characteristic equation of A is cA(x) = 0.
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iii. A scalar λ ∈ F is an eigenvalue of A is there is a non-zero vector v ∈ Fn such that
Av = λv. Then v is an eigenvector of A corresponding to λ.

iv. If λ is an eigenvalue of A, then the eigenspace of A corresponding to λ is the subspace
Eλ = {v ∈ Fn | Av = λv} of Fn. Eλ is also the solution space of the linear system
(A− λI)x = 0.

�

The eigenvalue-eigenvector problem for matrices. Let A ∈Mn(F).

1. To find the eigenvalue of A, we solve the characteristic equation of the matrix.

2. To find the eigenvectors corresponding to the eigenvalue λ, we solve the homogeneous
linear system

(A− λI)x = 0

We have seen that the eigenvalues of T : V → V are the eigenvalues of any matrix representation
of T . We fix an ordered basis B and solve the eigenvalue-eigenvector problem for the matrix
A = [T ]B.

Also, v is an eigenvector of T corresponding to the eigenvalue λ iff [v]B is an eigenvector of
A = [T ]B corresponding to the eigenvalue λ, since [T (v)]B = A[v]B.

Definition 5.5. Let T : V → V be a linear operator. Then the characteristic polynomial cT (x)
of T is the characteristic polynomial of any matrix which represents T .

If B is a basis for V and A = [T ]B, then cT (x) = cA(x). The equation cT (x) = 0 is the
characteristic equation of T .

�

The characteristic polynomials are the same regardless of the matrix that we choose to represent
T , since they are all similar, and have the same determinant.

Definition 5.6. Let A ∈Mn(F). A is diagonalizable over F if there exists an invertible matrix
P over F such that the matrix

P−1AP

is diagonal. �

Theorem 5.1. A linear operator T : V → V is diagonalizable iff any of the matrices which
represent T is diagonalizable.

Proof.

( =⇒ ) Pick any basis B and represent T relative to this basis. Let A = [T ]B. Suppose we also
find some basis B′ consisting entirely of eigenvectors such that D = [T ]B′ is diagonal. From
Thm. 4.21, we can find P such that [T ]B′ = P−1[T ]BP . �
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Does every matrix have an eigenvalue? Since not all polynomial equations have roots, the
answer is no. It also depends on the field we are in. A simple example is the equation x2 +1 = 0.
Nevertheless, from the fundamental theorem of algebra we know that every polynomial of degree
n has n solutions in C. Then we can write our monic complex polynomial as

c0 + c1x+ · · ·+ cn−1x
n−1 + xn = (x− b1)m1 · · · (x− br)mr

where b1, . . . , br are distinct and mi, . . . ,mr are positive integers called the multiplicity of the
corresponding root bi. Then in fact all matrices in Mn(C) have eigenvalues in C.

From Def. 5.4, for some A ∈Mn(R), the eigenvalues will differ depending on if we treat it as a
real matrix or a complex matrix, since the eigenvalues and hence the eigenvectors must come
from the same field.

Example 5.2. Let A =

(
0 −1
1 0

)
. Then cA(x) = x2 + 1.

A has no eigenvalues if we treat A as a real matrix.

IfA is a complex matrix, then x = ±i are its eigenvalues and

(
i
1

)
and

(
−i
1

)
are its eigenvectors.

�

5.2 Diagonalizability

Let linear operator T : V → V be diagonalizable, and B be a basis for V consisting entirely of
eigenvectors. Suppose λ1, . . . , λk are distinct eigenvalues of T . Rearrange the basis elements so
that the first d1 vectors all have eigenvalue λ1, the next d2 vectors have eigenvalue λ2, and so
on. Then

[T ]B =


λ1Id1 0

λ2Id2
λ3Id3

. . .

0 λkIdk


where Idi is an identity matrix of size di and the zeros are all appropriately sized.

Then cT (x) = (x− λ1)d1 · · · (x− λk)dk . This can be seen if we write the entire matrix out:

A =



λ1

. . . 0
λ1

λ2

. . .

λ2

. . .
. . .

. . .

λk

0 . . .

λk
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With Def. 5.4 we can also see why for the eigenspaces Eλi , dimEλi = di. Also of course
d1 + · · ·+ dk = n. These form a set of necessary conditions for diagonalizability.

Theorem 5.2. Let T : V → V be a linear operator. If {v1, . . . ,vn} is a set of eigenvectors,
each corresponding to a distinct eigenvalue, then it is linearly independent.

Proof. We perform induction on the number of eigenvectors. {v1} is linearly independent.
Suppose {v1, . . . ,vn} is linearly independent for 1 ≤ n ≤ m− 1.

Let us consider the case where n = m, so we check the equation a1v1 + · · · + amvm = 0. We
can write −amvm = a1v1 + · · ·+ am−1vm−1. Applying T on both sides and rearranging, we get

a1λ1v1 + · · ·+ am−1λm−1vm−1 = −amλmvm

= a1λmv1 + · · ·+ am−1λmvm−1

a1(λ1 − λm)v1 + · · ·+ am−1(λm−1 − λm)vm−1 = 0

Since the eigenvalues are distinct, (λi − λm) 6= 0 for all 1 ≤ i < m. But since {v1, . . . ,vm} are
linearly independent by our original supposition, a1, . . . , am−1 = 0. Since vm 6= 0, then am = 0
as well. Hence they are linearly independent. �

Corollary 5.2.1. Let T : V → V be a linear operator. If dimV = n and T has n distinct
eigenvalues, then it is diagonalizable.

Proof. Let λ1, . . . , λn be n distinct eigenvalues of T , and let the corresponding eigenvectors be
v1, . . . ,vn. By Thm. 5.2, B = {v1, . . . ,vn} is linearly independent, and by Cor. 3.12.1, it is a
basis for V . Then [T ]B is diagonal. �

Note that this does not mean that operators with less than n distinct eigenvalues are not
diagonalizable.

Theorem 5.3. Let T : V → V be a linear operator and λ1, . . . , λr are distinct eigenvalues of
T . The following are equivalent:

i. T is diagonalizable.

ii. The characteristic polynomial for T is

cT (x) = (x− λ2)d1 · · · (x− λr)dr

where dimEλi = di for i = 1, . . . , r.

iii. dimEλ1 + · · ·+ Eλr = dimV

iv. V = Eλ1 ⊕ · · · ⊕ Eλr .

Proof.

((i) =⇒ (ii)) The necessary conditions expounded above show this.

((ii) =⇒ (iii)) We can see that d1 + · · ·+ dr gives the degree of cT (x). The degree is equal to
n = dimV since it is derived from the determinant of a n× n matrix.
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((iii) =⇒ (iv)) For each 1 ≤ i ≤ r, let Bi = {vi1, . . . ,vidi} be a basis for Eλi . Let B =
⋃r
i Bi =

{v11, . . . ,v1d1 , . . . ,vr1, . . . ,vrdr}. Now all the Bi are pairwise disjoint since a vector cannot be
an eigenvector for two eigenvalues. There are exactly n = dimV vectors in B. We claim that
they are linearly independent. Consider the equation

α11v11 + · · ·+ α1d1v1d1︸ ︷︷ ︸
w1

+ · · ·+ αr1vr1, . . . , αrdrvrdr︸ ︷︷ ︸
wr

= 0

All wi are also eigenvectors corresponding to eigenvalue λi. However, from Thm. 5.2, all wi’s
are linearly independent. Therefore all wi = 0. Then this means

αi1vi1 + · · ·+ αidividi = wi = 0

so we get that all α’s are 0.

