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1 Differentiation

1.1 Derivatives

Definition 1.1 (Differentiability at a point). A function 𝑓 is said to be differentiable at a point 𝑎 if 𝑓
is defined in some open interval containing 𝑎 and the limit

𝑓 ′(𝑎) = lim𝑥→𝑎
𝑓 (𝑥) − 𝑓 (𝑎)

𝑥 − 𝑎

exists. Then we call 𝑓 ′(𝑎) the derivative of 𝑓 at 𝑎. �

By letting ℎ = 𝑥 − 𝑎 we can also write the limit as

lim
ℎ→0

𝑓 (𝑎 + ℎ) − 𝑓 (𝑎)
ℎ

.

Also geometrically 𝑓 ′(𝑎) is the slope of the tangent line to the curve 𝑦 = 𝑓 (𝑥) at 𝑥 = 𝑎.

Definition 1.2 (Differentiable functions on open intervals). If a function 𝑓 is differentiable at every
point in (𝑎, 𝑏), then we say that 𝑓 is differentiable on (𝑎, 𝑏). �

Definition 1.3 (Differentiable functions on closed intervals). If a function 𝑓 : [𝑎, 𝑏] → ℝ is such that

• 𝑓 is differentiable on (𝑎, 𝑏), and

• the one sided limits

𝐿1 = lim
𝑥→𝑎+

𝑓 (𝑥) − 𝑓 (𝑎)
𝑥 − 𝑎

𝐿2 = lim
𝑥→𝑏−

𝑓 (𝑥) − 𝑓 (𝑏)
𝑥 − 𝑏

exists,

then we say that 𝑓 is differentiable on [𝑎, 𝑏]. Also we define 𝑓 ′(𝑎) = 𝐿1 and 𝑓 ′(𝑏) = 𝐿2. �

Similar definitions can be made for half-open intervals, etc.
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Definition 1.4 (Derivatives). Let 𝑓 be a differentiable function on the interval 𝐼. Then the derivative
of 𝑓 is the function 𝑓 ′: 𝐼 → ℝ given by 𝑥 ↦ 𝑓 ′(𝑥) for all 𝑥 ∈ 𝐼. We can also write

𝑓 ′(𝑥) =
d
d𝑥

𝑓 (𝑥).

�

Definition 1.5 (Continuously differentiable functions). A function 𝑓 is said to be continuously dif-
ferentiable on an interval 𝐼 if 𝑓 is differentiable on 𝐼 and 𝑓 ′ is continuous on 𝐼. �

Example 1.1. Let 𝑓 (𝑥) = 𝑐, a constant. Then

𝑓 ′(𝑥) = lim
ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

= lim
ℎ→0

𝑐 − 𝑐
ℎ

= 0.

♦

Example 1.2. Let 𝑓 (𝑥) = 𝑥. Then

𝑓 ′(𝑥) = lim
ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

= lim
ℎ→0

𝑥 + ℎ − 𝑥
ℎ

= 1.

♦

Example 1.3. Let 𝑓 (𝑥) = 𝑥𝑛 where 𝑛 ∈ ℕ, Then

𝑓 ′(𝑥) = lim
ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

= lim
ℎ→0

(𝑥 + ℎ)𝑛 − 𝑥𝑛

ℎ

= lim
ℎ→0

(𝑥 + ℎ)𝑛 − 𝑥𝑛

ℎ
= 𝑛𝑥𝑛−1.

♦

Theorem 1.1. If 𝑓 is differentiable at 𝑎, then it is continuous at 𝑎.

Proof.

lim𝑥→𝑎 𝑓 (𝑥) = lim𝑥→𝑎(𝑓 (𝑥) − 𝑓 (𝑎) + 𝑓 (𝑎))

= lim𝑥→𝑎 [
𝑓 (𝑥) − 𝑓 (𝑎)

𝑥 − 𝑎
(𝑥 − 𝑎)] + 𝑓 (𝑎)

= lim𝑥→𝑎(
𝑓 (𝑥) − 𝑓 (𝑎)

𝑥 − 𝑎
) lim𝑥→𝑎(𝑥 − 𝑎) + 𝑓 (𝑎)

= 𝑓 ′(𝑎) ⋅ 0 + 𝑓 (𝑎)
= 𝑓 (𝑎).

�
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Theorem 1.2 (Differentiation rules). Let 𝑓 and 𝑔 be functions differentiable at 𝑎. Then

i. d
d𝑥𝑓 (𝑥) ± 𝑔(𝑥)|

𝑥=𝑎
= 𝑓 ′(𝑎) ± 𝑔′(𝑎).

ii. Product rule. d
d𝑥𝑓 (𝑥)𝑔(𝑥)|𝑥=𝑎 = 𝑓 ′(𝑎)𝑔(𝑎) + 𝑓 (𝑎)𝑔′(𝑎).

iii. Quotient rule. d
d𝑥

𝑓 (𝑥)
𝑔(𝑥) |𝑥=𝑎

= 𝑓 ′(𝑎)𝑔(𝑎)−𝑓 (𝑎)𝑔′(𝑎)
𝑔(𝑎)2 .

Proof.

i.

d
d𝑥

𝑓 (𝑥) ± 𝑔(𝑥)|
𝑥=𝑎

= lim𝑥→𝑎
𝑓 (𝑥) ± 𝑔(𝑥) − (𝑓 (𝑎) ± 𝑔(𝑎))

𝑥 − 𝑎

= lim𝑥→𝑎
𝑓 (𝑥) − 𝑓 (𝑎)

𝑥 − 𝑎
± lim𝑥→𝑎

𝑔(𝑥) − 𝑔(𝑎)
𝑥 − 𝑎

= 𝑓 ′(𝑎) ± 𝑔′(𝑎).

ii.

d
d𝑥

𝑓 (𝑥)𝑔(𝑥)|
𝑥=𝑎

= lim𝑥→𝑎
𝑓 (𝑥)𝑔(𝑥) − 𝑓 (𝑎)𝑔(𝑎)

𝑥 − 𝑎

= lim𝑥→𝑎
[𝑓 (𝑥)𝑔(𝑥) − 𝑓 (𝑥)𝑔(𝑎)] + [𝑓 (𝑥)𝑔(𝑎) − 𝑓 (𝑎)𝑔(𝑎)]

𝑥 − 𝑎

= lim𝑥→𝑎 [𝑓 (𝑥)
𝑔(𝑥) − 𝑔(𝑎)

𝑥 − 𝑎
+
𝑓 (𝑥) − 𝑓 (𝑎)

𝑥 − 𝑎
𝑔(𝑎)]

= 𝑓 (𝑎)𝑔′(𝑎) + 𝑓 ′(𝑎)𝑔(𝑎).

iii.

d
d𝑥

𝑓 (𝑥)
𝑔(𝑥)

|
𝑥=𝑎

= lim𝑥→𝑎

𝑓 (𝑥)
𝑔(𝑥) −

𝑓 (𝑎)
𝑔(𝑎)

𝑥 − 𝑎

= ( lim𝑥→𝑎
𝑓 (𝑥)𝑔(𝑎) − 𝑓 (𝑎)𝑔(𝑥)

𝑔(𝑥)𝑔(𝑎)
)/(𝑥 − 𝑎)

= ( lim𝑥→𝑎
𝑓 (𝑥)𝑔(𝑎) − 𝑓 (𝑎)𝑔(𝑎) − 𝑓 (𝑎)𝑔(𝑥) + 𝑓 (𝑎)𝑔(𝑎)

𝑥 − 𝑎 )/𝑔(𝑎)2

=
𝑓 ′(𝑎)𝑔(𝑎) − 𝑓 (𝑎)𝑔′(𝑎)

𝑔(𝑎)2

�

We have shown that d
d𝑥𝑥

𝑛 = 𝑛𝑥𝑛−1 for all 𝑛 ∈ ℕ, and using the quotient rule inductively we can

show that d
d𝑥

1
𝑥𝑛 = − 𝑛

𝑥𝑛+1 for all 𝑛 ∈ ℕ. So in general we can say that

d
d𝑥

𝑥𝑛 = 𝑛𝑥𝑛−1
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for all 𝑛 ∈ ℤ ⧵ {0}. One question is if this holds for real or rational 𝑛 as well. We will answer this
question later.

We will not be proving all the basic identities. Assume the following to be true:

d
d𝑥

sin 𝑥 = cos 𝑥
d
d𝑥

cos 𝑥 = − sin 𝑥
d
d𝑥

𝑒𝑥 = 𝑒𝑥
d
d𝑥

ln 𝑥 =
1
𝑥
.

Theorem 1.3 (Carathéodory’s theorem). Let 𝐼 be an interval and 𝑓 : 𝐼 → ℝ and 𝑐 ∈ 𝐼. Then 𝑓 ′(𝑐)
exists iff there exists a function 𝜙 on 𝐼 such that 𝜙 is continuous at 𝑐 and for all 𝑥 ∈ 𝐼,

𝑓 (𝑥) − 𝑓 (𝑐) = 𝜙(𝑥)(𝑥 − 𝑐).

Proof.

( ⟹ ): Assume that 𝑓 ′(𝑐) exists. Then

lim𝑥→𝑐 𝜙(𝑥) = lim𝑥→𝑐
𝑓 (𝑥) − 𝑓 (𝑥)

𝑥 − 𝑐
= 𝑓 ′(𝑐).

So we define 𝜙(𝑐) = 𝑓 ′(𝑐) and 𝜙 is continuous at 𝑐.

( ⟸ ): Assume that 𝜙 is continuous at 𝑥 = 𝑐. Then

𝜙(𝑐) = lim𝑥→𝑐 𝜙(𝑥) = lim𝑥→𝑐
𝑓 (𝑥) − 𝑓 (𝑐)

𝑥 − 𝑐

which means that 𝑓 ′(𝑐) = 𝜙(𝑐) and so it exists. �

Theorem 1.4 (Chain Rule). Let 𝐼 and 𝐽 be intervals. Let 𝑔: 𝐼 → ℝ and 𝑓 : 𝐽 → ℝ be functions such
that 𝑓 [𝐽 ] ⊆ 𝐼. If 𝑓 is differentiable at 𝑎 ∈ 𝐽 and 𝑔 is differentiable at 𝑓 (𝑎), then ℎ = 𝑔 ∘ 𝑓 is differentiable
at 𝑎 and

ℎ′(𝑎) = 𝑔′(𝑓 (𝑎))𝑓 ′(𝑎).

Proof. Let 𝑏 = 𝑓 (𝑎). Given that 𝑓 ′(𝑎) and 𝑔′(𝑏) exists, we want to show that ℎ′(𝑎) = 𝑔′(𝑏)𝑓 ′(𝑎). By
Carathéodory’s theorem, there exists a function 𝜙: 𝐽 → ℝ and 𝜓 : 𝐼 → ℝ such that firstly

𝑓 (𝑥) − 𝑓 (𝑎) = 𝜙(𝑥)(𝑥 − 𝑎)

for all 𝑥 ∈ 𝐽, 𝜙 is continuous at 𝑎, and 𝜙(𝑎) = 𝑓 ′(𝑎). Also,

𝑔(𝑦) − 𝑔(𝑏) = 𝜓(𝑦)(𝑥 − 𝑎)

for all 𝑦 ∈ 𝐽, 𝜓 is continuous at 𝑏, and 𝜓(𝑎) = 𝑔′(𝑏).

Since 𝑓 [𝐽 ] ⊆ 𝐼, for any 𝑥 ∈ 𝐽 we have 𝑦 = 𝑓 (𝑥) ∈ 𝐼. Now

𝑔(𝑓 (𝑥)) − 𝑔(𝑓 (𝑎)) = 𝜙(𝑓 (𝑥))(𝑓 (𝑥) − 𝑓 (𝑎))
= [𝜙(𝑓 (𝑥))𝜙(𝑥)](𝑥 − 𝑎)

ℎ(𝑥) − ℎ(𝑎) = 𝛼(𝑥)(𝑥 − 𝑎)

We have cast this into the form of Carathéodory’s theorem. What is left is to check if 𝛼 is continuous
at 𝑎. Since 𝜓 and 𝑓 are both continuous at 𝑎, 𝜙∘𝑓 is continuous at 𝑎. We also know that 𝜙 is continuous
at 𝑎. Therefore, 𝛼(𝑥) = (𝜙 ∘ 𝑓 )(𝑥)𝜙(𝑥) is continuous at 𝑎. �
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An alternative and themore conventional way of writing the chain rule is obtained if we let 𝑢 = 𝑓 (𝑥):

(𝑔 ∘ 𝑓 )′(𝑥) = 𝑔′(𝑓 (𝑥))𝑓 ′(𝑥) = 𝑔′(𝑢)𝑢′ =
d𝑦
d𝑢

d𝑢
d𝑥

.

Example 1.4. Let 𝑓 :ℝ → ℝ be defined by

𝑓 (𝑥) = {
𝑥2 sin(1𝑥), if 𝑥 ≠ 0
0, otherwise

At points 𝑥 ≠ 0, 𝑓 (𝑥) is differentiable. Using the chain rule (skipping some steps),

𝑓 ′(𝑥) =
d
d𝑥[

𝑥2 sin(
1
𝑥)]

= 2𝑥 sin(
1
𝑥)

− 𝑥2(cos
1
𝑥
)(

1
𝑥2

)

At 0 we will have to do it the hard way.

𝑓 ′(0) = lim
𝑥→0

𝑥2 sin 1
𝑥 − 0

𝑥 − 0

= lim
𝑥→0

𝑥 sin
1
𝑥

Now
0 ≤ |𝑥 sin

1
𝑥 |

≤ |𝑥|

so by the Squeeze theorem, the previous limit goes to 0 as 𝑥 → 0. So 𝑓 is differentiable on ℝ. Is is
continuously differentiable? 𝑓 ′ is obviously continuous on 𝑥 ≠ 0. We need to show if it is true that
lim𝑥→0 𝑓 ′(𝑥) = 0.

Create a sequence (𝑥𝑛) where 𝑥𝑛 =
1
2𝑛𝜋 . Then lim𝑛→∞ 𝑥𝑛 = 0. Furthermore

lim𝑛→∞ 𝑓 ′(𝑥𝑛) = lim𝑛→∞(2𝑥𝑛 sin 2𝑛𝜋 − cos 2𝑛𝜋)

= −1

so it is not continous. ♦

Theorem 1.5. Suppose that 𝐼 is an interval, 𝑓 : 𝐼 → ℝ is strictly monotone and continuous on 𝐼.

Then 𝐽 = 𝑓 [𝐼 ] is also an interval, and the inverse function 𝑔 = 𝑓 −1: 𝐽 → ℝ exists and 𝑔(𝑓 (𝑥)) = 𝑥 for
all 𝑥 ∈ 𝐼. 𝑔 is also strictly monotone and continuous on 𝐽.

Theorem 1.6 (Inverse function theorem). Suppose that 𝐼 is an interval, 𝑓 : 𝐼 → ℝ is strictly monotone
and continuous on 𝐼, and 𝑓 is differentiable at 𝑐 ∈ 𝐼 and 𝑓 ′(𝑐) ≠ 0.

Then 𝑔 = 𝑓 −1 is differentiable at 𝑓 (𝑐) and 1

𝑔′(𝑓 (𝑐)) =
1

𝑓 ′(𝑐)
.

1An equivalent and perhaps more convenient form is (𝑓 −1)′(𝑏) = 1
𝑓 ′(𝑓 −1(𝑏)) .
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Proof. Since 𝑓 ′(𝑐) exists, by Carathéodory’s theorem, there exists a function 𝜙: 𝐼 → ℝ such that

𝑓 (𝑥) − 𝑓 (𝑐) = 𝜙(𝑥)(𝑥 − 𝑐)

for all 𝑥 ∈ 𝐼, 𝜙 is continuous at 𝑐, and 𝜙(𝑐) = 𝑓 ′(𝑐) ≠ 0.

From theorem 5.1, there exists an interval 𝑉 = (𝑐 − 𝛿, 𝑐 + 𝛿) such that

∀𝑥 ∈ 𝑉 [𝜙(𝑥) ≠ 0].

Let 𝑈 = 𝑓 [𝑉 ]. 𝑈 is an interval and 𝑑 = 𝑓 (𝑐) ∈ 𝑈. Let 𝑥 = 𝑔(𝑦). Then, firstly

𝑦 − 𝑑 = 𝑓 (𝑔(𝑦)) − 𝑓 (𝑔(𝑑)) = 𝜙(𝑔(𝑦))(𝑔(𝑦) − 𝑔(𝑑)).

Secondly, 𝜙(𝑔(𝑦)) ≠ 0 since 𝑔(𝑦) ∈ 𝑉. Rearranging,

𝑔(𝑦) − 𝑔(𝑑) =
1

𝜙(𝑔(𝑦))
(𝑦 − 𝑑)

𝑔 is continuous at 𝑑 by theorem 1.5. 𝜙 is continuous at 𝑐 by supposition. Therefore 1
𝜙∘𝑔 is continuous

at 𝑑, and by Carathéodory’s theorem, 𝑔 is differentiable at 𝑑 and

𝑔′(𝑑) =
1

𝜙(𝑔(𝑑))
=

1
𝜙(𝑐)

=
1

𝑓 ′(𝑐)
.

�

What happens when 𝑓 ′(𝑐) = 0 instead?

Theorem 1.7. Suppose that 𝐼 is an interval, 𝑓 : 𝐼 → ℝ be strictly monotone and continuous on 𝐼, and 𝑓
is differentiable at 𝑐 ∈ 𝐼 and 𝑓 ′(𝑐) = 0. Then 𝑔 = 𝑓 −1 is not differentiable at 𝑓 (𝑐).

Proof. Let 𝑑 = 𝑓 (𝑐). Suppose that 𝑔 was differentiable at 𝑑. Then, by the chain rule,

(𝑔 ∘ 𝑓 )′(𝑐) = 𝑔′(𝑓 (𝑐))𝑓 ′(𝑐) = 0

However this is clearly not true since (𝑔 ∘ 𝑓 )(𝑥) = 𝑥 and we know the derivative of 𝑥 should be 1,
not 0. �

Example 1.5. Let 𝑟 ∈ ℚ+, and let 𝑓 (𝑥) = 𝑥 𝑟 for 𝑥 > 0. Now we can show that 𝑓 ′(𝑥) = 𝑟𝑥 𝑟−1.

Write 𝑟 = 𝑚
𝑛 , where 𝑚, 𝑛 ∈ ℕ. Then 𝑓 = 𝑔 ∘ ℎ where 𝑔(𝑥) = 𝑥𝑚 and ℎ(𝑥) = 𝑥

1
𝑛 . We have already

established earlier that 𝑔′(𝑥) = 𝑚𝑥𝑚−1. Now 𝐻 = ℎ−1(𝑥) = 𝑥𝑛 and thus 𝐻 ′ = 𝑛𝑥𝑛−1. By the inverse
function theorem,

ℎ′(𝑥) =
1

𝐻 ′(ℎ(𝑥))
=

1

𝑛𝑥
𝑛−1
𝑛

=
1
𝑛
𝑥

1−𝑛
𝑛

Using the chain rule,

𝑓 ′(𝑥) = 𝑔′(ℎ(𝑥))ℎ′(𝑥) = 𝑚𝑥
𝑚−1
𝑛
1
𝑛
𝑥

1−𝑛
𝑛 =

𝑚
𝑛
𝑥

𝑚−𝑛
𝑛 = 𝑟𝑥 𝑟−1.

♦

Theorem 1.8. Suppose 𝐼 is an open interval and 𝑓 : 𝐼 → ℝ a continuous function. Define 𝑔(𝑥) = |𝑓 (𝑥)|
for all 𝑥 ∈ 𝐼. If 𝑔 is differentiable at 𝑐 ∈ 𝐼, then 𝑓 is also differentiable at 𝑐.
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Proof. We will consider the three cases 𝑓 (𝑐) > 0, 𝑓 (𝑐) < 0, and 𝑓 (𝑐) = 0.

For 𝑓 (𝑐) > 0, since 𝑓 is continuous at 𝑐 so by theorem 5.1 there is an interval 𝐽 = (𝑐 − 𝛿, 𝑐 + 𝛿) such
that 𝑓 (𝑥) > 0 for all 𝑥 ∈ 𝐽. Then

𝑓 ′(𝑐) = lim𝑥→𝑐
𝑓 (𝑥) − 𝑓 (𝑐)

𝑥 − 𝑐
= lim𝑥→𝑐

𝑔(𝑥) − 𝑔(𝑐)
𝑥 − 𝑐

= 𝑔′(𝑐)

It can thus be seen that for 𝑓 (𝑐) < 0 we get 𝑓 ′(𝑐) = −𝑔′(𝑐) using the same method.

For 𝑓 (𝑐) = 0, it is the same as above but let us work out explicitly the value of the derivative.