Then, B forms a basis for V . By Thm. 3.16, condition (iv) follows.

((iv) =⇒ (i)) Taking the bases of the eigenspaces, Thm. 3.16 tells us that the union of all
these bases form a basis for V . We now have a basis formed of only eigenvectors. By Cor. 5.2.1,
T is diagonalizable. �

Hence, to know if A ∈ Mn(F) is diagonalizable, we find all the eigenvalues of A, and a basis
for each of the eigenspaces. Then A is diagonalizable only if there are a total of n vectors in all
the bases.

Theorem 5.4 (Diagonalizing a matrix). Let B = {v1, . . . ,vn} be a basis of Fn consisting of
eigenvectors of A. Form the matrix P =

(
v1 v2 · · · vn

)
. Then P−1AP is diagonal. More

specifically, if each vi is the eigenvector associated with eigenvalue λi, then

P−1AP =


λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λn


Proof. This is in fact just a change of basis. Let LA : Fn → Fn defined by LA(v) = Av. Then
[LA]S = A where S is the standard ordered basis of Fn. Then

[LA]B =
(

[LA(v1)]B · · · [LA(vn)]B
)

=


λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λn


We also know that [LA]B = [I]B,S[LA]S[I]S,B. We can see that P = [I]S,B. �

Example 5.3. We have seen before that if we have a complex matrix A =

(
0 −1
1 0

)
, then

x = ±i are its eigenvalues and

(
i
1

)
and

(
−i
1

)
are its eigenvectors. These two eigenvectors

form a basis for C2. Furthermore, if P =

(
i −i
1 1

)
, then P−1AP =

(
i 0
0 −i

)
. �
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5.3 Invariant subspaces

Definition 5.7. Let T : V → V be a linear operator. A subspace W of V is called a T -invariant
subspace of V if T (W ) ⊆ W . �

Some observations:

• Clearly {0} and V itself are T -invariant.

• Since 0 ∈ ker(T ), ker(T ) is also T -invariant .

• R(T ) is also T -invariant since applying T to vectors in it must still result in something
in the range.

• Eigenspaces are T -invariant. Applying T to any eigenvector only scales it, hence the result
is still in the eigenspace.

Example 5.4. Let T : R3 → R3 be given by

T

xy
z

 =

x+ y + z
y + z
z


We see that for vectors on the xy-plane,

T

xy
0

 =

x+ y
y
0


is also in the xy-plane. So the xy-plane is T -invariant. �

Example 5.5. Let D : P3(F)→ P3(F) be the linear operator given by

D(a0 + a1x+ a2x
2 + a3x

4) =
d

dx

(
a0 + a1x+ a2x

2 + a3x
4
)

Consider P2(F):
D(a0 + a1x+ axx

2) = a1 + 2a2x ∈ P2(F)

So P2(F) is D-invariant. �

Definition 5.8. Let T : V → V be a linear operator and let W ⊆ V be a T -invariant subspace
of V . Then define TW : W → W as

∀w ∈ W,TW (w) = T (w)

TW is a linear operator on W called the restriction of T to W . �

Theorem 5.5. If T : V → V is a linear operator and W ⊆ V is a T -invariant subspace of V ,
then the characteristic polynomial of TW divides the characteristic polynomial of T .
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Proof. Let dimV = n and dimW = m. Take a basis for W , B = {w1, . . . ,wm}. We can
extend this to a basis for V , B′ = {w1, . . . ,wm,wm+1, . . .wn}. Let A = [T ]B′ = (aij), and
B = [TW ]B = (bij).

Then

T (wj) =
n∑
i=1

aijwi, 1 ≤j ≤ n

TW (wj) =
m∑
i=1

bijwi, 1 ≤j ≤ m.

SinceW is T -invariant, T (w1), . . . , T (wm) ∈ W = span{w1, . . . ,wm}. So T (w1), . . . , T (wm) are
linear combinations of w1, . . . ,wm only. Thus for 1 ≤ j ≤ m, T (wj) =

∑m
i=1bijwi +

∑n
i=m+1 0.

Therefore we know that (the other parts in asterisk we have no information about):

A =



b11 . . . b1m ∗ ∗ ∗
...

...
bm1 . . . bmm ∗ ∗ ∗
0 . . . 0 ∗ ∗ ∗
...

...
0 . . . 0 ∗ ∗ ∗


=

(
B ∗
0m ∗∗

)

The characteristic equation of T

cT (x) = det(xIn − A)

= det

(
xIm −B −∗

0 xIm − ∗∗

)
= cTW (x)q(x)

where q(x) is some polynomial, since for triangular matrices the determinant is just the product
of diagonal entries. �

Below is one of the simplest ways to create an invariant subspace.

Definition 5.9. Let T : V → V be a linear operator and let u ∈ V be a non-zero vector. The
subspace

W = span{u, T (u), T 2(u), . . .}

is called the T -cyclic subspace of V generated by u. �

Lemma 5.6. Let T : V → V . If W is a T -cyclic subspace of a vector space V generated by
some non-zero vector u ∈ V , then W is T -invariant.

Proof. Let w ∈ W . Then w = c0u + c1T (u) + c2T
2(u) + · · · + cnT

n(u). Note that we cannot
go on forever, since by definition even for spans of infinite sets we can only take finite linear
combinations. Then T (w) = c0T (u)+c1T

2(u)+· · ·+cnT n+1(u) ∈ span{u, T (u), T 2(u), . . .}. �

Are the spanning sets always infinite?
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Example 5.6. Let us revisit T from Ex. 5.4 again. Take u =

1
0
0

. But u = T (u) = T 2(u) =

· · · . So the T -cyclic subspace generated by u is just spanned by u itself, i.e. the x-axis.

However if we take u =

0
1
0

, we get that

T (u) =

1
1
0

 T 2(u) =

2
1
0

 T 3(u) =

3
1
0

 . . . T n(u) =

n1
0


and the T -cyclic subspace generated by this new u is actually the xy-plane. �

Theorem 5.7. Let T : V → V be a linear operator. Let W be the T -cyclic subspace of V
generated by a non-zero u ∈ V and dimW = n.

i. The set {u, T (u), T 2(u), . . . , T n−1(u)} is a basis for W .

ii. There exist scalars a0, . . . , an−1 such that

a0u + a1T (u) + · · ·+ an−1T
n−1(u) + T n(u) = 0

and the characteristic polynomial of TW is given by

cTW (x) = a0 + a1x+ · · ·+ an−1x
n−1 + xn

Proof.

i. Since u 6= 0, {u} is linearly independent. Take {u, T (u)}. If this is still linearly indepen-
dent, we take {u, T (u), T 2(u)}. If this is still linearly independent, we add T 3(u), and so
on. This will terminate at some point since W is finite dimensional.

Let k be the largest integer such that B = {u, T (u), . . . , T k−1(u)} is linearly independent.
There are k vectors in B. Let W ′ = span(B). Since B ⊆ W , W ′ ⊆ W .

By the definition of k, B ∪ {T k(u)} is linearly dependent. Then there exists scalars
b0, . . . , bk, not all zero, such that

b0u + b1T (u) + · · ·+ bk−1T
k−1(u) + bkT

k(u) = 0

bk 6= 0 since that would imply B is linearly dependent. Then we can rearrange and express
T k(u) as a linear combination of the vectors in B.

Then W ′ is T -invariant. For any w ∈ W ′, we can write w = c0u + · · ·+ ck−1T
k−1(u), and

T (w) = c0T (u) + · · ·+ ck−1T
k(u) ∈ W ′ as we have shown above.

Hence we can also inductively show that T n(u) ∈ W ′. Then all the spanning vectors for
W are in W ′. Therefore W ⊆ W ′, and we conclude that W = W ′, with B as a basis for
W .
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ii. By definition,

[TW ]B =
(

[Tw(u)]B [Tw(T (u))]B · · · [Tw(T n−1(u))]B
)

=
(

[T (u)]B [T 2(u)]B · · · [T n(u)]B
)

=




0
1
0
...
0




0
0
1
...
0

 · · ·


0
0
0
...
1




−a0

−a1

−a2
...

−an−1




where a0, . . . , an−1 are scalars such that

a0u + · · · an−1T
n−1(u) + T n(u) = 0

as we have shown previously.

Then the characteristic polynomial can be shown to be (with lots of induction):

cTW (x) = det


x 0 0 . . . 0 a0

−1 x 0 . . . 0 a1

0 −1 x . . . 0 a2
...

...
...

...
...

...
0 0 0 . . . −1 x+ an−1



= x det


x 0 . . . 0 a1

−1 x . . . 0 a2

0 −1 . . . 0 a3
...

...
. . .

...
...

0 0 . . . −1 x+ an−1


︸ ︷︷ ︸

=a1+a2x+···+an−1xn−2+xn−1

+(−1)n+1a0 det

−1 x 0
...

. . . . . .

0 . . . −1


︸ ︷︷ ︸

=(−1)n−1

= a0 + a1x+ · · ·+ an−1x
n−1 + xn

�

5.4 Cayley Hamilton theorem

Definition 5.10. If T : V → V is a linear operator on a vector space V over F and f(x) =
a0 + a1x+ a2x

2 + · · ·+ anx
n is a polynomial over F, then f(T ) is the linear operator

f(T ) = a0IV + a1T + a2T
2 + · · ·+ anT

n

Similarly for matrix A ∈Mn(F), f(A) is the n× n matrix given by

f(A) = a0In + a1A+ a2A
2 + · · ·+ anA

n

If B is an ordered basis for V and [T ]B = A, then

[f(T )]B = f(A) (1)

�
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Exercise. The characteristic polynomial for A =

0 0 −2
1 2 1
1 0 3

 can be shown to be cA(x) =

x3 − 5x2 + 8x− 4.

Surprisingly, a simple calculation shows that

cA(A) = 03

Is this a coincidence? It is not, and the Cayley Hamilton theorem will tell us so. Perhaps some
motivation or intuition at first:

Assume a linear operator T : V → V is diagonalizable. Then V is the direct sum of the
eigenspaces of T , by Thm. 5.3. Not only is an eigenspace the space containing some eigenvectors,
it is also ker(T − λiI) (see Def. 5.3).

If cT (x) = (x − λ1)d1 · · · (x − λn)dn , then cT (T ) = (T − λ1IV )d1 · · · (T − λnIV )dn . Since V is
the direct sum of these eigenspaces, we can write every v ∈ V as a linear combination of
eigenvectors. Now we can see that cT (T ) will kill off eigenvectors in each space one by one,
since the eigenvectors are in the kernel of one of the terms in cT (T ). So it sends v to 0.

However this is a special case that the transformation is diagonalizable. In general, can we still
say the same?

Theorem 5.8 (Cayley Hamilton theorem). Let T be a linear operator on a finite-dimensional
vector space V , and let cT (x) be the characteristic polynomial of T . Then

cT (T ) = T0

where T0 is the zero transformation.

Proof. Similar to above, we shall show that ∀v ∈ V, cT (T )(v) = 0. It is trivial if v = 0.
Otherwise, let W = span{v, T (v), T 2(v), . . .}, the T -cyclic subspace generated by v. Let m =
dimW .

By Thm. 5.7, there are scalars a0, . . . , am−1 such that

a0v + a1T (v) + · · ·+ am−1T
m−1(v) + Tm(v) = 0

and
cTW (x) = a0x+ a1x+ · · ·+ am−1x

m−1 + xm = 0

where TW is the restriction of T to W . Then,

cTW (T ) = a0IV + a1T + · · ·+ am−1T
m−1 + Tm = 0

Looking again, we see that we have shown that (cTW (T ))(v) = 0. However, Thm. 5.5 tells us
that cTW (x) divides cT (x). Therefore for some polynomial q(X),

cT (x) = q(x)cTW (x)

cT (T ) = q(T )cTW (T )

cT (T )(v) = q(T )[cTW (T )(v)]

= 0

�
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Theorem 5.9 (Cayley Hamilton theorem for matrices). Let A ∈ Mn(F) and let cA(x) be its
characteristic polynomial. Then

cA(A) = 0n

is the n× n zero matrix.

Proof. Define T : Fn → Fn with T (v) = Av. Let B be the standard ordered basis of Fn. Then
[T ]B = A, and 0 = [cT (T )]B = cT (A) = cA(A). �

We are now interested to know, are any other polynomials p(x) such that p(A) is the zero
matrix? Yes, and an easy example will be any multiple of cA(x). However this is not very
exciting. Could we perhaps find a polynomial with a lower degree than cA(x)?

Exercise. Reusing the same matrix A =

0 0 −2
1 2 1
1 0 3,

 a quick calculation shows that for p(x) =

(x− 1)(x− 2),
p(A) = 03

but p(x) has a lower degree that cA(x).

Definition 5.11. Let A be an n × n matrix over F. The minimal polynomial of A is the
polynomial mA(x) with coefficients in F such that

i. mA(x) is monic,

ii. mA(A) = 0n,

iii. mA(x) has the smallest degree possible.

�

Theorem 5.10. If p(x) is a polynomial such that p(A) = 0n, then the minimal polynomial
mA(x) divides p(x).

Proof. p(x) = mA(x)q(x) + r(x), from division of polynomials. Now either r(x) is zero or it is
a polynomial with degree less than degree of mA(x).

Suppose r(x) is not zero. Then

r(A) = p(A)−mA(A)q(A)

= 0n − 0nq(A)

Now mA(x) has higher degree than r(x), but also r(A) = 0n which means mA(x) cannot be
the minimal polynomial. Hence r(x) must be zero. �

Theorem 5.11. Similar matrices have the same minimal polynomial.
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Proof. Suppose we have two similar matrices A, B, and some invertible matrix P such that
B = P−1AP .