𝑓 ′(𝑐) = lim𝑥→𝑐
𝑓 (𝑥) − 𝑓 (𝑐)

𝑥 − 𝑐
= lim𝑥→𝑐

𝑔(𝑥)
𝑥 − 𝑐

= 𝑔′(𝑐)

However, we can see that since 𝑔(𝑥) ≥ 0 for all 𝑥,

lim
𝑥→𝑐+

𝑔(𝑥)
𝑥 − 𝑐

> 0 lim
𝑥→𝑐−

𝑔(𝑥)
𝑥 − 𝑐

< 0

therefore 𝑔′(𝑐) = 𝑓 ′(𝑐) = 0. �

Theorem 1.9 (Straddle lemma). Let 𝐼 be an interval and 𝑓 : 𝐼 → ℝ be differentiable at 𝑐 ∈ 𝐼. Then
∀𝜖 > 0, ∃𝛿 > 0, ∀𝑢, 𝑣 ∈ 𝐼:

𝑐 − 𝛿 < 𝑢 ≤ 𝑐 ≤ 𝑣 < 𝑐 + 𝛿 ⟹ |𝑓 (𝑣) − 𝑓 (𝑢) − (𝑣 − 𝑢)𝑓 ′(𝑐)| ≤ 𝜖(𝑣 − 𝑢)

Proof. Let 𝜖 > 0. Since 𝑓 is differentiable at 𝑐, the limit lim𝑥→𝑐
𝑓 (𝑥)−𝑓 (𝑐)

𝑥−𝑐 exists and so

∃𝛿 > 0 [|𝑥 − 𝑐| < 𝛿 ⟹ |
𝑓 (𝑥) − 𝑓 (𝑐)

𝑥 − 𝑐
− 𝑓 ′(𝑐)| < 𝜖]

Pick 𝑢 and 𝑣 such that 𝑐 − 𝛿 < 𝑢 ≤ 𝑐 ≤ 𝑣 < 𝑐 + 𝛿. Then

|𝑓 (𝑐) − 𝑓 (𝑢) − (𝑐 − 𝑢)𝑓 ′(𝑐)| < 𝜖(𝑐 − 𝑢)
|𝑓 (𝑣) − 𝑓 (𝑐) − (𝑣 − 𝑐)𝑓 ′(𝑐)| < 𝜖(𝑣 − 𝑐)

Therefore

|𝑓 (𝑣) − 𝑓 (𝑢) − (𝑣 − 𝑢)𝑓 ′(𝑐)| = |𝑓 (𝑣) − 𝑓 (𝑐) − (𝑣 − 𝑐)𝑓 ′(𝑐) + 𝑓 (𝑐) − 𝑓 (𝑢) − (𝑐 − 𝑢)𝑓 ′(𝑐)|
< 𝜖(𝑣 − 𝑐) + 𝜖(𝑐 − 𝑢)
= 𝜖(𝑣 − 𝑢)

�

1.2 Mean value theorem

After we have established some facts about the derivative, we want to know what it is good for. We
know some applications of derivatives in basic calculus. We will establish some of these facts in the
following sections.

Definition 1.6 (Absolute and relative maximums). Let 𝐼 be an interval, and 𝑓 : 𝐼 → ℝ be a function
and 𝑥0 ∈ 𝐼. Then we say that 𝑓 (𝑥0) is an absolute maximum of 𝑓 on 𝐼 if ∀𝑥 ∈ 𝐼 [𝑓 (𝑥0) ≥ 𝑓 (𝑥)]. We say
that 𝑓 (𝑥0) is a relative maximum if ∃𝛿 > 0, ∀𝑥 ∈ (𝑥0 − 𝛿, 𝑥0 + 𝛿) [𝑓 (𝑥) ≤ 𝑓 (𝑥0)]. �
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Absolute and relative minimums can be defined similarly. If 𝑓 (𝑥0) is either a relative (absolute)
maximum or minimum, then we call it a relative (absolute) extremum. Note that relative extrema
can only occur at an interior point but absolute extrema can occur at the end points of the interval.
Therefore an absolute extremum may not necessarily be relative extremum.

Theorem 1.10. Let 𝑓 : (𝑎, 𝑏) → ℝ and suppose 𝑓 ′(𝑐) exists for some 𝑐 ∈ (𝑎, 𝑏).

i. If 𝑓 ′(𝑐) > 0, then ∃𝛿 > 0, ∀𝑥 ∈ (𝑐 − 𝛿, 𝑐), ∀𝑦 ∈ (𝑐, 𝑐 + 𝛿) [𝑓 (𝑥) < 𝑓 (𝑐) < 𝑓 (𝑦)].

ii. If 𝑓 ′(𝑐) < 0, then ∃𝛿 > 0, ∀𝑥 ∈ (𝑐 − 𝛿, 𝑐), ∀𝑦 ∈ (𝑐, 𝑐 + 𝛿) [𝑓 (𝑥) > 𝑓 (𝑐) > 𝑓 (𝑦)].

Proof. The proof for (ii) is similar to (i) so we will only prove (i).

Since 𝑓 ′(𝑐) = lim𝑥→𝑐
𝑓 (𝑥)−𝑓 (𝑐)

𝑥−𝑐 > 0, using theorem 1.5,

∃𝛿 > 0 [0 < |𝑥 − 𝑐| < 𝛿 ⟹
𝑓 (𝑥) − 𝑓 (𝑐)

𝑥 − 𝑐
> 0].

Taking 𝑥 ∈ (𝑐 − 𝛿, 𝑐), since 𝑥 − 𝑐 > 0, we conclude that 𝑓 (𝑥) − 𝑓 (𝑐) < 0 and 𝑓 (𝑥) < 𝑓 (𝑐). Taking
𝑥 ∈ (𝑐, 𝑐 + 𝛿), 𝑥 − 𝑐 < 0, and following the same reasoning we arrive at 𝑓 (𝑥) > 𝑓 (𝑐). �

Note that the above conditions does not allow us to conclude that 𝑓 is an increasing function in a
neighbourhood of 𝑐. It only compares 𝑓 (𝑐) to the surrounding points, but says nothing about the
nature of those points. The following example illustrates this,

Example 1.6. Let 𝑓 :ℝ → ℝ be defined by

𝑓 (𝑥) = {
𝑥 + 2𝑥2 cos(1𝑥), if 𝑥 ≠ 0
0, otherwise

We have at 𝑥 = 0

𝑓 ′(0) = lim
ℎ→0

𝑓 (ℎ) − 𝑓 (0)
ℎ

= lim
ℎ→0

ℎ + 2ℎ2 cos( 1ℎ)
ℎ

= lim
ℎ→0

1 + 2ℎ cos(
1
ℎ)

= 1 > 0.

However, there is no neighbourhood around 𝑥 = 0 such that 𝑓 is increasing. Suppose instead that

there was such a neighbourhood and let it be (−𝛿, 𝛿). Consider the sequence (𝑠𝑛) = ( 1
(2𝑛− 1

2 )𝜋
). Then,

𝑓 ′(𝑠𝑛) = 1 +
4

(2𝑛 − 1
2)𝜋

cos((2𝑛 −
1
2)

𝜋) + 2 sin((2𝑛 −
1
2)

𝜋)

= 1 − 2 = −1.

Now since lim𝑛→∞(𝑠𝑛) = 0, there exists some element 𝑠𝑚 ∈ (−𝛿, 𝛿). However, the previous calculation
also shows us that since 𝑓 ′(𝑠𝑚) < 0, there exists some 𝛼 such that for all 𝑦 ∈ (𝑠𝑚, 𝑠𝑚 + 𝛼) ⊂ (−𝛿, 𝛿),
we have 𝑓 (𝑠𝑚) < 𝑓 (𝑦), or in other words, 𝑓 is not increasing there. ♦
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Theorem 1.11 (Interior extremum theorem). Let 𝑓 : (𝑎, 𝑏) → ℝ and suppose 𝑓 ′(𝑐) exists for some
𝑐 ∈ (𝑎, 𝑏). If 𝑓 ′(𝑐) ≠ 0, then 𝑓 (𝑐) cannot be a relative extremum. Equivalently, if 𝑓 (𝑐) is a relative
extremum, then 𝑓 ′(𝑐) = 0.

Proof. Follows directly. �

Note that the converse is not true, i.e. 𝑓 ′(𝑐) = 0 does not always give us a relative extremum.
Inflection points serve as a counterexample. Furthermore, 𝑓 (𝑐) can be a relative extremum but 𝑓 ′(𝑐)
might not exist.

Using what we have we can also prove the following fun fact. This also serves as a counterexample
for the converse of the intermediate value theorem, since it clearly shows that just satisfying the
intermediate value theorem alone is not enough to make something continuous.

Theorem 1.12 (Intermediate value theorem for derivatives). Let 𝑓 : [𝑎, 𝑏] → ℝ be differentiable on
[𝑎, 𝑏] and that 𝑓 ′(𝑎) < 𝑓 ′(𝑏). Suppose there is a 𝑘 ∈ ℝ such that 𝑓 ′(𝑎) < 𝑘 < 𝑓 ′(𝑏). Then there exists
a 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 ′(𝑐) = 𝑘.

Proof. Consider the function 𝑔(𝑥) = 𝑓 (𝑥) − 𝑘𝑥. Since 𝑓 (𝑥) and 𝑘𝑥 are differentiable, 𝑔(𝑥) is as well
and we have 𝑔′(𝑥) = 𝑓 ′(𝑥) − 𝑘.

Since 𝑓 ′(𝑎) < 𝑘, so 𝑔′(𝑎) < 0 and theorem 1.10 tells us that 𝑔(𝑎) cannot be an absolute minimum.
Similarly, since 𝑘 < 𝑓 ′(𝑏), we have 𝑔′(𝑏) > 0, and theorem 1.10 tells us that 𝑔(𝑏) cannot be an absolute
minimum either. But the extreme value theorem says that 𝑔 has to have an absolute minimum at
some point 𝑧 ∈ (𝑎, 𝑏). This means 𝑔′(𝑧) = 0, which then means that 𝑓 ′(𝑧) = 𝑘. �

Theorem 1.13 (Rolle’s theorem). If 𝑓 is continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏) and 𝑓 (𝑎) =
𝑓 (𝑏), then there exists 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 ′(𝑐) = 0.

Proof. The case when 𝑓 is a constant function is trivially true.

The second case is when 𝑓 is not a constant function. Then by the extreme value theorem, there
exists 𝑥1, 𝑥2 ∈ [𝑎, 𝑏] such that ∀𝑥 ∈ [𝑎, 𝑏] 𝑓 (𝑥1) ≤ 𝑓 (𝑥) ≤ 𝑓 (𝑥2). Since 𝑓 is not constant, 𝑓 (𝑥1) ≠ 𝑓 (𝑥2).
However since 𝑓 (𝑎) = 𝑓 (𝑏), either 𝑥1 or 𝑥2 is in (𝑎, 𝑏), call it 𝑐. So 𝑓 has a relative extremum at 𝑐. By
the interior extremum theorem, 𝑓 ′(𝑐) = 0. �

We can generalize this theorem to relax the condition of 𝑓 (𝑎) = 𝑓 (𝑏). This is done by transforming
the function in question until we can satisfy Rolle’s theorem.

Theorem 1.14 (Mean value theorem). If 𝑓 is continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏), then

∃𝑐 ∈ (𝑎, 𝑏) [𝑓 ′(𝑐) =
𝑓 (𝑏) − 𝑓 (𝑎)

𝑏 − 𝑎 ].

Proof. Define 𝑔: [𝑎, 𝑏] → ℝ by 𝑔(𝑥) = 𝑓 (𝑥) − 𝑓 (𝑎) − 𝑓 (𝑏)−𝑓 (𝑎)
𝑏−𝑎 (𝑥 − 𝑎). It is continuous on [𝑎, 𝑏] and

differentiable on (𝑎, 𝑏). Also, 𝑔(𝑎) = 0 = 𝑔(𝑏). By Rolle’s theorem, ∃𝑐 ∈ (𝑎, 𝑏) 𝑔′(𝑐) = 0. This means

𝑔′(𝑐) = 𝑓 ′(𝑐) −
𝑓 (𝑏) − 𝑓 (𝑎)

𝑏 − 𝑎
= 0.

�
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Example 1.7. We will use the mean value theorem to show that 𝑒𝑥 ≥ 1 + 𝑥.

This is clearly true for 𝑥 = 0.

Consider the case when 𝑥 > 0. Apply the mean value theorem to 𝑓 (𝑥) = 𝑒𝑥 on the interval [0, 𝑥].
So ∃𝑐 ∈ (0, 𝑥) 𝑓 ′(𝑐) = 𝑓 (𝑥)−𝑓 (0)

𝑥 . Evaluating, we get 𝑒𝑥 = 1 + 𝑒𝑐𝑥. Since 𝑒𝑐 > 1, we get 𝑒𝑥 > 1 + 𝑥. The
case where 𝑥 < 0 is similar. ♦

Example 1.8. We will use the mean value theorem to show that √1 + 𝑥 < 1 + 𝑥
2 for all 𝑥 > 0.

Apply the mean value theorem to 𝑓 (𝑥) = √1 + 𝑥 on the interval [0, 𝑥]. So ∃𝑐 ∈ (0, 𝑥) such that

𝑓 ′(𝑐) =
𝑓 (𝑥) − 𝑓 (0)

𝑥
1

2√1 + 𝑐
=

√1 + 𝑥 − 1
𝑥

𝑥
2
= √1 + 𝑐(√1 + 𝑥 − 1)

< √1 + 𝑥(√1 + 𝑥 − 1)

1 +
𝑥
2
> √1 + 𝑥.

♦

Theorem 1.15. If 𝑓 is continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏), and 𝑓 ′(𝑥) = 0 for all 𝑥 ∈ (𝑎, 𝑏),
then 𝑓 is constant on [𝑎, 𝑏].

Proof. If 𝑎 < 𝑥 ≤ 𝑏 then by the mean value theorem ∃𝑐 ∈ (𝑎, 𝑥) 𝑓 ′(𝑐) = 𝑓 (𝑥)−𝑓 (𝑎)
𝑥−𝑎 = 0. This means

𝑓 (𝑥) = 𝑓 (𝑎). �

Theorem 1.16. If 𝑓 is differentiable and its derivative is bounded on [𝑎, 𝑏] then 𝑓 is Lipschitz on [𝑎, 𝑏].

Proof. Let 𝐾 ≥ |𝑓 ′(𝑥)| for all 𝑥 ∈ [𝑎, 𝑏]. For any 𝑥, 𝑦 ∈ [𝑎, 𝑏] the mean value theorem applied to 𝑓 on
[𝑥, 𝑦] states that ∃𝑐 ∈ (𝑥, 𝑦)

𝑓 ′(𝑐) =
𝑓 (𝑥) − 𝑓 (𝑦)

𝑥 − 𝑦
𝑓 (𝑥) − 𝑓 (𝑦) = 𝑓 ′(𝑐)(𝑥 − 𝑦) ≤ 𝐾(𝑥 − 𝑦)

�

Theorem 1.17. Let 𝑓 be differentiable on (𝑎, 𝑏). For all 𝑥 ∈ (𝑎, 𝑏),

i. 𝑓 ′(𝑥) ≥ 0 iff 𝑓 is increasing on (𝑎, 𝑏).

ii. 𝑓 ′(𝑥) ≤ 0 iff 𝑓 is decreasing on (𝑎, 𝑏).

Proof. We only prove (i) since the proof for (ii) is similar.

( ⟹ ): Let 𝑎 < 𝑥1 < 𝑥2 < 𝑏. Apply themean value theorem to 𝑓 on [𝑥1, 𝑥2]. Then ∃𝑐 ∈ (𝑥1, 𝑥2) 𝑓 ′(𝑥) =
𝑓 (𝑥2)−𝑓 (𝑥1)

𝑥2−𝑥1 ≥ 0. Since 𝑥2 − 𝑥1 ≥ 0, we get that 𝑓 (𝑥2) ≥ 𝑓 (𝑥1).
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( ⟸ ): We have

𝑓 ′(𝑥) = lim
ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

.

For ℎ < 0, we have 𝑥 + ℎ < 𝑥 and so 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) ≤ 0. Therefore the term in the limit is positive.
For ℎ > 0, we have 𝑥 + ℎ > 𝑥 and so 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) ≥ 0. Therefore the term in the limit is also
positive. Hence, the limit is always positive and thus 𝑓 ′(𝑥) ≥ 0. �

There is also a strict version but its converse is not true:

Theorem 1.18. Let 𝑓 be differentiable on (𝑎, 𝑏). If, for all 𝑥 ∈ (𝑎, 𝑏),

i. If 𝑓 ′(𝑥) > 0, then 𝑓 is strictly increasing on (𝑎, 𝑏).

ii. If 𝑓 ′(𝑥) < 0, then 𝑓 is strictly decreasing on (𝑎, 𝑏).

Theorem 1.19 (First derivative test). Let 𝑓 be continuous on [𝑎, 𝑏] and 𝑐 ∈ (𝑎, 𝑏). Suppose that 𝑓 is
differentiable on (𝑎, 𝑏) except possibly at 𝑐.

i. If there is a neighbourhood (𝑐 − 𝛿, 𝑐 + 𝛿) ⊆ 𝐼 of 𝑐 such that 𝑓 ′(𝑥) ≥ 0 for all 𝑥 ∈ (𝑐 − 𝛿, 𝑐) and
𝑓 ′(𝑥) ≤ 0 for 𝑥 ∈ (𝑐, 𝑐 + 𝛿), then 𝑓 has a relative maximum at 𝑐.

ii. A similar statement can be made for relative minimums.

Proof. We will only prove (i), the proof for (ii) is similar.

Let 𝑥 ∈ (𝑐 − 𝛿, 𝑐). Applying the mean value theorem to 𝑓 on the interval [𝑥, 𝑐], ∃𝑥0 ∈ (𝑥, 𝑐) 𝑓 ′(𝑥0) =
𝑓 (𝑐)−𝑓 (𝑥)

𝑐−𝑥 . By assumption 𝑓 ′(𝑥0) ≥ 0 and 𝑐 − 𝑥 > 0, so 𝑓 (𝑐) − 𝑓 (𝑥) ≥ 0 and hence 𝑓 (𝑐) ≥ 𝑓 (𝑥).

Let 𝑥 ∈ (𝑐, 𝑐 + 𝛿). Applying the mean value theorem again now on the interval [𝑐, 𝑥], ∃𝑥1 ∈
(𝑐, 𝑥) 𝑓 ′(𝑥1) =

𝑓 (𝑥)−𝑓 (𝑐)
𝑥−𝑐 . A similar reasoning allows us to conclude that 𝑓 (𝑥) ≤ 𝑓 (𝑐). �

Theorem 1.20 (Cauchy’s mean value theorem). Let 𝑓 and 𝑔 be continuous on [𝑎, 𝑏] and differentiable
on (𝑎, 𝑏), and assume that 𝑔′(𝑥) ≠ 0 for all 𝑥 ∈ (𝑎, 𝑏). Then

∃𝑐 ∈ (𝑎, 𝑏) [
𝑓 (𝑏) − 𝑓 (𝑎)
𝑔(𝑏) − 𝑔(𝑎)

=
𝑓 ′(𝑐)
𝑔′(𝑐)

].

Proof. First, 𝑔(𝑎) ≠ 𝑔(𝑏) because Rolle’s theorem tells us that 𝑔′(𝑥0) = 0 at some point 𝑥0 ∈ (𝑎, 𝑏).

Next, let ℎ(𝑥) = 𝑓 (𝑏)−𝑓 (𝑎)
𝑔(𝑏)−𝑔(𝑎) (𝑔(𝑥) − 𝑔(𝑎)) − (𝑓 (𝑥) − 𝑓 (𝑎)). Notice that ℎ(𝑎) = ℎ(𝑏) = 0, and that

ℎ′(𝑥) = 𝑓 (𝑏)−𝑓 (𝑎)
𝑔(𝑏)−𝑔(𝑎)𝑔

′(𝑥) − 𝑓 ′(𝑥). Applying Rolle’s theorem to ℎ(𝑥), ∃𝑐 ∈ (𝑎, 𝑏) ℎ′(𝑐) = 0, and we get
the result we are after. �

Theorem 1.21 (L’Hôspital’s rule). Let 𝑓 and 𝑔 be differentiable on (𝑎, 𝑏) and assume that 𝑔(𝑥) ≠ 0 and
𝑔′(𝑥) ≠ 0 for all 𝑥 ∈ (𝑎, 𝑏). Suppose that lim𝑥→𝑎+ 𝑓 (𝑥) = lim𝑥→𝑎+ 𝑔(𝑥) = 0. Then, if lim𝑥→𝑎+

𝑓 ′(𝑥)
𝑔′(𝑥) = 𝐿

for 𝐿 ∈ ℝ ∪ {±∞}, then lim𝑥→𝑎+
𝑓 (𝑥)
𝑔(𝑥) = 𝐿.
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Proof. First consider the case 𝐿 ∈ ℝ. Let 𝜖 > 0. Then ∃𝛿 > 0 [|𝑥 − 𝑎| < 𝛿 ⟹ |𝑓
′(𝑥)

𝑔′(𝑥) − 𝐿| < 𝜖
2]. Now

let 𝑎 < 𝑥 < 𝑦 < 𝑎 + 𝛿. We can apply Cauchy’s mean value theorem to the interval (𝑥, 𝑦). So ∃𝑧 ∈
(𝑥, 𝑦) 𝑓 (𝑦)−𝑓 (𝑥)

𝑔(𝑦)−𝑔(𝑥) =
𝑓 ′(𝑧)
𝑔′(𝑧) . This means that |𝑓 (𝑦)−𝑓 (𝑥)𝑔(𝑦)−𝑔(𝑥) − 𝐿| < 𝜖

2 . Now, consider 𝑀 = lim𝑦→𝑎+
𝑓 (𝑦)−𝑓 (𝑥)
𝑔(𝑦)−𝑔(𝑥) .