Take a non-zero monic polynomial f(x) = xn + an−1x
n−1 + . . .+ a0. Notice:

f(B) = P−1AnP + an−1P
−1An−1P + . . .+ a0

= P−1f(A)P

ThereforemA(B) = P−1mA(A)P = 0, and 0 = mB(B) = P−1mB(A)P , so with the properties of
minimal polynomials, we gather that mA and mB divides each other. Therefore mA = mB. �

Definition 5.12. The minimal polynomial mT (x) of a linear operator T : V → V is defined
as the minimal polynomial of any matrix which represents T . �

Theorem 5.12. mT (λ) = 0 ⇐⇒ cT (λ) = 0. In other words, the minimal polynomial and
characteristic polynomial have the same roots.

Proof.

( =⇒ ) mT (x) divides cT (x). So if mT (λ) = 0, then cT (λ) = q(λ)mT (λ) = 0.

(⇐= ) Suppose cT (λ) = 0. Then there exists an eigenvector v such that T (v) = λv. Also if λ
is an eigenvalue for A, then λk is an eigenvalue for Ak. Thus [mT (λ)]v = [mT (T )](v). However
[mT (T )](v) = 0. So since v 6= 0, mT (λ) = 0. �

Theorem 5.13. If A ∈ Mn(F) is invertible, then there is a polynomial g(x) with coefficients
in F such that g(A) = A−1.

Proof. Take the characteristic polynomial of A, cA(x) = a0 + a1x+ . . .+ an−1x
n−1 + xn. a0 6= 0

otherwise cA(x) = x(a1 + . . .+an−1x
n−1 +xn−1) and 0 is an eigenvalue for A. But A is invertible,

so 0 cannot be its eigenvalue. So therefore we have

cA(x)− x(a1 + . . .+ an−1x
n−1 + xn−1) = a0

cA(A)− A(a1 + . . .+ An−1)

a0

= I

Ag(A) = I

thus g(A) = A−1 where g(x) = −a1+...+an−1xn−2+xn−1

a0
. �

5.5 Jordan canonical form

In this section, we will assume all our matrices are complex matrices.

Not all matrices can be diagonalized. What is the next best thing we can get?

Definition 5.13. Let λ ∈ C. The k × k matrix

Jk(λ) =


λ 1 · · · 0 0
0 λ 1 · · · 0

. . . . . .

0 0 · · · λ 1
0 0 · · · 0 λ


is called a Jordan block of order k corresponding to λ. �
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The characteristic polynomial for a Jordan block is cJk(λ)(x) = (x−λ)k. Its minimal polynomial
is the same as its characteristic polynomial. To see this, we can look at the action of (Jk(λ)−λI)
on itself – it just shifts all the rows up once. Also we can also see that it only has one eigenvalue
λ and one eigenspace, span{e1}.

Theorem 5.14 (Jordan canonical form). Let A be an n×n complex matrix. Then there exists
an invertible matrix P such that (in block form):

P−1AP = J =


Jk1(λ1) 0 · · · 0 0

0 Jk2(λ2) · · · 0 0
...

...
. . .

...
...

0 0 · · · Jkr−1(λr−1) 0
0 0 · · · 0 Jkr(λr)


where Jki(λi) are Jordan blocks. They are unique up to reordering. The matrix J is called a
Jordan canonical form of A.

For linear operators, let T : V → V be a linear operator. Take any ordered basis B of V and
consider A = [T ]B. Then A is similar to a matrix J in Jordan canonical form. There is a basis
B′ for V such that [T ]B′ = J . We call J a Jordan canonical form of T .

This theorem is remarkable since it applies to any square complex matrix, unlike diagonaliza-
tion. Every square complex matrix is similar to a matrix in Jordan canonical form. In some
sense this is the nicest matrix that is similar to A, as it gives us information regarding A.

The characteristic polynomial of A, cA(x) = cJ(x) = (x − λ1)k1(x − λ2)k2 · · · (x − λr)
kr and

λ1, . . . , λr, not necessarily distinct, are the eigenvalues of A.

If we rearrange the blocks such that the largest blocks associated to the s distinct eigenvalues are
placed at the front, the minimal polynomial of A, mA(x) = mJ(x) = (x−λ1)k1(x−λ2)k2 · · · (x−
λs)

ks .

If all the Jordan blocks in a matrix’s Jordan canonical form are of order 1, then it is diagonal-
izable. This gives us the following result.

Corollary 5.14.1. A matrix A is diagonalizable iff the roots of its minimal polynomial are
distinct, i.e. mA(x) = (x− λ1) · · · (x− λr).

It is generally difficult to determine the Jordan canonical form of a matrix. However using
information from the characteristic and minimal polynomials we can limit the domain of our
search.

Example 5.7. Let A ∈Mn(C) such that

cA(x) = (x− 5)4(x− 2)2 mA(x) = (x− 5)2(x− 2)

Since cA(x) is of degree 6, n = 6. The eigenvalues of A are 5 and 2. From cA(x) we can tell the
number of times the eigenvalues appear on its diagonal. The minimal polynomial then tells us
that the largest Jordan blocks are J2(5) and J1(2).

Hence in total, we have J2(5), two copies of J1(2), and a choice between a single J2(5) or two
copies of J1(5). �
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Example 5.8. Let T : V → V be a linear operator on a complex vector space V . Let there be
an ordered basis B = {v1, . . . ,v8} for V and let

[T ]B =


J3(2) 0 0 0

0 J1(2) 0 0
0 0 J2(3) 0
0 0 0 J1(1)


It has eigenspaces

E2 = span{v1,v4} E3 = span{v5} E1 = span{v7}

by inspecting the position of the blocks. So this operator is clearly not diagonalizable.

We can express T (vi) in linear combinations of elements in B.

T (v1) = 2v1 =⇒ (T − 2I)(v1) = 0

T (v2) = v1 + 2v2 =⇒ (T − 2I)2(v2) = 0

T (v3) = v2 + 2v3 =⇒ (T − 2I)3(v3) = 0

T (v4) = v4 =⇒ (T − 2I)(v4) = 0

and so on. We see something interesting here. The four vectors are eliminated using different
powers of (T − 2I). However, all of them are eliminated by (T − 2I)3. Hence if we let K2 =
span{v1,v2,v3,v4}, we see that K2 = ker(T −2I)3. Recall that eigenspaces can be expressed as
ker(T−λI). We call subspaces like K2 that are kernels of higher powers of (T−λI) a generalized
eigenspace.

In fact, V = ker(T − 2I)2⊕ ker(T − 3I)2⊕ ker(T )2. All of them are T -invariant subspaces. This
means that for more complicated vector spaces, we can find the restriction of T on each of these
subspaces and T will behave in a very simple way on them. �

6 Inner product spaces

6.1 Dot product

The length of a vector u ∈ R3, denoted ‖u‖, is given by Pythagoras’ theorem. The familiar dot
product is also defined as u · v = ‖u‖‖v‖ cos θ where θ is the angle between the two vectors.
Using the cosine rule on the triangle with two sides formed by the two vectors, we get

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ

and rearranging,

u · v =
1

2

(
‖u‖2 + ‖v‖2 − ‖u− v‖2)

If we have the coordinates of the two vectors, say u = (au, bu, cu) and v = (av, bv, cv), plugging
them in and simplifying gives us

u · v = auav + bubv + cucv
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This is a familiar relationship but it highlights a few properties of the dot product. It relates
length, angle and distance, and is surprisingly easy to compute. This serves as our motivation
to study this further.