We have from the above 𝐿 − 𝜖 < 𝐿 − 𝜖
2 ≤ 𝑀 ≤ 𝐿 + 𝜖

2 < 𝐿 + 𝜖. We arrive at the conclusion that

𝑥 − 𝑎 < 𝛿 ⟹ |𝑓 (𝑥)𝑔(𝑥) − 𝐿| < 𝜖.

Next, suppose that 𝐿 = ∞. So

∃𝛿 > 0, ∀𝑘 [|𝑥 − 𝑎| < 𝛿 ⟹ 𝑘 <
𝑓 ′(𝑥)
𝑔′(𝑥)

].

Similar as above, Cauchy’s mean value theorem gives us 𝑧 ∈ (𝑥, 𝑦) such that 𝑘 < 𝑓 (𝑦)−𝑓 (𝑥)
𝑔(𝑦)−𝑓 (𝑥) . There-

fore, we have lim𝑦→𝑎+
𝑓 (𝑦)−𝑓 (𝑥)
𝑔(𝑦)−𝑔(𝑥) > 𝑘 and we conclude that 𝑥 − 𝑎 < 𝛿 ⟹ 𝑘 < 𝑓 (𝑥)

𝑔(𝑥) . �

There is a similar case for infinite limits. We note that we can convert a limit of infinity to one of
zero by taking reciprocals.

Theorem 1.22 (L’Hôpital’s rule). Let 𝑓 and 𝑔 be differentiable on (𝑎, 𝑏) and assume that 𝑔′(𝑥) ≠ 0
for all 𝑥 ∈ (𝑎, 𝑏). Suppose that lim𝑥→𝑎+ 𝑓 (𝑥) = lim𝑥→𝑎+ 𝑔(𝑥) = ∞. Then, if lim𝑥→𝑎+

𝑓 ′(𝑥)
𝑔′(𝑥) = 𝐿 for

𝐿 ∈ ℝ ∪ {±∞}, then lim𝑥→𝑎+
𝑓 (𝑥)
𝑔(𝑥) = 𝐿.

Though we only state the Rule for 𝑥 → 𝑎+, we can also write similar versions for 𝑥 → 𝑎−, 𝑥 → 𝑎,
and 𝑥 → ±∞.

1.3 Higher order derivatives

If 𝑓 is differentiable, then its derivative 𝑓 ′ is a function. So we can consider the differentiability of
𝑓 ′ as well.

Definition 1.7 (Higher derivatives.). We denote the derivative of 𝑓 ′ as the second derivative of 𝑓,
and write 𝑓 ″ or 𝑓 (2). We can keep going with 𝑓‴ = 𝑓 (3), 𝑓 ⁗ = 𝑓 (4) and so on.

Furthermore, let the set 𝐶𝑛(𝐼 ) = {𝑓 ∣ 𝑓 (𝑛) exists and is continuous on 𝐼 }.Also let 𝐶∞(𝐼 ) = ⋂∞
𝑛=1 𝐶

𝑛(𝐼 ),
and we call it the set of all infinitely differentiable or smooth functions. �

𝐶0(𝐼 ) = 𝐶(𝐼 ) is the set of all continuous functions on 𝐼. We have a natural hierarchy

𝐶∞(𝐼 ) ⊂ 𝐶𝑛(𝐼 ) ⊂ 𝐶(𝐼 ).

Theorem 1.23 (Second derivative test). Let 𝑓 and its derivative be defined on an interval 𝐼. Suppose
that 𝑐 is an interior point of 𝐼 such that 𝑓 ′(𝑐) = 0 and 𝑓 ″(𝑐) exists.

i. If 𝑓 ″(𝑐) > 0, then 𝑓 (𝑐) is a relative maximum.

ii. If 𝑓 ″(𝑐) < 0, then 𝑓 (𝑐) is a relative minimum.
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Proof. We will only prove (i).

Applying theorem 1.10 to 𝑓 ′, we can make the conclusion that ∃𝛿 > 0, ∀𝑥 ∈ (𝑐 − 𝛿, 𝑐), ∀𝑦 ∈ (𝑐, 𝑐 +
𝛿) 𝑓 ′(𝑥) < 𝑓 ′(𝑐) = 0 < 𝑓 ′(𝑦). By the first derivative test this tells us that 𝑓 (𝑐) is a relative maximum.

�

The theorem does not say anything about 𝑓 ″(𝑐) = 0. Again, 𝑓 (𝑥) = 𝑥3 serves as an illustration. The
second derivative test is easier to use but less powerful than the first derivative test. For example
for 𝑓 (𝑥) = 𝑥4 at 𝑥 = 0 it is also inconclusive, yet the first derivative test gives us an answer since 𝑓 ′
changes sign around 𝑥 = 0.

Theorem 1.24. Suppose that the function 𝑓 : [𝑎, 𝑏] → ℝ is continuous on [𝑎, 𝑏] and 𝑓 ″ exists on (𝑎, 𝑏).
The graph of 𝑓 and the line segment joining point 𝑎 to point 𝑏 intersects at at least one point. Then
∃𝑐 ∈ (𝑎, 𝑏) 𝑓 ″(𝑐) = 0.

Proof. Let the point of intersection be (𝑥, 𝑓 (𝑥)), and let the gradient of the line segment be 𝑚 =
𝑓 (𝑏)−𝑓 (𝑎)

𝑏−𝑎 . Apply the mean value theorem twice on the intervals [𝑎, 𝑥] and [𝑥, 𝑏]. This tells us that
there exists two points, 𝑥1 ∈ (𝑎, 𝑥) and 𝑥2 ∈ (𝑥, 𝑏) such that 𝑓 ′(𝑥1) = 𝑚 = 𝑓 ′(𝑥2). Then, using Rolle’s
theorem on 𝑓 ′ on the interval [𝑥1, 𝑥2] we obtain our conclusion. �

Theorem 1.25 (Taylor’s theorem). Let 𝑓 be a function such that 𝑓 ∈ 𝐶𝑛([𝑎, 𝑏]) and 𝑓 (𝑛+1) exists on
(𝑎, 𝑏). If 𝑥0 ∈ [𝑎, 𝑏], then for any 𝑥 ∈ [𝑎, 𝑏] there exists a point 𝑐 between 𝑥 and 𝑥0 such that

𝑓 (𝑥) = 𝑓 (𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) +
𝑓 ″(𝑥0)
2!

(𝑥 − 𝑥0)2 + ⋯ +
𝑓 (𝑛)(𝑥0)

𝑛!
(𝑥 − 𝑥0)𝑛 +

𝑓 (𝑛+1)(𝑐)
(𝑛 + 1)!

(𝑥 − 𝑥0)𝑛+1

Proof. Take 𝑥 ∈ [𝑎, 𝑏], and assume 𝑥0 ≠ 𝑥. Let 𝑀 be the unique number satisfying the following
equation.

𝑓 (𝑥) = 𝑓 (𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) + ⋯ +
𝑓 (𝑛)(𝑥0)

𝑛!
(𝑥 − 𝑥0)𝑛 + 𝑀(𝑥 − 𝑥0)𝑛+1

Define 𝐹 : [𝑎, 𝑏] → ℝ given by 𝐹(𝑡) = 𝑓 (𝑡) + 𝑓 ′(𝑡)(𝑥 − 𝑡) + ⋯ + 𝑓 (𝑛)(𝑥0)
𝑛! (𝑥 − 𝑥0)𝑛 + 𝑀(𝑥 − 𝑡)𝑛+1. 𝐹 is

continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏). Furthermore, 𝐹(𝑥) = 𝑓 (𝑥) = 𝐹(𝑥0). So by Rolle’s
theorem, ∃𝑐 ∈ (𝑥, 𝑥0) 𝐹 ′(𝑐) = 0. Now we compute the derivative of 𝐹:

𝐹 ′(𝑡) = 𝑓 ′(𝑡) + [𝑓 ″(𝑡)(𝑥 − 𝑡) − 𝑓 ′(𝑡)] + [
𝑓‴(𝑡)
2!

(𝑥 − 𝑡)2 −
𝑓 ″(𝑡)
2!

2(𝑥 − 𝑡)] + ⋯+

[
𝑓 (𝑛+1)(𝑡)

𝑛!
(𝑥 − 𝑡)𝑛 −

𝑓 (𝑛)(𝑡)
𝑛!

𝑛(𝑥 − 𝑡)𝑛−1] − 𝑀(𝑛 + 1)(𝑥 − 𝑡)𝑛

0 =
𝑓 (𝑛+1)(𝑡)

𝑛!
(𝑥 − 𝑡)𝑛 − 𝑀(𝑛 + 1)(𝑥 − 𝑡)𝑛

Simplifying the final result gives us the desired form for 𝑀. �

The polynomial

𝑃𝑛(𝑥) = 𝑓 (𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) +
𝑓 ″(𝑥0)
2!

(𝑥 − 𝑥0)2 + ⋯ +
𝑓 (𝑛)(𝑥0)

𝑛!
(𝑥 − 𝑥0)𝑛
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is called the 𝑛-th Taylor polynomial for 𝑓 at 𝑥0. It has the property that 𝑃 (𝑗)𝑛 (𝑥0) = 𝑓 (𝑖)(𝑥0). We can
use it to estimate the value of 𝑓 at points near 𝑥0. The error of this estimation is given by

𝑅𝑛(𝑥) = 𝑓 (𝑥) − 𝑃𝑛(𝑥) =
𝑓 (𝑛+1)(𝑐)
(𝑛 + 1)!

(𝑥 − 𝑥0)𝑛+1

where 𝑐 ∈ (𝑥, 𝑥0). This is called the Lagrange form of the remainder.

Example 1.9. We want to show that cos 𝑥 ≥ 1 − 1
2𝑥

2 for all 𝑥 ∈ ℝ. Let 𝑓 (𝑥) = cos 𝑥 and set 𝑥0 = 0.

Applying Taylor’s theorem to 𝑓 with 𝑛 = 2, we get 𝑓 (𝑥) = 𝑓 (0) + 𝑓 ′(0)(𝑥) + 𝑓 ″(0)
2! 𝑥2 + 𝑅2(𝑥) where

𝑅2(𝑥) =
𝑓‴(𝑐)
3! 𝑥3. Now,

𝑓 (0) = 1 𝑓 ′(0) − sin 0 = 0 𝑓 ″(0) = − cos 0 = −1

so 𝑓 (𝑥) = 1 − 𝑥2
2 + 𝑅2(𝑥). However we can see that 𝑅2 is always positive if |𝑥| < 𝜋. If |𝑥| ≥ 𝜋, then

since 𝜋 < 3 and the range of cos is only [−1, 1], we have 𝑓 (𝑥) > 1 − 32
2 ♦

Example 1.10. Consider 𝑓 (𝑥) = 𝑒𝑥. Since the derivative of 𝑓 is just 𝑓 itself, we can write 𝑅𝑛(𝑥) =
𝑓 (𝑐𝑛)
(𝑛+1)!(𝑥 − 𝑥0)𝑛+1. Let 𝐼 be the closed interval with end points 𝑥0 and 𝑥. Since 𝑓 is continuous on 𝐼
and continuous functions on closed intervals are bounded, so ∃𝑀 > 0 |𝑓 (𝑢)| ≤ 𝑀. Thus |𝑅𝑛(𝑥)| ≤

𝑀
(𝑛+1)! |𝑥 − 𝑥0|

𝑛+1. Call the term on the right 𝑦𝑛.

We claim that (𝑦𝑛) → 0. Performing the ratio test,

lim𝑛→∞ |
𝑦𝑛+1
𝑦𝑛

| = lim𝑛→∞ |𝑥 − 𝑥0|(𝑛 + 1) = 0

so by the squeeze theorem we find that (𝑅𝑛(𝑥)) → 0.

Using this fact, we arrive at the conclusion that

𝑒𝑥 = lim𝑛→∞(𝑃𝑛(𝑥) + 𝑅𝑥(𝑥)) = 𝑒𝑥0
∞
∑
𝑛=0

(𝑥 − 𝑥0)𝑛

𝑛!

and more famously with 𝑥0 = 0 we get 𝑓 (𝑥) = ∑∞
𝑛=0

𝑥𝑛
𝑛! . ♦

Example 1.11. It should be noted that a function being smooth does not automatically imply that
it is equal to its own Taylor series. In fact, it is not true in general. Consider the following function
ℎ ∈ 𝐶∞:

ℎ(𝑥) = {𝑒
− 1

𝑥2 , if 𝑥 ≠ 0
0, otherwise

.

For the case 𝑥 ≠ 0, we have

ℎ′(𝑥) =
2
𝑥3

𝑒
− 1

𝑥2

For 𝑥 = 0, we have using L’Hôspital’s rule and the Squeeze theorem,

ℎ′(0) = lim
𝑥→0

𝑒
− 1

𝑥2 − 0
𝑥 − 0

= lim
𝑥→0

𝑒
− 1

𝑥2

𝑥
= 0.
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In fact, ℎ(𝑗)(0) = 0 for all 𝑗. Then by Taylor’s theorem,

𝑃𝑛(𝑥) = ℎ(0) + ℎ′(0)𝑥 +
ℎ″(0)
2!

𝑥2 + ⋯ = 0.

Therefore we have this odd situation where 𝑅𝑛(𝑥) = 𝑓 (𝑥)! Therefore the function does not converge
to its own Taylor series. ♦

Theorem1.26 (𝑛-th derivative test). Let 𝐼 be an interval. Suppose 𝑓 : 𝐼 → ℝ has continuous derivatives
𝑓 , 𝑓 ′, … 𝑓 (𝑛) such that for some 𝑥0 ∈ 𝐼, 𝑓 ′(𝑥0) = ⋯ = 𝑓 (𝑛−1)(𝑥0) = 0. Then

i. If 𝑛 is even and 𝑓 (𝑛)(𝑥0) > 0, then 𝑓 has a relative minimum at 𝑥0.

ii. If 𝑛 is even and 𝑓 (𝑛)(𝑥0) < 0, then 𝑓 has a relative maximum at 𝑥0.

iii. If 𝑛 is odd, then 𝑓 has neither a relative minimum nor a relative maximum at 𝑥0.

Proof.

i. ii. These are similar so we shall just prove (i). Since 𝑓 (𝑛) is continuous, there exists a neighbour-
hood 𝑈 = (𝑥0 − 𝛿, 𝑥0 + 𝛿) such that ∀𝑥 ∈ 𝑈 (𝑓 (𝑛)(𝑥) > 0). Using Taylor’s theorem for any 𝑥 ∈ 𝑈
we have

𝑓 (𝑥) = 𝑓 (𝑥0) +
𝑓 (𝑛)(𝑐)
𝑛!

(𝑥 − 𝑥0)𝑛

for some 𝑐 ∈ (𝑥, 𝑥0). Since 𝑐 ∈ 𝑈 and 𝑛 is even, the right most term is positive and that gives
us 𝑓 (𝑥) ≥ 𝑓 (𝑥0) for all 𝑥 ∈ 𝑈. Hence 𝑥0 is a relative minimum.

iii. From the above, we can see that if 𝑛 is odd then (𝑥 − 𝑥0) would have different signs for 𝑥 < 𝑥0
and 𝑥 > 𝑥0. Therefore 𝑥 cannot be any form of extrema.

�

2 Integration

The first motivation we have for defining integration is to find the area under curves. The second
is to be able to use it to construct nice functions.

2.1 Riemann integrals

We deal with the first motivation first. The standard approach is to approximate the area under the
curve with increasingly smaller rectangles. The precise area is then the limit of this process.

Definition 2.1 (Partitions of intervals). Let 𝐼 = [𝑎, 𝑏]. A finite set 𝑃 = {𝑥0, 𝑥1, … , 𝑥𝑛} where 𝑎 = 𝑥0 <
𝑥1 < ⋯ < 𝑥𝑛 = 𝑏 is called a partition of 𝐼. It divides the interval 𝐼 into subintervals

𝐼 = [𝑥0, 𝑥1] ∪ [𝑥𝑖, 𝑥2] ∪ ⋯ ∪ [𝑥𝑛−1, 𝑥𝑛]

If 𝑃 and 𝑅 are partitions of [𝑎, 𝑏], and if 𝑃 ⊆ 𝑅, then we say that 𝑅 is a refinement of 𝑃. �
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We first define some notation.

Definition 2.2. Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function, and let 𝑃 = {𝑥0, … .𝑥𝑛} be a partition of
[𝑎, 𝑏]. For 1 ≤ 𝑖 ≤ 𝑛 let

𝑀𝑖 = sup{𝑓 (𝑥) ∣ 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]}
𝑚𝑖 = inf{𝑓 (𝑥) ∣ 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]}

Also let Δ𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1. �

Definition 2.3 (Upper and lower sums). Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function, and let 𝑃 =
{𝑥0, … .𝑥𝑛} be a partition of [𝑎, 𝑏]. Define the upper sum of 𝑓 with respect to the partition 𝑃 to be

𝑈 (𝑓 , 𝑃) =
𝑛
∑
𝑖=1

𝑀𝑖Δ𝑥𝑖.

Similarly, define the lower sum to be

𝐿(𝑓 , 𝑃) =
𝑛
∑
𝑖=1

𝑚𝑖Δ𝑥𝑖.

�

Theorem 2.1. Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function and 𝑃 be a partition of [𝑎, 𝑏]. Also let 𝑚 =
inf 𝑓 (𝑥) and 𝑀 = sup 𝑓 (𝑥). Then

𝑚(𝑏 − 𝑎) ≤ 𝐿(𝑓 , 𝑃) ≤ 𝑈 (𝑓 , 𝑃) ≤ 𝑀(𝑏 − 𝑎).

Proof. Let 𝑃 = {𝑥0, … , 𝑥𝑛}. First we note that𝑀𝑖 ≤ 𝑀 since𝑀𝑖 is only the supremum in a subinterval
whereas 𝑀 is the supremum in the entire interval [𝑎, 𝑏]. Similarly 𝑚𝑖 ≥ 𝑚. Thus,

𝑈 (𝑓 , 𝑃) =
𝑛
∑
𝑖=1

𝑀𝑖Δ𝑥𝑖

≤
𝑛
∑
𝑖=1

𝑀(𝑥𝑖 − 𝑥𝑖−1)

= 𝑀(𝑏 − 𝑎).

The last step may be realised by writing out a few terms of the sum. Similarly we have

𝑈 (𝑓 , 𝑃) ≥ 𝐿(𝑓 , 𝑃)

=
𝑛
∑
𝑖=1

𝑚𝑖Δ𝑥𝑖

≥
𝑛
∑
𝑖=1

𝑚(𝑥𝑖 − 𝑥𝑖−1)

= 𝑚(𝑏 − 𝑎).

�

More importantly, the above theorem tells us that sup 𝑈 and inf 𝐿 exists. Therefore, we are able to
get the best over and under-estimates.
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Definition 2.4 (Upper and lower intergrals). Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function. The upper
integral of 𝑓 on [𝑎, 𝑏] is defined to be

𝑏
𝑎 𝑓 = 𝑈 (𝑓 ) = inf{𝑈 (𝑓 , 𝑃) ∣ 𝑃 partitions [𝑎, 𝑏]}.

and the lower integral of 𝑓 on [𝑎, 𝑏] is defined to be

𝑏
𝑎 𝑓 = 𝐿(𝑓 ) = sup{𝐿(𝑓 , 𝑃) ∣ 𝑃 partitions [𝑎, 𝑏]}.

�

Now, we have a theorem that allows us to improve our over and under-estimates by adding in more
points to our partition.