So far we have been in R3 where the idea of length and distance is easily conceptualized.
However for other vector spaces, can we define such notions? Furthermore, can we transfer our
geometrical ideas to such spaces?

Above we know what is length, distance and angle, and we used that to define the dot product.
However, in a general vector space we have no physical interpretation of lengths and angles,
hence we will first define a “dot product” and use that to investigate length, distance, and
angle.

6.2 Inner product

We assume in this section that our vector spaces are either real or complex since we are trying
to imitate R3 for now.

Definition 6.1 (Inner product). Let V be a vector space over F where F = R or F = C. An
inner product on V is a function

(u,v)→ 〈u,v〉 ∈ F
such that

• (IP1) ∀u,v ∈ V, 〈u,v〉 = 〈v,u〉 where the bar denotes complex conjugation.

• (IP2) ∀u,v,w ∈ V, 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉

• (IP3) ∀u,v ∈ V, ∀α ∈ F, 〈αu,w〉 = α〈u,w〉.

• (IP4) ∀v ∈ V,v 6= 0 =⇒ 〈v,v〉 > 0. Also 〈0,0〉 = 0. �

The necessity for complex conjugate in (IP1) is demanded by (IP4). These set of rules will also
help us define lengths. We will see them later below. We follow with a few observations about
the inner product.

If V is a real vector space, then 〈u,v〉 = 〈v,u〉. The inner product is symmetric.

We can also combine (IP2) and (IP3) into

〈αu + βv,w〉 = α〈u,w〉+ β〈u,w〉

for some α, β ∈ F. We say that the inner product is linear in the first variable. Only when the
field is R does the inner product become linear in the second variable as well:

〈w, αu + βv〉 = 〈αu + βv,w〉
= α〈u,w〉+ β〈v,w〉
= α〈w,u〉+ β〈w,v〉

We say that the inner product is conjugate linear in the second variable.

For any v ∈ V , 〈0,v〉 = 0. This is quite simple to show:

〈0,v〉 = 〈0 + 0,v〉 = 2〈0,v〉
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Definition 6.2. An inner product space is a real or complex vector space V together with an
inner product 〈·, ·〉. �

Example 6.1. Rn with 〈u,v〉 = u ·v = u1v1 + · · ·+unvn, called the dot product or Euclidean
inner product, is an inner product space. �

Example 6.2. In Cn, 〈,u,v〉 = u · v = u1v1 + · · · + un · vn. Now we see why (IP1) requires
the complex conjugate – it guarantees us 〈u,u〉 ≥ 0 since zz = |z|2 ≥ 0. �

Example 6.3. Let V = Mn(F) where F = R or F = C. For A,B ∈ V , we can define

〈A,B〉 = tr(B∗A),

where B∗ is the conjugate transpose of B. This is an inner product on V . If we let A = (aij)
and B = (bij), then

〈A,B〉 =
n∑
i=1

n∑
j=1

aijbij.

�

Example 6.4. Let V = C[0, 1], the space of all continuous real-valued functions on the interval
[0, 1]. For f, g ∈ V , define

〈f, g〉 =

ˆ 1

0

f(x)g(x) dx .

This is an inner product on V . �

6.3 Norm and distance

Recall that u · u = ‖u‖2. Similarly we have the following definitions:

Definition 6.3. For an inner product space V ,

‖u‖ =
√
〈u,u〉

is called the norm of u.

The distance between u,v ∈ V is defined by

dist(u,v) = ‖u− v‖

�

In R3, since 0 ≤ cos θ ≤ 1, we know that u ·v ≤ ‖u‖‖v‖. In fact, we can generalize this fact to
any inner product space.

Theorem 6.1 (Cauchy-Schwarz inequality). Let there be an inner product space V , and let
u,v ∈ V . Then

|〈u,v〉| ≤ ‖u‖‖v‖

Equality holds iff u = cv for some scalar c.
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Proof. If u = 0, then |〈u,v〉| = 0 = ‖u‖‖v‖.

Now assume u 6= 0. Let w = u− cw where c = 〈u,v〉
‖v‖2 . Then

‖w‖2 = 〈w,w〉 = 〈u− cv,u− cv〉
= 〈u,u〉 − 〈u, cv〉 − 〈cv,u〉+ 〈cv, cv〉
= ‖u‖2 − c〈u,v〉 − c〈u,v〉+ cc‖v‖2

= ‖u‖2 − 〈u,v〉
‖v‖2 〈u,v〉 −

〈u,v〉
‖v‖2 〈u,v〉 −

〈u,v〉
‖v‖2

〈u,v〉
‖v‖2 ‖v‖

2

= ‖u‖2 − |〈u,v〉|
2

‖v‖2 ≥ 0.

After some rearrangement,
|〈u,v〉|2 ≤ ‖u‖2‖v‖2.

Retracing our steps, equality happens iff ‖w‖ = 0 which means u = cv. �

Theorem 6.2 (Triangle inequality). If u and v are two vectors in an inner product space V ,

‖u + v‖ ≤ ‖u‖+ ‖v‖

Proof.

‖u + v‖2 = 〈u + v,u + v〉
= 〈u,u〉+ 〈u,v〉+ 〈v,u〉+ 〈v,v〉
= ‖u‖2 + 〈u,v〉+ 〈v,u〉+ ‖v‖2

= ‖u‖2 + 2 Re〈u,v〉+ ‖v‖2

≤ ‖u‖2 + 2|〈u,v〉|+ ‖v‖2

≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2

= (‖u‖+ ‖v‖)2

�

6.4 Orthogonal sets

For u,v ∈ R3, we have a notion of orthogonality: u · v = 0 ⇐⇒ u ⊥ v. We can generalize
this notion.

Definition 6.4. Let (V, 〈·, ·〉) be an inner product space.

• We say two vectors u,v ∈ V are orthogonal and write u ⊥ v if 〈u,v〉 = 0.

• A set S of vectors in V is called an orthogonal set if all pairs of distinct vectors in S are
orthogonal.

• If every vector in an orthogonal set S of vectors in V has norm 1, then S is called an
orthonormal set. �
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Theorem 6.3 (Pythagoras’ theorem). If u,v are orthogonal vectors in an inner product space
V , then

‖u + v‖2 = ‖u‖2 + ‖v‖2

Proof.

‖u + v‖2 = 〈u + v,u + v〉
= 〈u,u〉+ 〈u,v〉+ 〈v,u〉+ 〈v,v〉
= ‖u‖2 + ‖v‖2

�

Theorem 6.4. An orthogonal set of non-zero vectors is linearly independent.