Theorem 2.2. Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function and let 𝑃 and 𝑄 be partitions of [𝑎, 𝑏]. Then

𝐿(𝑓 , 𝑃) ≤ 𝐿(𝑓 , 𝑃 ∪ 𝑄) ≤ 𝑈 (𝑓 , 𝑃 ∪ 𝑄) ≤ 𝑈 (𝑓 , 𝑄).

Consequently,
𝑏
𝑎 𝑓 ≤ 𝑏

𝑎 𝑓 .

Proof. Let 𝑄 = {𝑞0, … , 𝑞𝑛}. Now consider the new partition 𝑅 = 𝑄 ∪ {𝑐} for some 𝑐 ∈ 𝑃, and suppose
𝑞𝑗−1 < 𝑐 < 𝑞𝑗. Let 𝑦 = sup{𝑓 (𝑥) ∣ 𝑥 ∈ [𝑞𝑗−1, 𝑐]} and let 𝑧 = sup{𝑓 (𝑥) ∣ 𝑥 ∈ [𝑐, 𝑞𝑗}. Then, 𝑦, 𝑧 ≤ 𝑀𝑗 =
sup{𝑓 (𝑥) ∣ 𝑥 ∈ [𝑞𝑗−1, 𝑞𝑗]}. Now if we calculate the new upper sum with respect to 𝑅, we get

𝑈 (𝑓 , 𝑅) = ∑
𝑖≠𝑗

𝑀𝑖Δ𝑥𝑖 + 𝑦(𝑐 − 𝑞𝑗−1) + 𝑧(𝑞𝑗 − 𝑐)

≤ ∑
𝑖≠𝑗

𝑀𝑖Δ𝑥𝑖 + 𝑀𝑗(𝑞𝑗 − 𝑞𝑗−1)

= 𝑈 (𝑓 , 𝑄).

We can then inductively show this for all the other points in 𝑃. We can also do the same for 𝐿(𝑓 , 𝑃)
and 𝐿(𝑓 , 𝑃 ∪ 𝑄) to get the final result. Furthermore, we also have

𝐿(𝑓 , 𝑃) ≤ 𝑈 (𝑓 , 𝑄)

for any partitions 𝑃 and 𝑄. In words, this means that any lower sum is smaller than any upper sum.
Therefore, we have

𝐿(𝑓 , 𝑃) ≤ inf{𝑈 (𝑓 , 𝑄)} = 𝑏
𝑎 𝑓 .

Since this forms an upper bound on all 𝐿, we have

𝑏
𝑎 𝑓 = sup{𝐿(𝑓 , 𝑃)} ≤ 𝑏

𝑎 𝑓 .

�

Definition 2.5 (Integrability). A bounded function 𝑓 : [𝑎, 𝑏] → ℝ is said to be (Riemann) integrable
on [𝑎, 𝑏] if

𝑏
𝑎 𝑓 = 𝑏

𝑎 𝑓 .

Then, we define the integral of 𝑓 on [𝑎, 𝑏] as

∫
𝑏

𝑎
𝑓 = 𝑏

𝑎 𝑓 = 𝑏
𝑎 𝑓 .

�
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Note that the Riemann integral is only defined for bounded functions.

Example 2.1 (Dirichlet function). This is a famous non-integrable function. Let 𝑔: [0, 1] → ℝ be
defined by

𝑔(𝑥) = {
1, if 𝑥 ∈ ℚ
0, otherwise

.

Let 𝑃 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a partition of [0, 1]. Since ℚ is dense in ℝ, we have 𝑚𝑖(𝑔, 𝑃) = 1 and
𝑀𝑖(𝑔, 𝑃) = 0. For the same reason we also have 𝐿(𝑔, 𝑃) = 0 and 𝑈 (𝑔, 𝑃) = 1. This then means that
1
0 𝑔 = 0 ≠ 1

0 𝑔 = 1. ♦

Example 2.2 (Identity function). Let ℎ: [0, 1] → [0, 1] be defined by ℎ(𝑥) = 𝑥. Let 𝑃𝑛 be the partition
{𝑥0, 𝑥1, … , 𝑥𝑛} where 𝑛 ∈ ℕ and 𝑥𝑘 = 𝑘

𝑛 , and Δ𝑥𝑘 = 1
𝑛 . For a fixed 𝑛, since ℎ is increasing, we have

𝑀𝑘 = ℎ(𝑥𝑘) and 𝑚𝑘 = ℎ(𝑥𝑘−1) for all 1 ≤ 𝑘 ≤ 𝑛. Therefore,

𝑈 (ℎ, 𝑃𝑛) =
𝑛
∑
𝑘=1

𝑘
𝑛
1
𝑛

𝐿(ℎ, 𝑃𝑛) =
𝑛
∑
𝑘=1

𝑘 − 1
𝑛

1
𝑛

=
𝑛 + 1
2𝑛

. =
𝑛 − 1
2𝑛

.

So we have 𝑛−1
2𝑛 ≤ 1

0 ℎ ≤ 1
0 ℎ ≤ 𝑛+1

2𝑛 for all 𝑛. Taking the limit 𝑛 → ∞, we have ∫1
0 ℎ = 1

2 . ♦

Theorem 2.3. Let 𝑓 : [𝑎, 𝑏] → ℝ be bounded and integrable on [𝑎, 𝑏] and let 𝑚 = inf{𝑓 (𝑥) ∣ 𝑥 ∈ [𝑎, 𝑏]}
and 𝑀 = sup{𝑓 (𝑥) ∣ 𝑥 ∈ [𝑎, 𝑏]}. Then we have

i. 𝑚(𝑏 − 𝑎) ≤ ∫𝑏
𝑎 𝑓 ≤ 𝑀(𝑏 − 𝑎).

ii. If 𝑓 (𝑥) > 0 for all 𝑥 ∈ [𝑎, 𝑏] then ∫𝑏
𝑎 𝑓 ≥ 0.

Proof.

i. Theorem 2.1 already tells us that𝑚(𝑏−𝑎) ≤ 𝐿(𝑓 , 𝑃) ≤ 𝑈 (𝑓 , 𝑃) ≤ 𝑀(𝑏−𝑎). Since 𝑓 is integrable,
we also have∫𝑏

𝑎 𝑓 = 𝑏
𝑎. But since 𝑏

𝑎 = inf 𝑈 (𝑓 , 𝑃), we have∫𝑏
𝑎 𝑓 ≤ 𝑈 (𝑓 , 𝑃). Similarly for 𝐿(𝑓 , 𝑃).

ii. If 𝑓 (𝑥) ≥ 0 for all 𝑥 ∈ [𝑎, 𝑏], then 𝑚 ≥ 0. From the above, we immediately get that ∫𝑏
𝑎 𝑓 ≥

𝑚(𝑏 − 𝑎) ≥ 0. �

The previous examples show that checking integrability from the definition is quite tedious. Fol-
lowing is an easier way to check for integrability.

Theorem 2.4 (Riemann integrability criterion). Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function. Then 𝑓 is
integrable on [𝑎, 𝑏] iff for any 𝜖 > 0, there exists a partition 𝑃 of [𝑎, 𝑏] such that

𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃) < 𝜖.

Proof.

( ⟹ ): Assume that 𝑓 is integrable on [𝑎, 𝑏]. Let 𝜖 > 0. Let 𝑆 = {𝑈 (𝑓 , 𝑇 ) ∣ 𝑇 partitions [𝑎, 𝑏]}. Since
𝑏
𝑎 𝑓 = inf 𝑆, there is a partition 𝑄 such that 𝐼 (𝑓 , 𝑄) < 𝑏

𝑎 𝑓 +
𝜖
2 . Similarly, there exists a partition 𝑅 such

that 𝐿(𝑓 , 𝑅) > 𝑏
𝑎 −

𝜖
2 . Now let 𝑃 = 𝑄 ∪ 𝑅. From theorem 2.2, we have

𝑏
𝑎 𝑓 −

𝜖
2
< 𝐿(𝑓 , 𝑅) ≤ 𝐿(𝑓 , 𝑃) ≤ ∫

𝑏

𝑎
𝑓 ≤ 𝑈 (𝑓 , 𝑃) ≤ 𝑈 (𝑓 , 𝑄) < 𝑏

𝑎 𝑓 +
𝜖
2
.
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( ⟸ ): Let 𝜖 > 0. Then there exists a partition 𝑃 such that 𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃) < 𝜖. We have
𝑏
𝑎 𝑓 − 𝑏

𝑎 𝑓 ≤ 𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃) < 𝜖. Taking the limit 𝜖 → 0, we obtain 𝑏
𝑎 𝑓 − 𝑏

𝑎 𝑓 = 0. �

Theorem 2.5. If 𝑓 : [𝑎, 𝑏] → ℝ is monotone on [𝑎, 𝑏], then 𝑓 is integrable on [𝑎, 𝑏].

Proof. First assume that 𝑓 is increasing. The proof for the case where 𝑓 is decreasing is similar.

Choose 𝑛 ∈ ℕ such that 𝑛 > (𝑏−𝑎)(𝑓 (𝑏)−𝑓 (𝑎))
𝜖 . Let the partition 𝑃𝑛 = {𝑥0, 𝑥1, … , 𝑥𝑛} be the partition

that subdivides [𝑎, 𝑏] evenly, i.e. Δ𝑥𝑖 =
𝑏−𝑎
𝑛 . Similar to the case for the identity function, we have

𝑀𝑖 = 𝑓 (𝑥𝑖) and 𝑚𝑖 = 𝑓 (𝑥𝑖−1). This gives us

𝑈 (𝑓 , 𝑃𝑛) =
𝑛
∑
𝑖=1

𝑓 (𝑥𝑖)Δ𝑥𝑖 𝐿(𝑓 , 𝑃𝑛) =
𝑛
∑
𝑖=1

𝑓 (𝑥𝑖−1)Δ𝑥𝑖

And so

𝑈 (𝑓 , 𝑃𝑛) − 𝐿(𝑓 , 𝑃𝑛) =
𝑛
∑
𝑖=1

(𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖−1)
𝑏 − 𝑎
𝑛

= (𝑓 (𝑏) − 𝑓 (𝑎))
𝑏 − 𝑎
𝑛

< 𝜖. �

Theorem 2.6. If 𝑓 : [𝑎, 𝑏] → ℝ is continuous on [𝑎, 𝑏], then 𝑓 is integrable on [𝑎, 𝑏].

Proof. Let 𝜖 > 0. Since 𝑓 is continuous on the compact interval [𝑎, 𝑏], it is uniformly continuous on
[𝑎, 𝑏]. So ∃𝛿 > 0, ∀𝑥, 𝑦 ∈ [𝑎, 𝑏] [|𝑥 − 𝑦| < 𝛿 ⟹ |𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜖

𝑏−𝑎]. Now choose 𝑛 ∈ ℕ such that

𝑛 > 𝑏−𝑎
𝛿 , and let the partition 𝑃𝑛 = {𝑥0, 𝑥1, … , 𝑥𝑛} be the partition that subdivides [𝑎, 𝑏] evenly, i.e.

Δ𝑥𝑖 =
𝑏−𝑎
𝑛 𝑖 < 𝛿.

Consider the subinterval [𝑥𝑖−1, 𝑥𝑖]. By the extreme value theorem, there exists some 𝑢𝑖, 𝑣𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖]
such that 𝑓 (𝑢𝑖) ≤ 𝑓 (𝑥) ≤ 𝑓 (𝑣𝑖). Since |𝑢𝑖 − 𝑣𝑖| ≤ |𝑥𝑖 − 𝑥𝑖−1| < 𝛿. Therefore, due to uniform continuity,
we have |𝑓 (𝑢𝑖) − 𝑓 (𝑣𝑖)| <

𝜖
𝑏−𝑎 . Thus

𝑈 (𝑓 , 𝑃𝑛) − 𝐿(𝑓 , 𝑃𝑛) =
𝑛
∑
𝑖=1

(𝑀𝑖 − 𝑚𝑖)Δ𝑥𝑖

=
𝑛
∑
𝑖=1

(𝑓 (𝑣𝑖) − 𝑓 (𝑢𝑖))Δ𝑥𝑖

=
𝑛
∑
𝑖=1

𝜖
𝑏 − 𝑎

𝑏 − 𝑎
𝑛

= 𝜖.

�

Theorem 2.7. Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function. Suppose there exists a sequence of partitions
(𝑃𝑛)𝑛 of [𝑎, 𝑏] such that the sequences (𝐿(𝑓 , 𝑃𝑛))𝑛 and 𝑈 ((𝑓 , 𝑃𝑛))𝑛 both converge to the same value 𝐴.
Then 𝑓 is integrable and ∫𝑏

𝑎 𝑓 = 𝐴.

Proof. Since we have 𝐿(𝑓 , 𝑃𝑛) ≤ 𝑏
𝑎 𝑓 ≤ 𝑏

𝑎 𝑓 ≤ 𝑈 (𝑓 , 𝑃𝑛), taking the limit 𝑛 → ∞ gives us 𝐴 ≤ 𝑏
𝑎 𝑓 ≤

𝑏
𝑎 𝑓 ≤ 𝐴. �
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Lemma 2.8. Let 𝑓 , 𝑔: [𝑎, 𝑏] → ℝ be bounded functions, 𝑃 a partition of [𝑎, 𝑏] and 𝑐 ∈ ℝ. Then

i. 𝐿(𝑐𝑓 , 𝑃) = {
𝑐𝐿(𝑓 , 𝑃), if 𝑐 > 0
𝑐𝑈 (𝑓 , 𝑃), if 𝑐 < 0

ii. 𝑈 (𝑐𝑓 , 𝑃) = {
𝑐𝑈 (𝑓 , 𝑃), if 𝑐 > 0
𝑐𝐿(𝑓 , 𝑃), if 𝑐 < 0

iii. 𝐿(𝑓 , 𝑃) + 𝐿(𝑔, 𝑃) ≤ 𝐿(𝑓 + 𝑔, 𝑃) ≤ 𝑈 (𝑓 + 𝑔, 𝑃) ≤ 𝑈 (𝑓 , 𝑃) + 𝑈 (𝑔, 𝑃).

Proof.

i. ii. We recall that for any non-empty 𝑆 ⊆ ℝ,

inf(𝑐𝑆) = {
𝑐 inf 𝑆, if 𝑐 > 0
𝑐 sup 𝑆, if 𝑐 < 0

sup(𝑐𝑆) = {
𝑐 sup 𝑆, if 𝑐 > 0
𝑐 inf 𝑆, if 𝑐 < 0

iii. Let 𝑃 = {𝑥1, 𝑥2, … , 𝑥𝑛}. For 1 ≤ 𝑖 ≤ 𝑛 and 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖], we have

𝑚𝑖(𝑓 , 𝑃) ≤ 𝑓 (𝑥) ≤ 𝑀𝑖(𝑓 , 𝑃) 𝑚𝑖(𝑔, 𝑃) ≤ 𝑓 (𝑥) ≤ 𝑀𝑖(𝑔, 𝑃)

and so

𝑚𝑖(𝑓 , 𝑃) + 𝑚𝑖(𝑔, 𝑃) ≤ (𝑓 + 𝑔)(𝑥) ≤ 𝑀𝑖(𝑓 , 𝑃) + 𝑀𝑖(𝑔, 𝑃).

This means

𝑚𝑖(𝑓 , 𝑃) + 𝑚𝑖(𝑔, 𝑃) ≤ 𝑚𝑖(𝑓 + 𝑔, 𝑃) 𝑀𝑖(𝑓 + 𝑔) ≤ 𝑀𝑖(𝑓 , 𝑃) + 𝑀𝑖(𝑔, 𝑃).

Therefore

𝐿(𝑓 , 𝑃) + 𝐿(𝑔, 𝑃) =
𝑛
∑
𝑖=1

(𝑚𝑖(𝑓 , 𝑃) + 𝑚𝑖(𝑔, 𝑃))(𝑥𝑖 − 𝑥𝑖−1)

≤
𝑛
∑
𝑖=1

𝑚𝑖(𝑓 + 𝑔, 𝑃)(𝑥𝑖 − 𝑥𝑖−1)

= 𝐿(𝑓 + 𝑔, 𝑃)
≤ 𝑈 (𝑓 + 𝑔, 𝑃)

≤
𝑛
∑
𝑖=1

(𝑀𝑖(𝑓 , 𝑃) + 𝑀𝑖(𝑔, 𝑃))(𝑥𝑖 − 𝑥𝑖−1)

= 𝑈 (𝑓 , 𝑃) + 𝑈 (𝑔, 𝑃).

�

The following are basic facts that we have taken for granted all along. Parts (i) and (ii) show that
the set of integrable functions form a real vector space. Part (v) shows that this set also possesses
some ring structure. We will also use the following fact:

Lemma 2.9. For a non-empty bounded 𝑆 ⊆ ℝ, if there is a 𝑘 > 0 such that ∀𝑠, 𝑡 ∈ 𝑆 |𝑠 − 𝑡| ≤ 𝑘 then we
have sup 𝑆 − inf 𝑆 ≤ 𝑘.

Theorem 2.10 (Integration rules). Let 𝑓 , 𝑔: [𝑎, 𝑏] → ℝ be integrable on [𝑎, 𝑏] and 𝑐 ∈ ℝ. Then
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i. ∫𝑏
𝑎 𝑐𝑓 = 𝑐 ∫𝑏

𝑎 𝑓.

ii. ∫𝑏
𝑎 (𝑓 + 𝑔) = ∫𝑏

𝑎 𝑓 + ∫𝑏
𝑎 𝑔.

iii. If 𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ [𝑎, 𝑏], then ∫𝑏
𝑎 𝑓 ≤ ∫𝑏

𝑎 𝑔.

iv. |∫𝑏
𝑎 𝑓| ≤ ∫𝑏

𝑎 |𝑓|.

v. 𝑓 𝑔 is integrable on [𝑎, 𝑏].

Proof.

i. Assume 𝑐 > 0. The proof for 𝑐 < 0 is similar. By lemma 2.8, we have 𝑈 (𝑐𝑓 , 𝑃) = 𝑈 (𝑓 , 𝑃).
Therefore

𝑏
𝑎 𝑐𝑓 = inf 𝑈 (𝑐𝑓 , 𝑃) = inf 𝑐𝑈 (𝑓 , 𝑃) = 𝑐 inf 𝑈 (𝑓 , 𝑃) = 𝑐 𝑏

𝑎 𝑓 = 𝑐∫
𝑏

𝑎
𝑓 .

Similarly, 𝑏𝑎 𝑐𝑓 = ⋯ = 𝑐 ∫𝑏
𝑎 𝑓. Therefore 𝑐𝑓 is integrable and ∫𝑏

𝑎 𝑐𝑓 = 𝑐 ∫𝑏
𝑎 𝑓.

ii. First we show that 𝑏𝑎(𝑓 + 𝑔) ≤ 𝑏
𝑎 𝑓 + 𝑏

𝑎 𝑔. Let 𝜖 > 0. Then there exists partitions 𝑃, 𝑄 such that
𝑈 (𝑓 , 𝑃) < 𝑏

𝑎 𝑓 +
𝜖
2 , and 𝑈 (𝑔, 𝑄) <

𝑏
𝑎 𝑔 +

𝜖
2 , since the upper integral is an infimum. Let 𝑅 = 𝑃 ∪𝑄,

and by lemma 2.8,

𝑈 (𝑓 + 𝑔, 𝑅) ≤ 𝑈 (𝑓 , 𝑅) + 𝑈 (𝑔, 𝑅) ≤ 𝑈 (𝑓 , 𝑃) + 𝑈 (𝑔, 𝑄) < ∫
𝑏

𝑎
𝑓 +∫

𝑏

𝑎
𝑔 + 𝜖.

Taking the limit 𝜖 → 0, we get 𝑏𝑎(𝑓 + 𝑔) ≤ ∫𝑏
𝑎 𝑓 + ∫𝑏

𝑎 𝑔.

We can also show that 𝑏𝑎(𝑓 + 𝑔) ≥ 𝑏
𝑎 𝑓 + 𝑏

𝑎 𝑔 through similar means. Putting it all together, we
have

𝑏
𝑎(𝑓 + 𝑔) ≥ 𝑏

𝑎 𝑓 + 𝑏
𝑎 𝑔 = ∫

𝑏

𝑎
𝑓 +∫

𝑏

𝑎
𝑔 = 𝑏

𝑎 𝑓 + 𝑏
𝑎 𝑔 ≥ 𝑏

𝑎(𝑓 + 𝑔)

but since 𝑏
𝑎(𝑓 + 𝑔) ≤ 𝑏

𝑎(𝑓 + 𝑔) we have equality.

iii. Let ℎ = 𝑔 − 𝑓. It is integrable based on the previous two points. We have ℎ ≥ 0 and by
theorem 2.3 we have our result.

iv. Let 𝜖 > 0. Since 𝑓 is integrable on [𝑎, 𝑏], there exists a partition 𝑃 such that 𝑈 (𝑓 , 𝑃)−𝐿(𝑓 , 𝑃) < 𝜖.
We shall prove that 𝑈 (|𝑓|, 𝑃) − 𝐿(|𝑓|, 𝑃) ≤ 𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃) < 𝜖.

Now let there be a partition 𝑃 = {𝑥1, 𝑥2, … , 𝑥𝑛}. Consider [𝑥𝑖−1, 𝑥𝑖]. Let 𝑆 = {|𝑓 (𝑥)| ∣ 𝑥 ∈
[𝑥𝑖−1, 𝑥𝑖]}. Now 𝑆 is a bounded set since 𝑓 is bounded (we can only integrate bounded func-
tions), and so we have𝑀𝑖(|𝑓|, 𝑃) = sup 𝑆 and 𝑚𝑖(|𝑓|, 𝑃) = inf 𝑆. For any 𝑢, 𝑣 ∈ [𝑥𝑖−1, 𝑥𝑖], we have,
by the triangle inequality

||𝑓 (𝑢)| − |𝑓 (𝑣)|| ≤ |𝑓 (𝑢) − 𝑓 (𝑣)| ≤ 𝑀𝑖(𝑓 , 𝑃) − 𝑚𝑖(𝑓 , 𝑃)
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From the lemma, we have𝑀𝑖(|𝑓|, 𝑃)−𝑚𝑖(|𝑓|, 𝑃) = sup 𝑆 − inf 𝑆 ≤ 𝑀𝑖(𝑓 , 𝑃)−𝑚𝑖(𝑓 , 𝑃). Therefore,

𝑈 (|𝑓|, 𝑃) − 𝐿(|𝑓|, 𝑃) =
𝑛
∑
𝑖=1

(𝑀𝑖(|𝑓|, 𝑃) − 𝑚𝑖(|𝑓|, 𝑃))Δ×𝑖

≤
𝑛
∑
𝑖=1

(𝑀𝑖(𝑓 , 𝑃) − 𝑚𝑖(𝑓 , 𝑃))Δ𝑥𝑖

= 𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃)
< 𝜖

Therefore we have established that |𝑓| is integrable on [𝑎, 𝑏]. Now since −|𝑓 (𝑥)| ≤ 𝑓 (𝑥) ≤
|𝑓 (𝑥)|, by part (iii),

−∫
𝑏

𝑎
|𝑓| = ∫

𝑏

𝑎
−|𝑓| ≤ ∫

𝑏

𝑎
𝑓 ≤ ∫

𝑏

𝑎
|𝑓|

and so |∫𝑏
𝑎 𝑓| ≤ ∫𝑏

𝑎 𝑓.

v. Since 𝑓 and 𝑔 are integrable, they are bounded. Let 𝐾 > 0 be such that |𝑓 (𝑥)|, |𝑔(𝑥)| ≤ 𝐾 for all
𝑥 ∈ [𝑎, 𝑏].
Let 𝜖 > 0. Then there exist partitions 𝑃 and 𝑄 such that

𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃) <
𝜖
2𝐾

𝑈 (𝑔, 𝑄) − 𝐿(𝑔, 𝑄) <
𝜖
2𝐾

.

Now let 𝑅 = 𝑃 ∪ 𝑄 = {𝑥1, 𝑥2, … , 𝑥𝑛}. We also have

𝑈 (𝑓 , 𝑅) − 𝐿(𝑓 , 𝑅) <
𝜖
2𝐾

𝑈 (𝑔, 𝑅) − 𝐿(𝑔, 𝑅) <
𝜖
2𝐾

.

For 𝑢, 𝑣 ∈ [𝑥𝑖−1, 𝑥𝑖],

|(𝑓 𝑔)(𝑢) − (𝑓 𝑔)(𝑣)| ≤ |𝑓 (𝑢)𝑔(𝑢) − 𝑓 (𝑣)𝑔(𝑢)| + |𝑓 (𝑣)𝑔(𝑢) − 𝑓 (𝑣)𝑔(𝑣)|
≤ 𝐾|𝑓 (𝑢) − 𝑓 (𝑣)| + 𝐾|𝑔(𝑢) − 𝑔(𝑣)|
≤ 𝐾(𝑀𝑖(𝑓 , 𝑅) − 𝑚𝑖(𝑓 , 𝑅)) + 𝐾(𝑀𝑖(𝑔, 𝑅) − 𝑚𝑖(𝑔, 𝑅)).

From the lemma, we have

𝑀𝑖(𝑓 𝑔, 𝑅) − 𝑚𝑖(𝑓 𝑔, 𝑅) ≤ 𝐾(𝑀𝑖(𝑓 , 𝑅) − 𝑚𝑖(𝑓 , 𝑅)) + 𝐾(𝑀𝑖(𝑔, 𝑅) − 𝑚𝑖(𝑔, 𝑅)).

Therefore

𝑈 (𝑓 𝑔, 𝑅) − 𝐿(𝑓 𝑔, 𝑅) =
𝑛
∑
𝑖=1

(𝑀𝑖(𝑓 𝑔, 𝑅) − 𝑚𝑖(𝑓 𝑔, 𝑅))Δ𝑥𝑖

≤ 𝐾
𝑛
∑
𝑖=1

[(𝑀𝑖(𝑓 , 𝑅) − 𝑚𝑖(𝑓 , 𝑅)) + (𝑀𝑖(𝑔, 𝑅) − 𝑚𝑖(𝑔, 𝑅))]Δ𝑥𝑖

≤ 𝐾(𝑈 (𝑓 , 𝑅) − 𝐿(𝑓 , 𝑅)) + 𝐾(𝑈 (𝑔, 𝑅) − 𝐿(𝑔, 𝑅))

< 𝐾(
𝜖
2𝐾

+
𝜖
2𝐾)

= 𝜖.

�

The following two theorems are familiar results that tell us we can combine and split intervals.
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Theorem 2.11. Let the function 𝑓 : [𝑎, 𝑏] → ℝ be integrable on both [𝑎, 𝑐] and [𝑐, 𝑏]. Then 𝑓 is inte-
grable on [𝑎, 𝑏] and

∫
𝑐

𝑎
𝑓 +∫

𝑏

𝑐
𝑓 = ∫

𝑏

𝑎
𝑓 .

Proof. Let 𝜖 > 0. Choose partitions 𝑃 and 𝑄 such that 𝑈 (𝑓 , 𝑃) < 𝑐
𝑎 𝑓 + 𝜖

2 , and 𝑈 (𝑓 , 𝑄) < 𝑏
𝑐 𝑓 + 𝜖

2 .
Let 𝑅 = 𝑃 ∪ 𝑄. Then 𝑅 is a partition of [𝑎, 𝑏]. If we write out the sum fully we would also see that
𝑈 (𝑓 , 𝑅) = 𝑈 (𝑓 , 𝑃) + 𝑈 (𝑓 , 𝑄). Therefore, we have

𝑏
𝑎 𝑓 ≤ 𝑈 (𝑓 , 𝑅) = 𝑈 (𝑓 , 𝑃) + 𝑈 (𝑓 , 𝑄) < ∫

𝑐

𝑎
𝑓 +∫

𝑏

𝑐
𝑓 + 𝜖.

Taking the limit 𝜖 → 0, we get 𝑏𝑎 𝑓 ≤ ∫𝑐
𝑎 𝑓 + ∫𝑏

𝑐 𝑓. We may go through a similar argument to arrive

at 𝑏𝑎 𝑓 ≥ ∫𝑐
𝑎 𝑓 + ∫𝑏

𝑐 𝑓. Since 𝑏
𝑎 𝑓 ≤ 𝑏

𝑎, the result follows. �

Theorem 2.12. Let the function 𝑓 be integrable on [𝑎, 𝑏]. Then for any 𝑐 ∈ (𝑎, 𝑏), 𝑓 is integrable on
[𝑎, 𝑐] and on [𝑐, 𝑏].

Proof. We only present the proof for [𝑎, 𝑐], the proof for [𝑐, 𝑏] is similar. Let 𝜖 > 0, then there
exists a partition 𝑃 = {𝑥1, 𝑥2, … , 𝑥𝑛} of [𝑎, 𝑏], such that 𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃) < 𝜖. Consider the partition
𝑄 = (𝑃 ∪ {𝑐}) ∩ [𝑎, 𝑐]. Then

𝑈 (𝑓 , 𝑄) − 𝐿(𝑓 , 𝑄) ≤ 𝑈 (𝑓 , 𝑃 ∪ {𝑐}) − 𝐿(𝑓 , 𝑃 ∪ {𝑐}) < 𝑈 (𝑓 , 𝑃) − 𝐿(𝑓 , 𝑃) < 𝜖.

�

Using the established results, we can give some examples of integrable functions.

Example 2.3 (Polynomials). Polynomials on any interval [𝑎, 𝑏] are integrable. This is simply be-
cause they are continuous, so theorem 2.6 says they are integrable. ♦

Example 2.4. The ceiling 𝑓 (𝑥) = ⌈𝑥⌉ and floor functions 𝑔(𝑥) = ⌊𝑥⌋ are integrable on any interval
[𝑎, 𝑏] by theorem 2.5 since they are monotone. Their absolute values are also integrable (the absolute
value of any integrable function is integrable). ♦

Theorem 2.13. Let the function 𝑓 be integrable on [𝑎, 𝑏]. Suppose that there is a positive constant 𝐶
such that 0 < 𝐶 ≤ ℎ(𝑥) for all 𝑥 ∈ [𝑎, 𝑏]. Then the function 1

ℎ is integrable on [𝑎, 𝑏].

Proof. For any 𝑥, 𝑦 ∈ [𝑎, 𝑏], we have

|
1

ℎ(𝑥)
−

1
ℎ(𝑦)

| = |
ℎ(𝑦) − ℎ(𝑥)
ℎ(𝑥)ℎ(𝑦)

|

≤
1
𝐶2

|ℎ(𝑥) − ℎ(𝑦)|

≤
1
𝐶2

𝑎(𝑀𝑖(ℎ, 𝑃) − 𝑚𝑖(ℎ, 𝑃)).

By the previous lemma this means

𝑀𝑖(
1
ℎ
, 𝑃) − 𝑚𝑖(

1
ℎ
, 𝑃) ≤

1
𝐶2

(𝑀𝑖(ℎ, 𝑃) − 𝑚𝑖(ℎ, 𝑃)).
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Now let 𝜖 > 0. Since ℎ is integrable on [𝑎, 𝑏], by the Riemann integrability criterion, there exists a
partition 𝑃 such that 𝑈 (ℎ, 𝑃) − 𝐿(ℎ, 𝑃) < 𝐶2𝜖. Then

𝑈(
1
ℎ
, 𝑃) − 𝐿(

1
ℎ
, 𝑃) =

𝑛
∑
𝑖=1

(𝑀𝑖(
1
ℎ
, 𝑃) − 𝑚𝑖(

1
ℎ
, 𝑃))Δ𝑥𝑖

≤
1
𝐶2

𝑛
∑
𝑖=1

(𝑀𝑖(ℎ, 𝑃) − 𝑚𝑖(ℎ, 𝑃))Δ𝑥𝑖

=
1
𝐶2

(𝑈 (ℎ, 𝑃) − 𝐿(ℎ, 𝑃))

<
1
𝐶2

𝐶2𝜖

= 𝜖.

�

Definition 2.6 (Length of a curve). Let 𝑓 be a continuous function on [𝑎, 𝑏] and let 𝑃 = {𝑥0, 𝑥1, … , 𝑥𝑛}
be a partition of [𝑎, 𝑏]. We define

𝑙(𝑓 , 𝑃) =
𝑛
∑
𝑖=1

√(𝑥𝑖 − 𝑥𝑖−1)
2 + (𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖−1))

2.

Intuitively this is the length of a polygonal line plotted along the curve. We then define the length
of 𝑓 on [𝑎, 𝑏] by

𝑙(𝑓 ) = sup{𝑙(𝑓 , 𝑃) ∣ 𝑃 partitions [𝑎, 𝑏]}.

�

Of course the above definition only makes sense if the set of all 𝑙(𝑓 , 𝑃) is bounded. These are the
functions with sensible lengths that we can talk about.

Theorem 2.14. If 𝑓 ∈ 𝐶1[𝑎, 𝑏], then its length is defined and is given by

𝑙(𝑓 ) = ∫
𝑏

𝑎
√1 + (𝑓 ′)2.

2.2 The fundamental theorem of calculus

We defined integration primarily to help us find the area under curves. It can also be used to define
new functions which have nice properties.

Definition 2.7 (Indefinite integrals). Let 𝑓 : [𝑎, 𝑏] → ℝ be integrable on [𝑎, 𝑏]. For each 𝑥 ∈ (𝑎, 𝑏], 𝑓
is integrable on [𝑎, 𝑥]. Define

𝐹(𝑥) = ∫
𝑥

𝑎
𝑓 .

The function 𝐹 : [𝑎, 𝑏] → ℝ is called the indefinite integral of 𝑓. We also define ∫𝑎
𝑎 𝑓 = 0. �

Theorem 2.15. The indefinite integral 𝐹 of 𝑓 is uniformly continuous on [𝑎, 𝑏].
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Proof. For 𝑓 to be integrable it has to be bounded. Let𝑀 > 0 be the upper bound of 𝑓. For 𝑥, 𝑦 ∈ [𝑎, 𝑏]
where 𝑥 < 𝑦, we have

|𝐹 (𝑥) − 𝐹(𝑦)| = |∫
𝑥

𝑎
𝑓 −∫

𝑦

𝑎
𝑓|

= |∫
𝑥

𝑎
𝑓 −∫

𝑥

𝑎
𝑓 +∫

𝑦

𝑥
𝑓|

= |∫
𝑦

𝑥
𝑓|

≤ ∫
𝑦

𝑥
|𝑓|

≤ ∫
𝑦

𝑥
𝑀

= 𝑀|𝑥 − 𝑦|

which shows that 𝐹 is Lipschitz. For the intermediary steps we have used properties shown in
theorem 2.10. �

We can also easily let 𝐺(𝑥) = ∫𝑥
𝑥0
𝑓 for any 𝑥0 ∈ [𝑎, 𝑏]. This means that in fact 𝐺(𝑥) = 𝐹(𝑥) − 𝐹(𝑥0).

Since 𝐹(𝑥0) is just a constant, this means that most of the properties of 𝐹(𝑥) carry on to 𝐺(𝑥), which
means that the lower limit of the indefinite integral does not really matter.

The next sensible question to ask is if 𝐹 is differentiable. It turns out that this is not always true.
However we can still have some criteria under which it is true.

Theorem 2.16 (Fundamental theorem of calculus part 1). Let 𝑓 be integrable on [𝑎, 𝑏] and let 𝐹 be the
indefinite integral of 𝑓. If 𝑓 is continuous at a point 𝑐 ∈ [𝑎, 𝑏], then 𝐹 is differentiable at 𝑐 with derivative
𝐹 ′(𝑐) = 𝑓 (𝑐).

Proof. Let 𝜖 > 0. Since 𝑓 is continuous at 𝑐, there exists 𝛿 > 0 such that 𝑡 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿) means that
|𝑓 (𝑡) − 𝑓 (𝑐)| < 𝜖

2 . This also means 𝑓 (𝑐) − 𝜖
2 < 𝑓 (𝑡) < 𝑓 (𝑐) + 𝜖

2 .

Now fix 𝑥 ∈ (𝑐 − 𝛿, 𝑐). For any 𝑦 ∈ [𝑥, 𝑐], we have 𝑓 (𝑐) − 𝜖
2 < 𝑓 (𝑦) < 𝑓 (𝑐) + 𝜖

2 . Taking the integral on
both sides, we have ∫𝑐

𝑥 𝑓 (𝑐) − 𝜖
2 ≤ ∫𝑐

𝑥 𝑓 ≤ ∫𝑐
𝑥 𝑓 (𝑐) + 𝜖

2 . But this just gives us

(𝑓 (𝑐) −
𝜖
2)

(𝑐 − 𝑥) ≤ 𝐹(𝑐) − 𝐹(𝑥) ≤ (𝑓 (𝑐) +
𝜖
2)

(𝑐 − 𝑥)

𝑓 (𝑐) −
𝜖
2
≤

𝐹(𝑐) − 𝐹(𝑥)
𝑐 − 𝑥

≤ 𝑓 (𝑐) +
𝜖
2

|
𝐹 (𝑥) − 𝐹(𝑐)

𝑥 − 𝑐
− 𝑓 (𝑐)| ≤

𝜖
2
< 𝜖

Therefore, lim𝑥→𝑐−
𝐹(𝑥)−𝐹(𝑐)

𝑥−𝑐 = 𝑓 (𝑐). We can repeat the proof for the right hand limit to obtain

lim𝑥→𝑐+
𝐹(𝑥)−𝐹(𝑐)

𝑥−𝑐 = 𝑓 (𝑐). Therefore the derivative of 𝐹 at 𝑐 is 𝑓 (𝑐). �

This theorem also means the if 𝑓 is continuous on some interval then the indefinite integral 𝐹 is dif-
ferentiable on the same interval and it is what is known as an anti-derivative of 𝑓. This also means
that every continuous function is a derivative of something — its indefinite integral. In fact, the fun-
damental theorem tells us that the map from 𝐶1[𝑎, 𝑏] to 𝐶[𝑎, 𝑏] is a surjective linear transformation.
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In a way, integration is the reverse process of differentiation. However it should be noted that in
general this is not the case. This is highlighted in the following example.

Example 2.5. Let 𝑓 : [−1, 1] → ℝ be defined by

𝑓 (𝑥) = {
−1, if − 1 ≤ 𝑥 < 0
1, if 0 ≤ 𝑥 ≤ 1

Let us find the indefinite integral. Let −1 ≤ 𝑥 < 0. Then 𝐹(𝑥) = ∫𝑥
1 −1 = −(𝑥 + 1). For 0 ≤ 𝑥 ≤ 1,

we get 𝐹(𝑥) = ∫0
−1 −1 + ∫𝑥

0 1 = −1 + 𝑥. Actually we have 𝐹(𝑥) = |𝑥|. Therefore, 𝐹 ′(0) does not exist.
♦

Example 2.6. Let 𝑓 be a continuous function. Evaluate

lim
𝑥→0

1
𝑥 ∫

𝑥3

𝑥
𝑓 .

Let 𝐹(𝑥) = ∫𝑥
0 𝑓. The fundamental theorem of calculus tells us that 𝐹 ′(𝑥) = 𝑓 (𝑥). Then

lim
𝑥→0

1
𝑥 ∫

𝑥3

𝑥
𝑓 = lim

𝑥→0

1
𝑥(∫

𝑥3

0
𝑓 −∫

𝑥

0
𝑓)

= lim
𝑥→0

1
𝑥(
𝐹(𝑥3) − 𝐹(𝑥))

Since 𝐹 is continuous, the lim𝑥→0 𝐹(𝑥3) = lim𝑥→0 𝐹(𝑥) = 𝐹(0). Then we use L’Hôpital’s rule, and
the limit becomes

lim
𝑥→0

d
d𝑥(

𝐹(𝑥3) − 𝐹(𝑥)) = lim
𝑥→0

3𝑥2𝑓 (𝑥3) − 𝑓 (𝑥)

= 𝑓 (0).

♦

Corollary 2.16.1. If 𝑓 is continuous on [𝑎, 𝑏] and 𝑔 is differentiable on [𝑐, 𝑑], such that ran 𝑔 ⊆ [𝑎, 𝑏],
then the function

𝐺(𝑥) = ∫
𝑔(𝑥)

𝑎
𝑓

where 𝑥 ∈ [𝑐, 𝑑], is differentiable on [𝑐, 𝑑] and

𝐺′(𝑥) = 𝑓 (𝑔(𝑥))𝑔′(𝑥).

Proof. The indefinite integral of 𝑓 is given by 𝐹(𝑥) = ∫𝑥
𝑎 𝑓 for 𝑥 ∈ [𝑎, 𝑏]. From the fundamental

theorem of calculus we have 𝐹 ′(𝑥) = 𝑓 (𝑥). Now consider the function 𝐹 ∘𝑔: [𝑐, 𝑑] → ℝ. Then we can
see that 𝐺 = 𝐹 ∘𝑔. Furthermore, using the chain rule (𝐹 ∘𝑔)′(𝑥) = 𝑔′(𝑥)𝐹 ′(𝑔(𝑥)) = 𝑔′(𝑥)𝑓 (𝑔(𝑥)). �

Corollary 2.16.2 (Mean value theorem for integrals). Suppose 𝑓 is continuous on [𝑎, 𝑏], then there
exists 𝑐 ∈ (𝑎, 𝑏) such that ∫𝑏

𝑎 𝑓 = 𝑓 (𝑐)(𝑏 − 𝑎).