Proof. Let S be an orthogonal set in an inner product space V . Note that S is not assumed to
be finite. Pick a finite subset of distinct vectors from S, v1, . . . ,vk and consider the equation

a1v1 + · · ·+ akvk = 0

for scalars a1, . . . , ak.

For 1 ≤ j ≤ k, we can take the inner product on both sides,

〈a1v1 + · · ·+ akvk〉 = 0

a1���
��: 0〈v1,vj〉 + · · ·+ aj〈vj,vj〉+ · · ·+ ak���

��: 0〈vk,vj〉 = 0

Since the norm is non-zero, we conclude that all aj = 0. �

Corollary 6.4.1. If V is a finite dimensional inner product space and n = dimV , then any
orthogonal set of non-zero vectors in V is finite and contains at most n vectors.

6.5 Orthonormal bases

Definition 6.5. Let V be an inner product space. A basis B of V is called an orthonormal
basis if B is also an orthonormal set in V . �

From our experience in R3, it is very easy to compute the coordinates of a vector relative to
an orthonormal basis. Similarly, the calculation of a matrix of a linear operator is also much
easier.

Lemma 6.5. Let B = {v1, . . . ,vn} be an orthonormal basis of V . Then for any v ∈ V ,

v = 〈v,v1〉v1 + · · ·+ 〈v,vn〉vn

Proof. Suppose v = a1v1 + · · ·+ anvn. Then

〈v,vj〉 = 〈a1v1 + · · ·+ anvn,vj〉

= a1��
���: 0〈v1,vj〉 + · · · aj〈vj,vj〉+ · · · an����

�: 0〈vn,vj〉
= aj

�
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Corollary 6.5.1. Let B = {v1, . . . ,vn} be an orthonormal basis of V , and let T : V → V be
a linear operator and [T ]B = (aij). Then

aij = 〈T (vj),vi〉

Proof. From the definition of [T ]B, T (vj) = a1jv1 + · · · + anjvn. By Lemma 6.5, each aij =
〈T (vj),vi〉. �

How can we construct an orthonormal basis? What we want to achieve is to take any basis
A = {u1, . . . ,un} and come up with B = {v1, . . . ,vn} such that B is an orthonormal basis and
spanA = spanB.

We introduce the Gram-Schmidt process.

Theorem 6.6 (Gram-Schmidt process). Given A = {u1, . . . ,un}, we can construct an or-
thonormal basis {v1, . . . ,vn} for spanA with the following algorithm:

1. Choose

vi =
1

‖u1‖
u1

2. Let v′2 = u2 − 〈u2,v1〉v1. Now define v2 =
v′2

‖v′2‖
.

3. Suppose that we have already found an orthonormal set S = {v1, . . . ,vk} for some 1 ≤
k ≤ n− 1 and span{u1, . . . ,uk} = spanS. Then let

v′k+1 = uk+1 −
k∑
j=1

〈uk+1,vj〉vj

4. Repeat until we get n orthonormal vectors.

Proof. The construction is an inductive one. {v1} is an orthonormal set, and span{v1} =
span{u1}.

v′2 ⊥ v1:

〈v′2,v1〉 = 〈u2 − 〈u2,v1〉v1,v1〉
= 〈u2,v1〉 − 〈u2,v1〉〈v1,v1〉
= 0

Thus {v1,v2} is orthonormal and span{u1,u2} = span{v1,v2}, since v′2 is only a linear com-
bination of v1 and u2.

For 1 ≤ i ≤ k,

〈v′k+1,vi〉 = 〈uk+1,vi〉 −
k∑
j=1

〈uk+1,vj〉 〈vj,vi〉︸ ︷︷ ︸
δij

= 〈uk+1,vi〉 − 〈uk+1,vi〉
= 0

So {v1, . . . ,vk+1} is an orthonormal set, and with a similar reasoning as above, we can show
that span{v1, . . . ,vk+1} = span{u1, . . . ,uk+1}. �
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The formulas seem to be plucked out of thin air, but we shall see how they are chosen later on.

Corollary 6.6.1. Every finite dimensional inner product space has an orthonormal basis.

Example 6.5. Take the space of all real polynomials, P (R). Define the inner product for any
p, q ∈ P (R) as

〈p, q〉 =

ˆ 1

−1

p(t)q(t) dt

Performing the Gram-Schmidt process on the basis {1, x, x2, . . .} gives us the Legendre poly-
nomials. To list a few:

P0(x) = 1 P1(x) = x P2(x) =
1

2
(3x2 − 1) P3(x) =

1

2
(5x3 − 3x)

�

What happens if we apply the Gram-Schmidt process to a linearly dependent set?

6.6 Orthogonal complements

Definition 6.6. Let V be an inner product space and W a subspace of V . The orthogonal
complement of W , denoted W⊥ is the set

W⊥ = {v ∈ V | ∀w ∈ W : 〈v,w〉 = 0}

�

Example 6.6. In R2, if W is the x-axis then W⊥ is the y-axis. �

Example 6.7. In R3, if W is the x-axis, then W⊥ is the yz-plane. �

Lemma 6.7. Let W be a subspace of an inner product space V . Then

i. W⊥ is a subspace of V .

ii. W ∩W⊥ = {0}

Proof.

i. 0 ∈ W⊥ since 〈0,w〉 = 0 for any w ∈ W . Take w1,w2 ∈ W⊥, any any scalars a1, a2, then

〈a1w1, a2w2〉 = a1〈w1,w2〉+ a2〈w1,w2〉
= 0

So a1w1 + a2w2 ∈ W⊥. By Thm. 3.2, W⊥ is a subspace.

ii. Take any v ∈ W ∩W⊥. Then

‖v‖2 = 〈 v︸︷︷︸
∈W

, v︸︷︷︸
∈W⊥

〉

= 0

Therefore v = 0.
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�

Theorem 6.8. If W is a finite dimensional subspace of an inner product space V , then

V = W ⊕W⊥

Proof. From Lemma 6.7, W ∩W⊥ = {0}. Using Thm. 3.16, we only need to show that V =
W +W⊥.

Take any v ∈ V and let {w1, . . . ,wk} be an orthonormal basis for W . Define a vector w as

W 3 w =
k∑
i=1

〈v,wi〉wi

Consider v −w and its inner product with any of the basis elements:

〈v −w,wj〉 = 〈v,wj〉 − 〈wi,wj〉

= 〈v,wj〉 −
k∑
i=1

〈v,wi〉 〈wi,wj〉︸ ︷︷ ︸
δij

= 0

Any vector w ∈ W can be expressed as a linear combination of {w1, . . . ,wk}. It follows that
v −w ∈ W⊥. Then w = w︸︷︷︸

∈W

+(v −w︸ ︷︷ ︸
∈W⊥

). �

Thm. 6.8 is not true if W is not finite dimensional.