Proof. Let 𝐹(𝑥) = ∫𝑥
𝑎 𝑓 for 𝑥 ∈ [𝑎, 𝑏]. Then 𝐹 is differentiable and 𝐹 ′(𝑥) = 𝑓 (𝑥). By the mean value

theorem for derivatives, there exists 𝑐 ∈ (𝑎, 𝑏) such that 𝐹(𝑏) − 𝐹(𝑎) = 𝐹 ′(𝑐)(𝑏 − 𝑎), or in other words
∫𝑏
𝑎 𝑓 = 𝑓 (𝑐)(𝑏 − 𝑎). �
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Theorem 2.17 (Fundamental theorem of calculus part 2). Let 𝑔 be differentiable and continuous on
[𝑎, 𝑏]. Then

∫
𝑏

𝑎
𝑔′ = 𝑔(𝑏) − 𝑔(𝑎).

Proof. Since 𝑔′ is continuous on [𝑎, 𝑏] it is also integrable on [𝑎, 𝑏]. Then define 𝐹(𝑥) = ∫𝑥
𝑎 𝑔′ for

𝑥 ∈ [𝑎, 𝑏]. By the fundamental theorem of calculus (part 1), we have 𝐹 ′ = 𝑔′. Then (𝐹 − 𝑔)′ = 0 and
theorem 1.15 tells us that 𝐹 − 𝑔 is a constant function. Let 𝐹 = 𝑔 + 𝑐. So now we have

∫
𝑏

𝑎
𝑔′ = 𝐹(𝑏) − 𝐹(𝑎) = 𝑔(𝑏) + 𝑐 − 𝑔(𝑎) − 𝑐 = 𝑔(𝑏) − 𝑔(𝑎).

�

Is the continuity of 𝑔′ necessary for the theorem to hold? It turns out that we do not need it.

Theorem 2.18 (Cauchy’s fundamental theorem of calculus). Let 𝑔 be differentiable on [𝑎, 𝑏] and let
𝑔′ be integrable on [𝑎, 𝑏]. Then

∫
𝑏

𝑎
𝑔′ = 𝑔(𝑏) − 𝑔(𝑎).

Proof. Let 𝑃 = {𝑥0, 𝑥1, … , 𝑥𝑛} be a partition of [𝑎, 𝑏]. For 1 ≤ 𝑖 ≤ 𝑛, since 𝑔 is differentiable, by the
mean value theorem there is a point 𝑐𝑖 ∈ (𝑥𝑖−1, 𝑥𝑖) such that

𝑔′(𝑐𝑖) =
𝑔(𝑥𝑖) − 𝑔(𝑥𝑖−1)

𝑥𝑖 − 𝑥𝑖−1

Hence 𝑔(𝑥𝑖) − 𝑔(𝑥𝑖−1) = 𝑔′(𝑐𝑖)Δ𝑥𝑖. Then

𝑔(𝑏) − 𝑔(𝑎) =
𝑛
∑
𝑖=1

(𝑔(𝑥𝑖) − 𝑔(𝑥𝑖+1)

=
𝑛
∑
𝑖=1

𝑔′(𝑐𝑖)Δ𝑥𝑖

Recall that we also have 𝑚𝑖(𝑔′, 𝑃) ≤ 𝑔′(𝑐𝑖) ≤ 𝑀𝑖(𝑔′, 𝑃). Thus

𝐿(𝑔′, 𝑃) =
𝑛
∑
𝑖=1

𝑚𝑖(𝑔′, 𝑃)Δ𝑥𝑖 ≤
𝑛
∑
𝑖=1

𝑔′(𝑐𝑖)Δ𝑥𝑖 ≤
𝑛
∑
𝑖=1

𝑀𝑖(𝑔′, 𝑃)Δ𝑥𝑖 = 𝑈 (𝑔′, 𝑃).

This means, for any partition 𝑃 of [𝑎, 𝑏], we also have

𝐿(𝑔′, 𝑝) ≤ 𝑏
𝑎 𝑔′ ≤ 𝑔(𝑏) − 𝑔(𝑎) ≤ 𝑏

𝑎 𝑔′ ≤ 𝑈 (𝑔′, 𝑃).

Since 𝑔′ is integrable, this give us ∫𝑏
𝑎 𝑔′ = 𝑔(𝑏) − 𝑔(𝑎). �

It is possible for a function to have a non-integrable derivative, which is the reason why we need to
specify this condition in the theorem.
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Example 2.7. Let

𝑔(𝑥) = {
𝑥2 sin( 1

𝑥2), if 𝑥 ≠ 0
0, otherwise

Then

𝑔′(𝑥) = {
2𝑥 sin 1

𝑥2 −
2
𝑥 cos

1
𝑥2 , if 𝑥 ≠ 0

0, otherwise

We claim 𝑔′ is not integrable on [−1, 1] since it is not bounded there. Consider the sequence 𝑠𝑛 =
1

√2𝑛𝜋
. Then

lim𝑛→∞ 𝑔′(𝑠𝑛) = 2𝑠𝑛 sin 2𝑛𝜋 −
2
𝑠𝑛
cos 2𝑛𝜋

= −2√2𝑛𝜋
= ∞

♦

Theorem 2.19 (Integration by parts). Suppose that the functions 𝑢, 𝑣 : [𝑎, 𝑏] → ℝ are differentiable on
[𝑎, 𝑏] and their derivatives 𝑢′ and 𝑣 ′ are integrable on [𝑎, 𝑏]. Then

∫
𝑏

𝑎
𝑢𝑣 ′ = 𝑢(𝑏)𝑣(𝑏) − 𝑢(𝑎)𝑣(𝑎) −∫

𝑏

𝑎
𝑣𝑢′

Proof. Let 𝑔(𝑥) = 𝑢(𝑥)𝑣(𝑥). Then 𝑔′ = 𝑢′𝑣 + 𝑢𝑣 ′ by the product rule. It is clearly integrable.
Therefore

∫
𝑏

𝑎
𝑔′ = ∫

𝑏

𝑎
𝑢′𝑣 +∫

𝑏

𝑎
𝑢𝑣 ′ = 𝑢(𝑏)𝑣(𝑏) − 𝑢(𝑎)𝑣(𝑎)

and rearrangement gives us our desired result. �

Theorem 2.20 (Integration by substitution). Suppose that the function 𝑓 : [𝑎, 𝑏] → ℝ is differentiable
on [𝑎, 𝑏] and 𝑓 ′ is integrable on [𝑎, 𝑏]. If 𝑔: 𝐼 → ℝ is continuous on an interval 𝐼 containing 𝑓[[𝑎, 𝑏]],
then

∫
𝑏

𝑎
(𝑔 ∘ 𝑓 ) ⋅ 𝑓 ′ = ∫

𝑓 (𝑏)

𝑓 (𝑎)
𝑔.

Proof. Since 𝑔(𝑎) ∈ 𝐼 we can consider the indefinite integral 𝐺(𝑥) = ∫𝑥
𝑓 (𝑎) 𝑔 for 𝑥 ∈ 𝐼. Then 𝐺′(𝑥) =

𝑔(𝑥). Let ℎ = 𝐺 ∘ 𝑓. By the chain rule, ℎ′ = (𝑔 ∘ 𝑓 ) ⋅ 𝑓 ′. Since 𝑓 ′ is given to be integrable, and 𝑔 ∘ 𝑓 is
continuous, ℎ′ is integrable, and

∫
𝑏

𝑎
(𝑔 ∘ 𝑓 ) ⋅ 𝑓 ′ = ∫

𝑏

𝑎
(𝐺 ∘ 𝑓 )′ = 𝐺(𝑓 (𝑏)) − 𝐺(𝑓 (𝑎)) = ∫

𝑓 (𝑏)

𝑓 (𝑎)
𝑔.

�

Following is another statement of Taylor’s theorem where we express the remainder term in an
integral instead of a derivative.
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Theorem 2.21 (Taylor’s theorem in integral form). Let 𝑓 be a function such that 𝑓 , 𝑓 ′, … 𝑓 (𝑛+1) exists
on [𝑎, 𝑥] and 𝑓 (𝑛+1) is integrable on [𝑎, 𝑥]. Then

𝑓 (𝑥) =
𝑛
∑
𝑘=0

𝑓 (𝑘)(𝑎)
𝑘!

(𝑥 − 𝑎)𝑘 +
1
𝑛! ∫

𝑥

𝑎
(𝑥 − 𝑡)𝑛𝑓 (𝑛+1).

Proof. As usual let us call the remainder term 𝑅𝑛(𝑥). We can try doing integration by parts, letting
𝑢 = 𝑓 (𝑛) and 𝑣 = (𝑥−𝑡)𝑛

𝑛! , so

1
𝑛! ∫

𝑥

𝑎
(𝑥 − 𝑡)𝑛𝑓 (𝑛+1) = ∫

𝑥

𝑎
𝑢′𝑣

= 𝑢𝑣 |
𝑥

𝑎
−∫

𝑥

𝑎
𝑢𝑣 ′

= 𝑓 (𝑛)(𝑡)
(𝑥 − 𝑡)𝑛

𝑛! |
𝑥

𝑎
−∫

𝑥

𝑎

(−1)(𝑥 − 𝑛)𝑛−1

(𝑛 − 1)!
𝑓 (𝑛)

= −
𝑓 (𝑛)(𝑎)
𝑛!

(𝑥 − 𝑎)𝑛 +
1

(𝑛 − 1)! ∫
𝑥

𝑎
(𝑥 − 𝑡)𝑛−1𝑓 (𝑛)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑅𝑛−1

.

We may perform induction to obtain

𝑅𝑛(𝑥) = −
𝑛
∑
𝑘=1

𝑓 (𝑘)(𝑎)
𝑘!

(𝑥 − 𝑎)𝑘 + 𝑅0(𝑥)

It can be seen that 𝑅0(𝑥) = ∫𝑥
𝑎 𝑓 ′ = 𝑓 (𝑥) − 𝑓 (𝑎), so rearranging the expression above gives us the

result we want. �

2.3 Riemann sums

Recall our original definition of the integrals

𝑏
𝑎 = inf

𝑃
𝑈 (𝑓 , 𝑃) 𝑏

𝑎 = sup
𝑃

𝐿(𝑓 , 𝑃)

This is due to Darboux, and is known as the Riemann-Darboux integral. The original Riemann
integral was defined in terms of limits of Riemann sums and we shall show that they are equivalent.

Definition 2.8 (Norm of partitions). Let 𝑃 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a partition of [𝑎, 𝑏]. Then the norm
of 𝑃 is ‖𝑃‖ = max{Δ𝑥𝑖} �

It is fairly easy to see that if partitions 𝑃 and 𝑄 are such that 𝑄 ⊆ 𝑃, then ‖𝑃‖ ≤ ‖𝑄‖.

Definition 2.9 (Riemann sum). Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function. Let 𝑃 = {𝑥0, 𝑥1, … , 𝑥𝑛} be
a partition of [𝑎, 𝑏] and let 𝜉𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖] for 1 ≤ 𝑖 ≤ 𝑛. The sum

𝑆(𝑓 , 𝑃)(𝜉 ) =
𝑛
∑
𝑖=1

𝑓 (𝜉𝑖)Δ𝑥𝑖

is called the Riemann sum of 𝑓 with respect to 𝑃 and 𝜉. �
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The difference between the Riemann, upper and lower sums is that there is no preference for the
largest or smallest value in the Riemann sum, we can pick any point we want in the subinterval. It
is therefore fairly obvious that

𝐿(𝑓 , 𝑃) ≤ 𝑆(𝑓 , 𝑃)(𝜉 ) ≤ 𝑈 (𝑓 , 𝑃).

Definition 2.10 (Limit of riemann sums). Suppose that there exists 𝐴 such that ∀𝜖 > 0, ∃𝛿 > 0, for
some partition 𝑃 of [𝑎, 𝑏] and 𝜉 = {𝜉1, 𝜉2, … , 𝜉𝑛},

‖𝑃‖ < 𝛿 ⟹ |𝑆(𝑓 , 𝑃)(𝜉 ) − 𝐴| < 𝜖

then we say that 𝐴 is the limit of these Riemann sums as ‖𝑃‖ → 0, and we write

lim
‖𝑃‖→0

𝑆(𝑓 , 𝑃)(𝜉 ) = 𝐴.

�

Let us recall that since 𝑏
𝑎 𝑓 is an infimum, for every 𝜖 > 0, there exists a partition 𝑃 such that 𝑈 (𝑓 , 𝑃) <

𝑏
𝑎 𝑓 + 𝜖. What does this say about 𝑃?

Lemma2.22. Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function and 𝑃 be a partition of [𝑎, 𝑏]. Then ∀𝜖 > 0, ∃𝛿 > 0

‖𝑃‖ < 𝛿 ⟹ {
𝑈 (𝑓 , 𝑃) < 𝑏

𝑎 𝑓 + 𝜖
𝐿(𝑓 , 𝑃) > 𝑏

𝑎 𝑓 − 𝜖

or equivalently,

‖𝑃‖ < 𝛿 ⟹ {
lim
‖𝑃‖→0

𝑈 (𝑓 , 𝑃) = 𝑏
𝑎 𝑓

lim
‖𝑃‖→0

𝐿(𝑓 , 𝑃) = 𝑏
𝑎 𝑓

Proof. Let 𝜖 > 0. Then there is a partition 𝑄 = {𝑦1, 𝑦2, … , 𝑦𝑛} of [𝑎, 𝑏] such that 𝑈 (𝑓 , 𝑄) < 𝑏
𝑎 𝑓 +

𝜖
2 . Let

𝜂 = min1≤𝑖≤𝑛 Δ𝑦𝑖 and 𝑀 = sup𝑥∈[𝑎,𝑏] 𝑓 (𝑥). Then let 𝛿 < min (𝜂, 𝜖
6(𝑁−1)𝑀).

Let the partition 𝑃 = {𝑥1, 𝑥2, … , 𝑥𝑛} be such that ‖𝑃‖ < 𝛿. In each subinterval [𝑥𝑖−1, 𝑥𝑖], there can
either be zero or one 𝑦𝑗 ∈ [𝑥𝑖−1, 𝑥𝑖] due to ‖𝑃‖ < 𝜂. Divide the subintervals into two sets. Let 𝑃1
contain the subintervals such that (𝑥𝑖−1, 𝑥𝑖) ∩ 𝑄 = {𝑦𝑗} for some 1 ≤ 𝑗 ≤ 𝑛 − 1. There are at most 𝑛 − 1
subintervals in 𝑃1. Let 𝑃2 contain the remaining subintervals where (𝑥𝑖−1, 𝑥𝑖) ∩ 𝑄 = ∅.

Let 𝑅 = 𝑃 ∪𝑄 = {𝑧1, 𝑧2, … , 𝑧𝑟}. Divide 𝑅 into two sets again. Let 𝑅1 contain the subintervals obtained
by dividing the subintervals from 𝑃1, i.e. they take the form of [𝑥𝑖−1, 𝑦𝑗] or [𝑦𝑗, 𝑥𝑖]. Let 𝑅2 = 𝑃2
contain the other subintervals.

Then

𝑈 (𝑓 , 𝑃) = ∑
𝑥𝑖∈𝑃1

𝑀𝑖(𝑓 , 𝑃)Δ𝑥𝑖 + ∑
𝑥𝑖∈𝑃2

𝑀𝑖(𝑓 , 𝑃)Δ𝑥𝑖

𝑈 (𝑓 , 𝑅) = ∑
𝑥𝑖∈𝑅1

𝑀𝑖(𝑓 , 𝑅)Δ𝑥𝑖 + ∑
𝑥𝑖∈𝑅2

𝑀𝑖(𝑓 , 𝑅)Δ𝑥𝑖
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Taking their difference, we have 0 ≤ 𝑈 (𝑓 , 𝑃) − 𝑈 (𝑓 , 𝑅) = ∑𝑃1
−∑𝑅1

≤ |∑𝑃1 | + |∑𝑅1 |. We also have
the following bounds on the sums:

|𝑀𝑖(𝑓 , 𝑃)Δ𝑥𝑖| ≤ 𝑀‖𝑃‖ < 𝑀𝛿 ⟹ |∑
𝑃1
| ≤ (𝑁 − 1)𝑀𝛿

|𝑀𝑗(𝑓 , 𝑃)Δ𝑧𝑖| ≤ 𝑀‖𝑅‖ < 𝑀𝛿 ⟹ |∑
𝑅1

| ≤ 2(𝑁 − 1)𝑀𝛿

Thus 𝑈 (𝑓 , 𝑃) = (𝑈 (𝑓 , 𝑃) − 𝑈 (𝑓 , 𝑅)) + 𝑈 (𝑓 , 𝑅) ≤ 𝜖
2 +

𝑏
𝑎 𝑓 + 𝜖

2 . The proof for the lower sum is similar
and omitted. �

Theorem 2.23. Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function. Then 𝑓 is integrable on [𝑎, 𝑏] and ∫𝑏
𝑎 𝑓 = 𝐴

iff
lim
‖𝑃‖→0

𝑆(𝑓 , 𝑃)(𝜉 ) = 𝐴.

Proof.

( ⟹ ): Assume 𝑓 is integrable on [𝑎, 𝑏] and ∫𝑏
𝑎 𝑓 = 𝐴. Let 𝜖 > 0, then by lemma 2.22, ∃𝛿 > 0 such

that

‖𝑃‖ < 𝛿 ⟹ 𝐴 − 𝜖 < 𝐿(𝑓 , 𝑃) ≤ 𝑆(𝑓 , 𝑃)(𝜉 ) ≤ 𝑈 (𝑓 , 𝑃) < 𝐴 + 𝜖
⟹ |𝑆(𝑓 , 𝑃)(𝜉 ) − 𝐴| < 𝜖.

for any 𝜉.

( ⟸ ): Assume lim‖𝑃‖→0 𝑆(𝑓 , 𝑃)(𝜉 ) = 𝐴. Let 𝜖 > 0. Then ∃𝛿 > 0 such that ‖𝑃‖ < 𝛿 ⟹
|𝑆(𝑓 , 𝑃)(𝜉 ) − 𝐴| < 𝜖. Recall 𝑀𝑖 = sup{𝑓 (𝑥) ∣ 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]} and 𝑈 (𝑓 , 𝑃) = ∑𝑛

𝑖=1𝑀𝑖Δ𝑥𝑖. There ex-
ists 𝜉𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖] such that 𝑓 (𝜉𝑖) > 𝑀𝑖 −

𝜖
𝑏−𝑎 . Then

𝑆(𝑓 , 𝑃)(𝜉 ) =
𝑛
∑
𝑖=1

𝑓 (𝜉𝑖)Δ𝑥𝑖 >
𝑛
∑
𝑖=1

(𝑀𝑖 −
𝜖

𝑏 − 𝑎)
Δ𝑥𝑖 = 𝑈 (𝑓 , 𝑃) − 𝜖.

Thus we can choose 𝜉 such that 𝐴+ 𝜖 > 𝑆(𝑓 , 𝑃)(𝜉 ) > 𝑈 (𝑓 , 𝑃) − 𝜖 ≥ 𝑏
𝑎 𝑓 − 𝜖. This means 𝑏

𝑎 𝑓 < 𝐴 + 2𝜖,
and so as 𝜖 → 0, we conclude that 𝑏

𝑎 𝑓 ≥ 𝐴. There is a similar proof for the lower integral, using
which we arrive at the desired conclusion. �

Corollary 2.23.1. Let 𝑓 : [𝑎, 𝑏] → ℝ be integrable on [𝑎, 𝑏]. For each 𝑛 ∈ ℕ, let 𝑃𝑛 = {𝑥(𝑛)0 , 𝑥(𝑛)1 , … , 𝑥(𝑛)𝑚𝑛 }
be a partition of [𝑎, 𝑏] and let 𝜉 (𝑛) = {𝜉 (𝑛)1 , 𝜉 (𝑛)2 , … , 𝜉 (𝑛)𝑚𝑛 } be such that 𝜉

(𝑛)
𝑖 ∈ [𝑥(𝑛)𝑖−1, 𝑥

(𝑛)
𝑖 ] for all 1 ≤ 𝑖 ≤ 𝑚𝑛.

If lim𝑛→∞ ‖𝑃𝑛‖ = 0 then lim𝑛→∞ 𝑆(𝑓 , 𝑃𝑛)(𝜉 (𝑛)) = ∫𝑏
𝑎 𝑓.