6.7 Orthogonal projections

Definition 6.7. Let W be a finite dimensional subspace of an inner product space V . Then

V = W ⊕W⊥

For every v ∈ V , there is an unique w ∈ W and w′ ∈ W⊥ such that v = w + w′. Define a
linear operator projW : W → W , called the orthogonal projection of V on W as

projW (v) = w

�

Let T = projW . Then T 2 = T , R(T ) = W , and ker(T ) = W⊥. Orthogonal projections are
associated with inner product spaces. They may not exist for any arbitrary vector space. Also,
they are associated to the direct sum decomposition V = W ⊕W⊥.
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Look at the proof Thm. 6.8. If {w1, . . . ,wk} is an orthonormal basis of W , then we have an
explicit formula for the orthogonal projection operator:

projW (v) = w =
k∑
i=1

〈v,wi〉wi

Also note that it was not assumed that V is finite dimensional. W⊥ may not finite dimensional.
However, if V is finite dimensional, then W⊥ is also finite dimensional, and we may talk about
projW⊥ , and it is given by

projW⊥ = w′ = v −w = (IV − projW )(v)

Let us revisit the Gram-Schmidt process, Thm. 6.6. Let W0 = {0} and for every 1 ≤ j ≤ n− 1,
let

Wj = span{u1, . . . ,uj}.

For some 1 ≤ k ≤ n, suppose we have already found k−1 vectors that makes up our orthonormal
basis. We can find another vector that is orthogonal to all the k − 1 vectors we already have
by projecting uk on the orthogonal complement of the subspace spanned by the k − 1 vectors.

v′j = projW⊥k−1
(uk)

And we see that after normalization, this gives us the formula for the Gram-Schmidt process.

6.8 Best approximations

In R3, given a plane W and a point P , the point on W closest to P is given by drawing
a perpendicular line from P to W . In vector notation, if we let v = ~OP , the perpendicular
line from P to W is given by v − projW (v). For any other point Q on W , with w = ~OQ,
‖v − projW (v)‖ < ‖v −w‖. We say that projW (v) is the best approximation to v by vectors
in W , since it is the closest we can get to v while still being in W . We can generalize this to
other inner product spaces.

Theorem 6.9. If W is a finite dimensional subspace of an inner product space V and v ∈ V ,
then

‖v − projW (v)‖ < ‖v −w‖
for every vector w ∈ W such that w 6= projW (v).

Proof. Let there be a w ∈ W such that w 6= projW (v). Then ‖projW (v)−w‖ > 0.

Observe that

v −w = v − projW (v)︸ ︷︷ ︸
∈W⊥

+

∈W︷ ︸︸ ︷
projW (v)−

∈W︷︸︸︷
w︸ ︷︷ ︸

∈W

Now we can apply Pythagoras’ theorem, and

‖v −w‖2 = ‖v − projW (v)‖2 + ‖projW (v)−w‖2 > ‖v − projW (v)‖2

�
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Now consider the linear system Ax = y. If it is consistent, then there is a solution x such that
Ax−y = 0, and ‖Ax− y‖ = 0. However, if there is no solution, then can we find some x′ such
that we minimize ‖Ax′ − y‖? We call x′ the least squares solution of Ax = y.

Let A contain the columns a1, . . . , an and x =

x1
...
xm

. So the space W = {Ax | x ∈ Rn} is the

column space of A. Now we want to find x′ such that ‖Ax′ − y‖ ≤ ‖Ax− y‖. By Thm. 6.9,
Ax′ = projW (y). This might be quiet a lengthy computation if we do not have an orthonormal
basis for W .

We have an alternative approach. If Ax′ = projW (y), then W⊥ 3 y − projW (y) = y − Ax′.
Thus, ∀v ∈ Rn, 〈Av,y − Ax′〉 = 0. We can express the inner product in Rn (the dot product)
as a matrix multiplication instead: 〈u,v〉 = uTv. Then

〈Av,b− Ax′〉 = vTAT (y − Ax′)

= 〈v, AT (y − Ax′)〉

This is only true if AT (y − Ax′) = 0. Hence ATy = ATAx′, and we only need to solve this
much simpler problem. We call this the associated normal system of Ax = y. We arrive at the
following theorem.

Theorem 6.10. For any real linear system Ax = y, the associated normal system

ATAx′ = ATy

is consistent, and all its solutions are least squares solutions of Ax = y.

We may apply this to least squares analysis. Given a set of data points (x1, y1), . . . , (xn, yn),
we want to find a straight line y = ax + b that minimizes the sum of square of errors E =∑n

i=1(yi − axi − b)2. In other words, we are finding least squares solution of Ax = y, where

A =

x1 1
...

...
xn 1

 x =

(
a
b

)
y =

y1
...
yn


and E = ‖Ax− y‖2.

6.9 Adjoint of a linear operator

Lemma 6.11. Let V be a finite dimensional inner product space over F. If f : V → F is a
linear functional, then there exists a unique vector u ∈ V such that ∀v ∈ V ,

f(u) = 〈v,u〉

Proof. Let {v1, . . . ,vn} be an orthonormal basis for V . Then for v ∈ V ,

v =
n∑
i=1

〈v,vi〉vi
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and therefore

f(v) =
n∑
i=1

〈v,vi〉f(vi)

= 〈v,
n∑
i=1

f(vi)vi〉

And we can let u =
∑n

i=1f(vi)vi.

Suppose there is another vector u′ ∈ V such that f(v) = 〈v,u′〉, then

‖u− u′,u− u′‖2
= 〈u− u′,u− u′〉
= 〈u− u′,u〉 − 〈u− u′,u′〉
= f(u− u′)− f(u− u′)

= 0

So u = u′. �

Theorem 6.12. Let T : V → V be a linear operator on a finite dimensional inner product
space V . Then there exists an unique linear operator T ∗ : V → V such that

〈T (u),v〉 = 〈u, T ∗(v)〉

and we call T ∗ the adjoint of T .

Proof. Let v ∈ V , and define the linear functional f : V → F as

f(u) = 〈T (u),v〉

for any u ∈ V . By Lem. 6.11 there is an unique vector v′ ∈ V such that f(u) = 〈u,v′〉. Now
let us set T ∗(v) = v′. It can be verified that T ∗ is a linear operator. Also,

〈u, T ∗(v)〉 = 〈u,v′〉 = f(u) = 〈T (u),v〉

Suppose there is another linear operator S that fulfils

〈T (u),v〉 = 〈u, S(v)〉

Then 〈u, S(v)〉 = 〈u, T ∗(v)〉. Since this is true for all u,

〈S(v), S(v)〉 = 〈S(v), T ∗(v)〉
〈S(v), S(v)− T ∗(v)〉 = 0

so S(v) = T ∗(v) for all v.

�

Theorem 6.13. Let T : V → V be a linear operator on a finite dimensional inner product
space V and B be an orthonormal basis of V . Then

[T ∗]B = [T ]∗B

where [T ]∗B denotes the conjugate transpose of [T ]B.
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Proof. Let B = {v1, . . . ,vn}, [T ]B = (aij), and [T ]∗B = (bij). From Cor. 6.5.1,

bij = 〈T ∗(vj),vi〉
= 〈vi, T ∗(vj)〉
= 〈T (vi),vj〉
= aij

�

Theorem 6.14. Let T , T1, T2 be linear operators on a finite dimensional inner product space
V . Then

i. (T1 + T2)∗ = T ∗1 + T ∗2 .

ii. (cT )∗ = cT ∗.

iii. (T1T2)∗ = T ∗2 T
∗
1 .

iv. (T ∗)∗ = T .

Proof. Let B be an orthonormal basis of V , and any vectors u,v ∈ V .

i. [(T1 + T2)∗]B = [T1 + T2]∗B = [T1]∗B + [T2]∗B.

ii. 〈u, (cT )∗(v)〉 = 〈cT (u),v〉 = c〈T (u),v〉 = c〈u, T ∗(v)〉 = 〈u, cT ∗(v)〉.

iii. 〈u, (T1T2)∗(v)〉 = 〈T1T2(u),v〉 = 〈T2(u), T ∗1 (v)〉 = 〈u, T ∗2 (T ∗1 (v))〉

iv. 〈T (u),v〉 = 〈u, T ∗(v)〉 = 〈(T ∗)∗(u),v〉

�

6.10 Normal and self-adjoint operators

Recall that a linear operator T : V → V is diagonalizable if V has a basis B consisting of
eigenvectors of T . Then [T ]B is a diagonal matrix with diagonal entries corresponding to the
eigenvalues of T .

If V is an inner product space over R or C, then we may ask if B is orthonormal. If such
an orthonormal basis exists, then we say that T is orthogonally diagonalizable. Now which
linear operators on an inner product space are orthogonally diagonalizable? We will answer
this question in this section.

Definition 6.8. A linear operator T : V → V on a finite dimensional inner product space V
is called self-adjoint if T = T ∗. �

Lemma 6.15. All eigenvalues of a self-adjoint operator on a finite dimensional complex vector
space are real.
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Proof. Let T : V → V be a self-adjoint operator on the complex inner product space V , and
v be an eigenvector of T corresponding to the eigenvalue λ. Then

λ〈v,v〉 = 〈T (v),v)〉 = 〈v, T (v)〉 = λ〈v,v〉

Since v 6= 0, 〈v,v〉 6= 0 and the result follows. �

Definition 6.9. Let T : V → V be a self-adjoint operator on a finite dimensional inner product
space V over a field F. If B is an orthonormal basis of V and A = [T ]B, then

• If F = R, A = A∗ = AT and A is symmetric.

• If F = R, then A = A∗ and we call A a Hermitian matrix.

�

By Lemma 6.15, the eigenvalues of a Hermitian matrix are real.

Corollary 6.15.1. A self-adjoint operator on a finite dimensional real inner product space has
at least one eigenvalue.

Proof. Let T : V → V be a self-adjoint operator on a real inner product space V . Let B be an
orthonormal basis of V , and let A = [T ]B. Then A is a real symmetric matrix.

However we may treat A as a complex matrix first, in which case it is Hermitian, and also
all its complex eigenvalues (recall that they must exist) must be real. They form the roots of
the characteristic polynomial of A, and hence the same roots are also the (real) eigenvalues of
T . �

Theorem 6.16. A linear operator on a finite dimensional real inner product space is orthogo-
nally diagonalizable iff it is self-adjoint.

Proof.

( =⇒ ) TODO

( ⇐= ) Given T is self-adjoint, we want to show that T is orthogonally diagonalizable. We
perform induction on dimV = n. The statement is clearly true for n = 1.

Suppose the statement is true for some n = k. Consider the case for some where dimV = k+1.
Then by Cor. 6.15.1, T has an eigenvector v corresponding to some eigenvalue λ. Let W =
span{v}.

We claim that W⊥ is T -invariant. For any u ∈ W⊥,

〈T (u),v〉 = 〈u, T (v)〉 = λ〈u,v〉 = 0

so T (u) ∈ W⊥.

The restriction of T to W⊥ is a linear operator TW⊥ on W⊥, which is also self-adjoint. Since
dimW⊥ = k (this can be shown from V = W ⊕ W⊥), by the inductive hypothesis TW⊥
is orthogonally diagonalizable. Thus W⊥ has an orthonormal basis {v1, . . . ,vn} consisting of
the eigenvectors of TW⊥ . Thus {v,v1, . . . ,vn} is an orthonormal basis for V consisting of the
eigenvectors of T . �
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Definition 6.10. A linear operator T on a finite dimensional inner product space is called
normal if it commutes with its adjoint, i.e. TT ∗ = T ∗T . �

Every self-adjoint operator is clearly normal, but a normal operator is not necessarily self-
adjoint.

Theorem 6.17. A linear operator on a finite dimensional complex inner product space is
orthogonally diagonalizable iff it is normal.

Proof. TODO �

6.11 Unitary operators

Definition 6.11. A linear operator T : V → V on a finite dimensional inner product space V
is called unitary if T is invertible and T−1 = T ∗. �

Theorem 6.18. Let T : V → V be a linear operator on a finite dimensional inner product
space V . Then the following are equivalent:

i. T is unitary.

ii. ∀u,v ∈ V, 〈T (u), T (v)〉 = 〈u,v〉.

iii. T sends an orthonormal basis of V to an orthonormal basis.

iv. ∀v ∈ V, ‖T (v)‖ = ‖v‖

Proof. Let v,u ∈ V and let B = {v1, . . . ,vn} be an orthonormal basis of V .

((i) =⇒ (ii)) 〈T (u), T (v)〉 = 〈u, T ∗(T (v))〉 = 〈u,v〉.

((ii) =⇒ (iii)) Since T is invertible it is bijective and we are assured that {T (v1), . . . , T (vn)}
is also a basis. All we need to check is orthogonality. For 1 ≤ i, j ≤ n, it follows that
〈T (vi), T (vj)〉 = 〈vi,vj〉 = δij.

((iii) =⇒ (iv)) Since both {v1, . . . ,vn} and {T (v1), . . . , T (vn)} are orthonormal bases, if
v =

∑n
i=1aivi and then T (v) =

∑n
i=1aiT (vi), we have that ‖v‖2 =

∑n
i=1a

2
i = ‖T (v)‖2

((iv) =⇒ (i)) TODO �

It might be noted that an unitary operator on a complex inner product space is orthogonally
diagonalizable since it is normal. However, the same need not be true if it is on a real inner
product space instead.

We may extend some of these notions to matrices. Notice that since TT ∗ = T ∗T IV , we have that
for an orthonormal basis B of V , [TT ∗]B = [T ∗T ]B = In. Hence if A = [T ]B, AA∗ = A∗A = In.

Definition 6.12. Let A be an n× n matrix. Then

• A is called orthogonal if AAT = ATA = In.
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• A is called unitary if AA∗ = A∗A = In.

�

Corollary 6.18.1. Let T : V → V be an unitary operator on a finite dimensional inner product
space V over a field F. Let B be an orthonormal basis of V and let A = [T ]B. Then,

i. If F = R, A is a real orthogonal matrix.

ii. If F = C, A is an unitary matrix.

Let A be an n × n real matrix. Denote the columns of A as a1, . . . , an and consider the inner
product of two columns, 〈ai, aj〉 =

∑n
k=1akiakj. Notice that if we let B = ATA = (bij), then

bij = 〈ai, aj〉.

From this we see that ATA = In iff 〈ai, aj〉 = δij, i.e. {ai, . . . , an} is an orthonormal basis of
Rn. What about unitary matrices?
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