Proof. Let 𝐴 = ∫𝑏
𝑎 𝑓. Let 𝜖 > 0. By theorem 2.23, lim‖𝑃‖→0 𝑆(𝑓 , 𝑃)(𝜉 ) = 𝐴, i.e. ∃𝛿 > 0 such that

‖𝑃‖ < 𝛿 ⟹ |𝑆(𝑓 , 𝑃)(𝜉 ) − 𝐴| < 𝜖 for any 𝜉. Since ‖𝑃𝑛‖ → 0,

∃𝑘 ∈ ℕ [𝑛 > 𝑘 ⟹ ‖𝑃𝑛‖ < 𝛿 ⟹ |𝑆(𝑓 , 𝑃𝑛)(𝜉 (𝑛)) − 𝐴| < 𝜖]

�
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Example 2.8. We want to find lim𝑛→∞∑𝑛
𝑖=1

1
𝑛+𝑖 . From first principles this is not easy to evaluate,

since the number of terms in the limit changes. However let us write this as a Riemann sum.

Let 𝑓 (𝑥) = 1
𝑥 . Then we can rewrite the terms in the limit as ∑𝑛

𝑖=1
1

1+ 𝑖
𝑛

1
𝑛 = ∑𝑛

𝑖=1 𝑓 (1 + 𝑖
𝑛)

1
𝑛 . Let

𝑃𝑛 = {1, 1 + 1
𝑛 , … , 1 + 𝑛

𝑛 } and 𝜉 (𝑛) = {1 + 1
𝑛 , … , 1 + 𝑛

𝑛 }. We have Δ𝑥(𝑛)𝑖 = 1
𝑛 and so ‖𝑃𝑛‖ = 1

𝑛 , so by
corollary 2.23.1

lim𝑛→∞

𝑛
∑
𝑖=1

1
𝑛 + 𝑖

= lim𝑛→∞

𝑛
∑
𝑖=1

𝑓 (𝜉 (𝑛)𝑖 )Δ𝑥(𝑛)𝑖 = lim𝑛→∞ 𝑆(𝑓 , 𝑃𝑛)(𝜉 (𝑛)) = ∫
2

1
𝑓 = ln 2

Another way is to let 𝑔(𝑥) = 1
1+𝑥 . Then we can rewrite the terms as∑𝑛

𝑖=1 𝑔(
𝑖
𝑛)

1
𝑛 . Let 𝑃

′
𝑛 = {0, 1𝑛 , … , 1},

and 𝜉 ′(𝑛) = {1𝑛 ,
2
𝑛 , …

𝑛
𝑛 }. Similarly we have

lim𝑛→∞

𝑛
∑
𝑖=1

1
𝑛 + 𝑖

= lim𝑛→∞

𝑛
∑
𝑖=1

𝑔(𝜉 ′(𝑛)𝑖 )Δ𝑥(𝑛)𝑖 = lim𝑛→∞ 𝑆(𝑓 , 𝑃 ′𝑛)(𝜉 ′(𝑛)) = ∫
1

0
𝑔 = ln 2

♦

2.4 Improper integrals

In defining∫𝑏
𝑎 𝑓wehave assume that the interval of integration is a compact interval and the function

𝑓 is bounded in this interval. An improper integral is on where either of these assumptions fail.

Definition 2.11 (Improper integral for non-bounded functions). Suppose that 𝑓 is defined on [𝑎, 𝑏)
and 𝑓 is integrable on [𝑎, 𝑐] for every 𝑐 ∈ (𝑎, 𝑏), then we define

∫
𝑏

𝑎
= lim

𝑐→𝑏−∫
𝑐

𝑎
𝑓

provided that the limit exists2.

Similarly, if 𝑓 is defined on (𝑎, 𝑏] and 𝑓 is integrable on [𝑐, 𝑏] for every 𝑐 ∈ (𝑎, 𝑏), then we define

∫
𝑏

𝑎
𝑓 = lim

𝑐→𝑎+∫
𝑏

𝑐
𝑓

provided that the limit exists. �

In the case when 𝑓 is integrable on [𝑎, 𝑏], the indefinite integral is consistent with the definite integral
we know. This is because the improper integral ∫𝑥

𝑎 𝑓 is continuous on [𝑎, 𝑏].

Example 2.9. Let 𝑓 (𝑥) = 𝑥−
1
3 for 𝑥 ∈ (0, 1]. This is not integrable on [0, 1] (regardless of how

we extend it to 0 since it is unbounded). But 𝑓 is integrable on [𝑐, 1] for any 𝑐 ∈ (0, 1) since it is
continuous, and we have

∫
1

𝑐
𝑥−

1
3 =

3
2(

1 − 𝑐
2
3).

2In this section we only consider finite (not ±∞) limits when we say “exist”
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Let us evaluate the limit

lim
𝑐→0+∫

1

𝑐
𝑓 = lim

𝑐→0+
3
2(

1 − 𝑐
2
3) =

3
2

Hence the improper integral ∫1
0 𝑓 = 3

2 .

As another example, let 𝑔(𝑥) = 1
𝑥2 for 𝑥 ∈ (0, 1]. We have

∫
1

𝑐

1
𝑥2

= −1 +
1
𝑐
.

The limit lim𝑐→0+ ∫
1
𝑐 𝑓 does not exists, and so the indefinite integral diverges. ♦

Definition 2.12 (Improper integral for non-bounded intervals). Suppose that 𝑓 is defined on [𝑎, ∞)
and 𝑓 is integrable on [𝑎, 𝑐] for every 𝑐 > 𝑎, then we define

∫
∞

𝑎
= lim𝑐→∞∫

𝑐

𝑎
𝑓

provided that the limit exists.

Similarly, if 𝑓 is defined on (−∞, 𝑏] and 𝑓 is integrable on [𝑐, 𝑏] for every 𝑐 < 𝑏, then we define

∫
𝑏

−∞
𝑓 = lim𝑐→−∞∫

𝑏

𝑐
𝑓

provided that the limit exists.

Furthermore, if both ∫∞
𝑎 𝑓 and ∫0

−∞ 𝑓 converges, then we define

∫
∞

−∞
𝑓 = ∫

∞

0
𝑓 +∫

0

−∞
𝑓 .

�

Example 2.10. Let 𝑔(𝑥) = 1
𝑥2 for 𝑥 ∈ (0,∞). We have

∫
𝑐

1

1
𝑥2

= 1 −
1
𝑐
.

Evaluate

lim𝑐→∞∫
𝑐

1

1
𝑥2

= lim𝑐→∞(1 −
1
𝑐
) = 1

so the improper integral converges to 1. ♦

Theorem 2.24. Let 𝑓 : [𝑐, ∞) → ℝ be integrable on [𝑐, 𝑑] for every 𝑑 > 𝑐. The improper integral ∫∞
𝑐 𝑓

converges iff ∀𝜖 > 0, ∃𝑀 > 0[𝑀 < 𝑎 < 𝑏 ⟹ |∫𝑏
𝑎 𝑓| < 𝜖].

Proof. The limit lim𝑥→∞∫𝑥
𝑐 𝑓 exists iff it satisfies the Cauchy criterion, i.e.

∀𝜖 > 0, ∃𝑀 > 0, ∀𝑎, 𝑏 > 𝑀 [|∫
𝑏

𝑎
𝑓| < 𝜖]

In this case we can let𝑀 < 𝑎 < 𝑏 since the sign does not matter. This leads directly to the result. �
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Theorem 2.25. Let 𝑓 : [𝑎, ∞) → ℝ be integrable on [𝑎, 𝑏] for every 𝑏 > 𝑎, and that 𝑓 (𝑥) ≥ 0 for all
𝑥 ∈ [𝑎, ∞). The improper integral ∫∞

𝑎 𝑓 converges iff ∫𝑥
𝑎 𝑓 is bounded for all 𝑥 ∈ [𝑎, ∞).

Proof. Let 𝐹(𝑥) = ∫𝑥
𝑎 𝑓. Let 𝑎 ≤ 𝑥1 < 𝑥2. We have 𝐹(𝑥2) − 𝐹(𝑥1) = ∫𝑥2

𝑥1
𝑓 ≥ 0. Thus 𝐹 is an increasing

function. Therefore the limit lim𝑥→∞𝐹 exists iff 𝐹 is bounded on [𝑎, ∞). �

Corollary 2.25.1. Let 𝑓 : [𝑎, ∞) → ℝ and 𝑔: [𝑎, ∞) → ℝ be integrable on [𝑎, 𝑏] for every 𝑏 > 𝑎.
Furthermore assume that 0 ≤ 𝑓 (𝑥) ≤ 𝑔(𝑥) for every 𝑥 ∈ [𝑎, ∞). Then if ∫∞

𝑎 𝑔 converges, so does ∫∞
𝑎 𝑓.

Proof. For every 𝑥 ∈ [𝑎, ∞), ∫𝑥
𝑎 𝑔 is an upper bound for ∫𝑥

𝑎 𝑓. �

Theorem 2.26 (Integral test). Let 𝑓 be a positive decreasing function on [1, ∞) and let 𝑎𝑛 = 𝑓 (𝑛). Then
∫∞
1 𝑓 converges iff∑∞

𝑛=1𝑎𝑛 converges.

Proof. Since 𝑓 is positive and decreasing on the interval [𝑘 − 1, 𝑘] where 𝑘 = 2, 3, … , we have

𝑓 (𝑘 − 1) ≥ ∫
𝑘

𝑘−1
𝑓 ≥ 𝑓 (𝑘).

By adding this inequality for 𝑘 = 2, 3, … , 𝑛, we obtain

𝑛
∑
𝑘=1

𝑓 (𝑘) − 𝑓 (1) ≤ ∫
𝑛

1
𝑓 ≤

𝑛−1
∑
𝑘=1

𝑓 (𝑘).

Letting 𝑛 → ∞, we get our result. �

3 Sequences of functions

Considering sequences can sometimes lead us to new things. For example there are many famous
sequences in ℚ that converges to ℝ.

Definition 3.1 (Sequences of functions). Let 𝐸 ⊆ ℝ. Suppose for each 𝑛 ∈ ℕ, we have a function
𝑓𝑛: 𝐸 → ℝ. Then

(𝑓𝑛) = (𝑓1, 𝑓2, … )

is a sequence of functions on 𝐸. �

A sequence of functions can be seen as a family of sequences enumerated by the set 𝐸. For each
𝑥 ∈ 𝐸, (𝑓𝑛(𝑥)) is a sequence of real numbers. This sequence may converge or diverge.

3.1 Pointwise convergence

Definition 3.2 (Pointwise convergence). Suppose that for every 𝑥 ∈ 𝐸 the sequence (𝑓𝑛(𝑥)) con-
verges. Define the function 𝑓 : 𝐸 → ℝ by

𝑓 (𝑥) = lim𝑛→∞ 𝑓𝑛(𝑥)

for 𝑥 ∈ 𝐸. We say that (𝑓𝑛) converges to 𝑓 pointwise on 𝐸. �
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In other words, 𝑓𝑛 converges to 𝑓 pointwise on 𝐸 iff ∀𝑥 ∈ 𝐸 [𝑓𝑛(𝑥) → 𝑓 (𝑥)] iff ∀𝑥 ∈ 𝐸, ∀𝜖 > 0, ∃𝑘 ∈
𝑁 , 𝑛 ≥ 𝐾 ⟹ |𝑓𝑛(𝑥) − 𝑓 (𝑥)| < 𝜖.

How well does pointwise convergence preserve the properties of the functions in the sequence? It
does not preserve continuity, consider the following counter-example.

Example 3.1. Consider the sequence of functionswith 𝑓𝑛(𝑥) = 𝑥𝑛 for 𝑥 ∈ [0, 1]. Then (𝑓𝑛) converges
to the following step function

𝑓 (𝑥) = {
0, if 𝑥 < 1
1, if 𝑥 = 1

.

♦

Neither does it preserve integrability. Even if the limit function was integrable, the integral of the
limit function is different from the limit of the integrals of the functions.

Example 3.2. Consider the sequence of functions with each 𝑔𝑛: [0, 1] → ℝ defined as

𝑔𝑛(𝑥) =
⎧

⎨
⎩

2𝑛2𝑥, if 0 ≤ 𝑥 ≤ 1
2𝑛

2𝑛 − 2𝑛2𝑥, if 1
2𝑛 ≤ 𝑥 ≤ 1

𝑛
0, otherwise

The function 𝑔𝑛 is simpler than it seems, its graph is a triangle with base 1
𝑛 and height 𝑛. Does (𝑔𝑛)

converge? Take 𝑥 ∈ (0, 1]. By the Archimedean property, ∃𝑘 ∈ ℕ [𝑘 > 1
𝑥]. Thus 𝑛 ≥ 𝑘 ⟹ 1

𝑛 ≤ 1
𝑘 <

𝑥 ⟹ 𝑔𝑛(𝑥) = 0. Hence 𝑔𝑛 converges to the zero function pointwise on [0, 1]. Every function in
the sequence has the same area under them, but somehow their limit function has an area of 0. ♦

Finally, since it does not even preserve continuity, it will not preserve differentiability. However if
the limit function was differentiable, would the derivative of the limit function converge to the limit
of the derivatives? The answer is no.

Example 3.3. Consider the sequence ℎ𝑛(𝑥) =
1
√𝑛

sin 𝑛𝑥. Then

|ℎ𝑛(𝑥) − 0| ≤
1

√𝑛
→ 0

and so (ℎ𝑛) converges to the zero function for all 𝑥. Now

ℎ′𝑛(𝑥) = √𝑛 cos 𝑛𝑥 → ∞

♦

We need a stronger form of convergence.

3.2 Uniform convergence

Definition 3.3 (Uniform convergence). A sequence (𝑓𝑛) of functions converges uniformly to 𝑓 on
𝐸 ⊆ ℝ if ∀𝜖 > 0, ∃𝐾 ∈ ℕ, ∀𝑥 ∈ 𝐸,

𝑛 ≥ 𝐾 ⟹ |𝑓𝑛(𝑥) − 𝑓 (𝑥)| < 𝜖

�
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Example 3.4. Consider again the sequence ℎ𝑛(𝑥) =
1
√𝑛

sin 𝑛𝑥. Let 𝜖 > 0. Choose 𝐾 ∈ ℕ such that

𝐾 > 1
𝜖2 . Then ∀𝑥 ∈ ℝ,

𝑛 ≥ 𝐾 ⟹ |ℎ𝑛(𝑥) − 0| ≤
1

√𝑛
≤

1

√𝐾
< 𝜖.

so (ℎ𝑛) converges uniformly to the zero function. ♦

We will introduce a quantity that makes checking for uniform convergence more convenient.

Definition 3.4 (Uniform norm). Let 𝐸 ⊆ ℝ and let 𝜙: 𝐸 → ℝ be a bounded function. The uniform
norm of 𝜙 on 𝐸 is defined as

‖𝜙‖𝐸 = sup{|𝜙(𝑥)| ∣ 𝑥 ∈ 𝐸}

�

This is a norm function in the space of all bounded functions on 𝐸. An important property of norm
functions is the triangle inequality. We have an upper bound

|(𝜙1 + 𝜙2)(𝑥)| ≤ |𝜙1(𝑥)| + |𝜙2(𝑥)| ≤ ‖𝜙1‖𝐸 + ‖𝜙2‖𝐸

so
‖𝜙1 + 𝜙2‖ = sup{|(𝜙1 + 𝜙2)(𝑥)|} ≤ ‖𝜙1‖𝐸 + ‖𝜙2‖𝐸

Theorem 3.1. A sequence of functions (𝑓𝑛) converges uniformly on 𝐸 iff lim𝑛→∞ ‖𝑓𝑛 − 𝑓‖𝐸 = 0.

Proof.

( ⟹ ): Assume 𝑓𝑛 converges to 𝑓 uniformly on 𝐸. Let 𝜖 > 0. Then ∃𝐾 ∈ ℕ, ∀𝑥 ∈ 𝐸,

𝑛 ≥ 𝐾 ⟹ |𝑓𝑛(𝑥) − 𝑓 (𝑥)| <
𝜖
2

This form an upper bound, thus

‖𝑓𝑛 − 𝑓‖𝐸 ≤
𝜖
2
< 𝜖.

( ⟸ ): Assume ‖𝑓𝑛 − 𝑓‖𝐸 → 0. Let 𝜖 > 0. Then ∃𝐾 ∈ ℕ such that

𝑛 ≥ 𝐾 ⟹ ‖𝑓𝑛 − 𝑓‖𝐸 < 𝜖 ⟹ |𝑓𝑛(𝑥) − 𝑓 (𝑥)| ≤ ‖𝑓𝑛 − 𝑓‖𝐸 < 𝜖

�

Theorem 3.2 (Cauchy criterion for uniform convergence). A sequence of functions (𝑓𝑛) converges
uniformly on 𝐸 iff

∀𝜖 > 0, ∃𝐾 ∈ 𝑁 , ∀𝑛, 𝑚 ≥ 𝐾 [‖𝑓𝑛 − 𝑓𝑚‖𝐸 < 𝜖]

Proof.

( ⟹ ): Assume (𝑓𝑛) converges to 𝑓 uniformly on 𝐸. Let 𝜖 > 0. Then ∃𝐾 ∈ ℕ,

𝑛 ≥ 𝐾 ⟹ ‖𝑓𝑛 − 𝑓‖𝐸 <
𝜖
2
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Then for 𝑛, 𝑚 ≥ 𝐾,
‖𝑓𝑛 − 𝑓𝑚‖𝐸 ≤ ‖𝑓𝑛 − 𝑓‖ + ‖𝑓 − 𝑓𝑚‖ <

𝜖
2
+

𝜖
2
= 𝜖

( ⟸ ): Let 𝜖 > 0. This means ∃𝐾 ∈ ℕ, ∀𝑎, 𝑏 > 𝐾,

|𝑓𝑎(𝑥) − 𝑓𝑏(𝑥)| ≤ ‖𝑓𝑎 − 𝑓𝑏‖𝐸 <
𝜖
2
.

This means that (𝑓𝑛(𝑥)) is a Cauchy sequence of real numbers, and so converges. Define 𝑓 (𝑥) =
lim𝑛→∞ 𝑓𝑛(𝑥) for 𝑥 ∈ 𝐸. Taking the limit,

|𝑓𝑛(𝑥) − 𝑓 (𝑥)| = lim𝑚→∞ |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≤
𝜖
2
< 𝜖.

Thus (𝑓𝑛) converges to 𝑓 uniformly on 𝐸. �

Theorem 3.3. A sequence (𝑓𝑛) does not converge uniformly to 𝑓 on 𝐸 iff for some 𝜖 > 0, there is a
subsequence (𝑓𝑛𝑘) and a sequence (𝑥𝑘) in 𝐸 such that for all 𝑘 ∈ ℕ

|𝑓𝑛𝑘(𝑥𝑘) − 𝑓 (𝑥𝑘)| ≥ 𝜖

Proof.

( ⟹ ): Assume (𝑓𝑛) does not converge to 𝑓 uniformly on 𝐸. Then ∃𝜖 > 0, ∀𝐾 ∈ ℕ, ∃𝑛 ≥ 𝐾, ∃𝑥 ∈
𝐸 [‖𝑓𝑛(𝑥) − 𝑓 (𝑥)‖𝐸 ≥ 𝜖].

Specifically, let 𝐾1 = 1. Then ∃𝑛1 ≥ 1, ∃𝑥1 ∈ 𝐸 [‖𝑓𝑛1(𝑥1) − 𝑓 (𝑥1)‖𝐸 ≥ 𝜖]. Next let 𝐾2 = 𝑛1 + 1.

Then ∃𝑛2 > 𝑛1, ∃𝑥2 ∈ 𝐸 [‖𝑓𝑛2(𝑥2) − 𝑓 (𝑥2)‖𝐸 ≥ 𝜖]. Therefore this way we can inductively define the
subsequence (𝑓𝑛𝑘) and the sequence (𝑥𝑘) that satisfies the claim.

( ⟸ ): This direction is quite clear by comparing with the definition for uniform convergence. �

Example 3.5. Consider again the sequence of functions with 𝑓𝑛(𝑥) = 𝑥𝑛 for 𝑥 ∈ [0, 1]. We al-
ready know what (𝑓𝑛) pointwise converges to, call it 𝑓. We will show that it does not converge to 𝑓

uniformly using the previous theorem. Define a sequence 𝑥𝑘 = (12)
1
𝑘 . Then |𝑓𝑘(𝑥𝑘) − 𝑓 (𝑥𝑘)| =

1
2 .

Furthermore we see that removing the problematic end point does not work, since the same argu-
ment applies to [0, 1) as well. We have to do more than that. Let 0 < 𝑟 < 1 and consider the interval
[0, 𝑟]. Then

‖𝑓𝑛 − 𝑓‖[0,𝑟] ≤ 𝑟𝑛 → 0
and so it converges uniformly on this restricted interval. ♦

Example 3.6. Consider the sequence of functions 𝑓𝑛(𝑥) = 𝑥𝑛(1 − 𝑥𝑛) for 𝑥 ∈ [0, 1]. It converges to
the zero function pointwise. However it does not converge uniformly,

‖𝑓𝑛 − 0‖ = sup{𝑥𝑛(1 − 𝑥𝑛)} = sup {
1
4
− (𝑥𝑛 −

1
2
)2} =

1
4

which does not go to 0. We can also define the sequence 𝑥𝑘 = (12)
1
𝑘 , and

|𝑓𝑘(𝑥𝑘) − 𝑓 (𝑥𝑘)| =
1
4
.

We can try restricting the interval, let 0 < 𝑟 < 1 and consider [0, 𝑟]. Then

|𝑓𝑛(𝑥) − 0| = |𝑥𝑛 − 𝑥2𝑛| ≤ |𝑥𝑛| + |𝑥2𝑛| ≤ 𝑟𝑛 + 𝑟2𝑛 → 0.

♦
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Theorem 3.4. If (𝑓𝑛) converges uniformly on 𝐴 and 𝐵, then (𝑓𝑛) converges uniformly on 𝐴 ∪ 𝐵.

Proof. Let 𝜖 > 0. There exists 𝐾1, 𝐾2 ∈ ℕ such that

∀𝑥 ∈ 𝐴 [𝑛 ≥ 𝐾1 ⟹ |𝑓𝑛(𝑥) − 𝑓 (𝑥)| < 𝜖]
∀𝑥 ∈ 𝐵 [𝑛 ≥ 𝐾2 ⟹ |𝑓𝑛(𝑥) − 𝑓 (𝑥)| < 𝜖]

Take 𝐾 = max(𝐾1, 𝐾2) and we have

∀𝑥 ∈ 𝐴 ∪ 𝐵 [𝑛 ≥ 𝐾 ⟹ |𝑓𝑛(𝑥) − 𝑓 (𝑥)| < 𝜖]

�

However it is not true for infinite unions as the following example shows.

Example 3.7. Let 𝑓𝑛(𝑥) =
𝑥

𝑥+𝑛 . For each 𝑎 > 0, (𝑓𝑛) converges uniformly to the zero function on
[0, 𝑎]. This is because ‖𝑓𝑛 − 0‖[0,𝑎] ≤ 𝑥

𝑛 ≤ 𝑎
𝑛 . Thus lim𝑛→∞‖𝑓𝑛 − 0‖ = 0. However (𝑓𝑛) does not

converge uniformly on [0, ∞), since |𝑓𝑛(𝑛) − 0| = 1
2 . ♦

Theorem 3.5. Let (𝑓𝑛) and (𝑔𝑛) be sequences of functions on 𝐸 that converge uniformly on 𝐸 to 𝑓 and
𝑔 respectively. Then (𝑓𝑛 + 𝑔𝑛) converges uniformly on 𝐸 to 𝑓 + 𝑔.

Proof. Let 𝜖 > 0. Then ∃𝑀1, 𝑀2 such that ∀𝑥 ∈ 𝐸,

𝑛 ≥ 𝑀1 ⟹ |𝑓𝑛(𝑥) − 𝑓 (𝑥)| <
𝜖
2

𝑚 ≥ 𝑀2 ⟹ |𝑔𝑚(𝑥) − 𝑔(𝑥)| <
𝜖
2

Then let 𝑁 = max(𝑀1, 𝑀2).

𝑖 ≥ 𝑁 ⟹ |(𝑓𝑛 + 𝑔𝑛) − (𝑓 + 𝑔)| ≤ |𝑓𝑛 − 𝑓| + |𝑔𝑛 − 𝑔| ≤
𝜖
2
+

𝜖
2
= 𝜖

�

The same is generally not true for multiplication. Consider the following counterexample.

Example 3.8. Let 𝑓𝑛(𝑥) = 𝑥 + 1
𝑛 and 𝑓 (𝑥) = 𝑥. Then for all 𝑥

|𝑓𝑛(𝑥) − 𝑓 (𝑥)| = |
1
𝑛 |

which means lim𝑛→∞‖𝑓𝑛 − 𝑓‖ℝ = 0, hence (𝑓𝑛) converges to 𝑓 uniformly on ℝ. However consider
(𝑓𝑛)(𝑓𝑛) = (𝑓 2𝑛 ). For any 𝑛 ∈ ℕ,

|𝑓 2𝑛 (𝑛) − 𝑓 2(𝑛)| = |𝑛2 +
2𝑛
𝑛

+
1
𝑛2

− 𝑛2| ≥ 2

♦

This is fixed by an additional requirement of boundedness. We show this after a lemma.

Lemma 3.6. Let (𝑓𝑛) be a sequence of bounded functions that converges uniformly to 𝑓 on 𝐸. Then
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i. 𝑓 is bounded on 𝐸.

ii. (𝑓𝑛) is uniformly bounded, i.e. ∃𝑀 > 0 [|𝑓𝑛(𝑥)| ≤ 𝑀].

Proof. Let 𝜖 > 0. Then

∃𝐾, ∀𝑥 ∈ 𝐸 [𝑛 ≥ 𝐾 ⟹ |𝑓𝑛(𝑥) − 𝑓 (𝑥)| < 𝜖]

i. Let |𝑓𝑛(𝑥)| ≤ 𝑀𝑛 for all 𝑥 ∈ 𝐸. Then |𝑓 (𝑥)| ≤ |𝑓 (𝑥) − 𝑓𝐾(𝑥)| + |𝑓𝐾(𝑥)| = 𝜖 + 𝑀𝐾.

ii. We have |𝑓𝑛(𝑥)| ≤ |𝑓𝑛(𝑥) − 𝑓 (𝑥)| + |𝑓 (𝑥)| < 𝜖 + (𝜖 + 𝑀𝑘). Now let 𝑀 = max(𝑀1, 𝑀2, … ,
𝑀𝑘−1, 2𝜖 + 𝑀𝑘).

�

Theorem 3.7. Let (𝑓𝑛) and (𝑔𝑛) be sequences of bounded functions on 𝐸 that converge uniformly on 𝐸
to 𝑓 and 𝑔 respectively. Then (𝑓𝑛𝑔𝑛) converges uniformly on 𝐸 to 𝑓 𝑔.

Proof. Let 𝜖 > 0. Then ∃𝑀1, 𝑀2 such that ∀𝑥 ∈ 𝐸,

𝑛 ≥ 𝑀1 ⟹ |𝑓𝑛(𝑥) − 𝑓 (𝑥)| <
𝜖
2𝐹

𝑚 ≥ 𝑀2 ⟹ |𝑔𝑚(𝑥) − 𝑔(𝑥)| <
𝜖
2𝐺

Now let 𝑁 = max(𝑀1, 𝑀2). By lemma 3.6, let 𝑔 be bounded by 𝐺 and let (𝑓𝑛) be uniformly bounded
by 𝐹.

𝑖 ≥ 𝑁 ⟹ |𝑓𝑖𝑔𝑖 − 𝑓 𝑔| ≤ |𝑓𝑖𝑔𝑖 − 𝑓𝑖𝑔| + |𝑓𝑖𝑔 − 𝑓 𝑔| ≤ 𝜖2.

�

3.3 Properties preserved by uniform convergence

Uniform convergence being a stronger form of convergence preserves more properties than point-
wise convergence. We can also think of uniform convergence as a condition upon which we may
commute the limit taking operations under certain circumstances.

Theorem 3.8. If (𝑓𝑛) converges uniformly to 𝑓 on an interval 𝐼 and each 𝑓𝑛 is continuous at 𝑥0 ∈ 𝐼, then
𝑓 is continuous at 𝑥0.

Proof. Let 𝜖 > 0. Then uniform convergence means

∃𝐾 ∈ ℕ, ∀𝑥 ∈ 𝐼 [𝑛 ≥ 𝐾 ⟹ |𝑓𝑛(𝑥) − 𝑓 (𝑥)| <
𝜖
3]
.

More specifically, |𝑓𝐾(𝑥) − 𝑓 (𝑥)| < 𝜖
3 . Continuity of 𝑓𝐾 means

∃𝛿 > 0, ∀𝑥 ∈ 𝐼 [|𝑥 − 𝑥0| < 𝛿 ⟹ |𝑓𝐾(𝑥) − 𝑓 (𝑥)| <
𝜖
3]
.

Thus

|𝑓 (𝑥) − 𝑓 (𝑥0)| ≤ |𝑓 (𝑥) − 𝑓𝐾(𝑥)| + |𝑓𝐾(𝑥) − 𝑓𝐾(𝑥0)| + |𝑓𝐾(𝑥0) − 𝑓 (𝑥0)| ≤
𝜖
3
+

𝜖
3
+

𝜖
3

�
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It directly follows that if all 𝑓𝑛 are continuous on 𝐼 then 𝑓 is also continuous on 𝐼.

Example 3.9. Consider again the sequence 𝑓𝑛(𝑥) = 𝑥𝑛 for 𝑥 ∈ [0, 1]. Every 𝑓𝑛 is continuous on
[0, 1]. The function 𝑓 that (𝑓𝑛) converges to pointwise is not continuous on [0, 1]. Thus it follows
that (𝑓𝑛) does not converge uniformly to 𝑓. ♦

Theorem 3.9. Suppose that (𝑓𝑛) converges uniformly to 𝑓 on [𝑎, 𝑏] and each 𝑓𝑛 is integrable on [𝑎, 𝑏].
Then 𝑓 is integrable on [𝑎, 𝑏] and ∀𝑥0 ∈ [𝑎, 𝑏], the sequence 𝐹𝑛(𝑥) = ∫𝑎

𝑥0
𝑓𝑛 converges uniformly to

𝐹(𝑥) = ∫𝑥
𝑥0
𝑓 on [𝑎, 𝑏].

Proof. Let 𝜖𝑛 = ‖𝑓𝑛 − 𝑓‖[𝑎,𝑏]. Since (𝑓𝑛) converges to 𝑓 uniformly on [𝑎, 𝑏], we know lim𝑛→∞ 𝜖𝑛 = 0.
Now for 𝑥 ∈ [𝑎, 𝑏]

|𝑓𝑛(𝑥) − 𝑓 (𝑥)| ≤ ‖𝑓𝑛 − 𝑓‖[𝑎,𝑏] = 𝜖𝑛

and rearranging we have

𝑓𝑛(𝑥) − 𝜖𝑛 ≤ 𝑓 (𝑥) ≤ 𝑓𝑛(𝑥) + 𝜖𝑛.

Considering the upper and lower integrals

∫
𝑏

𝑎
𝑓𝑛 − 𝜖𝑛(𝑏 − 𝑎) = 𝑏

𝑎(𝑓𝑛 − 𝜖𝑛) ≤ 𝑏
𝑎 𝑓 ≤ 𝑏

𝑎 𝑓 ≤ 𝑏
𝑎(𝑓𝑛 + 𝜖𝑛) = ∫

𝑏

𝑎
𝑓𝑛 + 𝜖𝑛(𝑏 − 𝑎).

As 𝑛 → ∞ we see that we have 𝑏
𝑎 𝑓 = 𝑏

𝑎 𝑓 and so 𝑓 is integrable.

Next, assume 𝑥0 < 𝑥. The other case is similar.

|𝐹𝑛(𝑥) − 𝐹(𝑥)| = |∫
𝑥

𝑥0
(𝑓𝑛 − 𝑓 )| ≤ ∫

𝑥

𝑥0
|𝑓𝑛 − 𝑓| ≤ ∫

𝑥

𝑥0
𝜖𝑛 = 𝜖𝑛|𝑥 − 𝑥0| ≤ 𝜖𝑛(𝑏 − 𝑎)

Thus this forms an upper bound, and we conclude

‖𝐹𝑛 − 𝐹‖[𝑎,𝑏] ≤ 𝜖𝑛(𝑏 − 𝑎) → 0.

�

Example 3.10. Let 𝑓 (𝑥) = 𝑥𝑛 sin 𝑛𝑥 and consider the limit lim𝑛→∞∫
𝜋
4

0 𝑓. For 𝑥 ∈ [0, 𝜋4 ], 𝑥 < 1 and
we have ‖𝑓𝑛 − 𝑓‖[0, 𝜋4 ] → 0 so we have uniform convergence. Then

lim𝑛→∞∫

𝜋
4

0
𝑥𝑛 sin 𝑛𝑥 = ∫

𝜋
4

0
lim𝑛→∞ 𝑓𝑛(𝑥) = 0

♦

The natural question to ask now is with regards to differentiability. Unfortunately, even if all func-
tions in a sequence are differentiable, the limit function might not be differentiable.
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Example 3.11. Let 𝑓𝑛(𝑥) = √𝑥
2 + 1

𝑛 . Then (𝑓𝑛) converges uniformly to √𝑥2, since we have

|𝑓𝑛(𝑥) − 𝑥2| =
𝑥2 + 1

𝑛 − 𝑥2

√𝑥
2 + 1

𝑛 + √𝑥2

≤
1/𝑛
1/√𝑛

=
1

√𝑛

and lim𝑛→∞
1
√𝑛

= 0. Furthermore clearly every 𝑓𝑛 is differentiable on (−1, 1). However, √𝑥2 = |𝑥| is
not differentiable on (−1, 1). ♦

Even if the limit function were to be differentiable, the derivative of the functions might not be equal
to the limit of the derivatives.

Example 3.12. We have seen previously that 𝑓𝑛 = 1
√𝑛

converges uniformly to the zero function.

But ℎ′𝑛(𝑥) = √𝑛 cos 𝑛𝑥 which definitely does not converge to the zero function, for example consider
ℎ′𝑛(0) = √𝑛. ♦

Theorem 3.10. Let (𝑓𝑛) be a sequence of functions where each 𝑓𝑛 ∈ 𝐶1([𝑎, 𝑏]) (has continuous first
derivative). Furthermore, assume that (𝑓𝑛(𝑥0)) converges for some point 𝑥0 ∈ [𝑎, 𝑏] and (𝑓 ′𝑛 ) converges
uniformly on [𝑎, 𝑏]. Then (𝑓𝑛) converges uniformly to a differentiable function 𝑓 on [𝑎, 𝑏] and for all
𝑥 ∈ [𝑎, 𝑏],

lim𝑛→∞ 𝑓 ′𝑛 (𝑥) = 𝑓 ′(𝑥).

Proof. Let 𝐿 = lim𝑛→∞ 𝑓𝑛(𝑥0) and suppose (𝑓 ′𝑛 ) converges uniformly to 𝑔. Since 𝑓 ′𝑛 is continuous, by
the second fundamental theorem of calculus ∫𝑥

𝑥0
𝑓 ′𝑛 = 𝑓𝑛(𝑥) − 𝑓𝑛(𝑥0). Then, since uniform continuity

preserves integrability, ∫𝑥
𝑥0
𝑓 ′𝑛 converges uniformly to ∫𝑥

𝑥0
𝑔 on [𝑎, 𝑏]. Thus, rearrangement shows us

that 𝑓𝑛 will converges uniformly to 𝑓 (𝑥) = 𝐿 + ∫𝑥
𝑥0
𝑔 for 𝑥 ∈ [𝑎, 𝑏]. By the fundamental theorem of

calculus, 𝑓 ′(𝑥) = 0 + 𝑔(𝑥) = lim𝑛→∞ 𝑓 ′𝑛 (𝑥). �

In fact, we can relax the condition on continuity of 𝑓 ′𝑛 .

Theorem 3.11. Let (𝑓𝑛) be a sequence of differentiable functions on [𝑎, 𝑏], and (𝑓𝑛(𝑥0)) converges for
some point 𝑥0 ∈ [𝑎, 𝑏], and (𝑓 ′𝑛 ) converges uniformly on [𝑎, 𝑏]. Then (𝑓𝑛) converges uniformly to a
differentiable function 𝑓 on [𝑎, 𝑏] and lim𝑛→∞ 𝑓 ′𝑛 = 𝑓 ′.

Proof. Bartle, Introduction to real analysis theorem 8.2.3 �

4 Series of functions

4.1 Infinite series of functions

Definition 4.1 (Infinite series of functions). If (𝑓𝑛) is a sequence of functions on 𝐸, then (𝑆𝑛) =
∑∞

𝑛=1𝑓𝑛 is an infinite series of functions. For each 𝑛 ∈ ℕ, the 𝑛-th partial sum is the function 𝑆𝑛(𝑥) =
∑𝑛

𝑖=1𝑓𝑖(𝑥) for 𝑥 ∈ 𝐸. �
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Definition 4.2 (Convergence of series). The series ∑∞
𝑛=1𝑓𝑛 is said to converge pointwise (uniformly)

to a function 𝑆 on 𝐸 if the sequence (𝑆𝑛) converges pointwise (uniformly) to 𝑆 on 𝐸.

The series ∑∞
𝑛=1𝑓𝑛 is said to converge absolutely to a function 𝑆 on 𝐸 if the series ∑∞

𝑛=1|𝑓𝑛| converges
pointwise to 𝑆 on 𝐸. �

Theorem 4.1 (Cauchy criterion for uniform convergence). Let (𝑓𝑛) be a sequence of functions on 𝐸.
Then the series∑∞

𝑛=1𝑓𝑛 converges uniformly on 𝐸 iff

∀𝜖 > 0, ∃𝐾 ∈ ℕ [𝑛 > 𝑚 ≥ 𝐾 ⟹ ‖𝑓𝑚+1 + ⋯ + 𝑓𝑛‖𝐸 < 𝜖].

Proof. ∑∞
𝑛=1𝑓𝑛 converges uniformly on 𝐸 iff (𝑆𝑛) converges uniformly on 𝐸 iff the Cauchy criterion

holds for the sequence of functions (𝑆𝑛). Therefore

∀𝜖 > 0, ∃𝐾 ∈ ℕ [𝑛 > 𝑚 ≥ 𝐾 ⟹ ‖𝑆𝑛 − 𝑆𝑚‖ − 𝐸 < 𝜖].

�

We can restate the Cauchy criterion without using uniform norm with the following observation

‖𝑓𝑚+1 + ⋯ + 𝑓𝑛‖𝐸 = sup{|𝑓𝑚+1(𝑥) + ⋯ + 𝑓𝑛(𝑥)| ∣ 𝑥 ∈ 𝐸} < 𝜖
⟺

∀𝑥 ∈ 𝐸 [|𝑓𝑚+1(𝑥) + ⋯ + 𝑓𝑛(𝑥)| < 𝜖]

This leads to an easy way of showing non-convergence (after taking the contrapositive).

Corollary 4.1.1. If∑∞
𝑛=1𝑓𝑛 converges uniformly on 𝐸, then 𝑓𝑛 converges to the zero function uniformly

on 𝐸.

Proof. Let 𝜖 > 0. Then ∃𝐾 ∈ ℕ [𝑛 > 𝑚 ≥ 𝐾 ⟹ ‖𝑓𝑚+1 + ⋯ + 𝑓𝑛‖𝐸 < 𝜖]. Take 𝑚 = 𝑛 − 1. Then
‖𝑓𝑛‖𝐸 = ‖𝑓𝑛 − 0‖𝐸 < 𝜖. �

Theorem 4.2 (Weierstrass M-test). Let (𝑓𝑛) be a sequence of functions on 𝐸 and let (𝑀𝑛) be a sequence
of positive real numbers such that ∀𝑛 ∈ ℕ [‖𝑓𝑛‖𝐸 ≤ 𝑀𝑛] (or equivalently ∀𝑥 ∈ 𝐸, ∀𝑛 ∈ ℕ [|𝑓𝑛(𝑥)| ≤ 𝑀𝑛]).
If the series ∑∞

𝑛=1𝑀𝑛 converges, then∑∞
𝑛=1𝑓𝑛 converges uniformly on 𝐸.

Proof. Let 𝜖 > 0. Since ∑∞
𝑛=1𝑀𝑛 converges, by the Cauchy criterion for series of real numbers,

∃𝐾 ∈ ℕ [𝑛 > 𝑚 ≥ 𝐾 ⟹
𝑛
∑

𝑘=𝑚+1
𝑀𝑘 < 𝜖]

Then,

𝑛 > 𝑚 ≥ 𝐾 ⟹ ‖𝑓𝑚+1 + ⋯ + 𝑓𝑛‖𝐸 ≤ ‖𝑓𝑚+1‖𝐸 + ⋯ + ‖𝑓𝑛‖𝐸 ≤ 𝑀𝑚+1 + ⋯ +𝑀𝑛 < 𝜖.

�

Example 4.1. Let 𝑓𝑛(𝑥) =
sin 𝑛𝑥
𝑛2 and consider the series of functions∑∞

𝑛=1𝑓 on ℝ. Since |𝑓𝑛(𝑥)| ≤
1
𝑛2 ,

and ∑∞
𝑛=1

1
𝑛2 converges, thus by the M-test ∑∞

𝑛=1𝑓𝑛 converges uniformly. ♦
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Example 4.2 (Geometric series). Consider the series of functions (𝑆𝑛(𝑥)) = ∑∞
𝑛=0𝑥

𝑛 on (−1, 1). We
know from calculus that (𝑆𝑛) converges pointwise to 1

1−𝑥 pointwise on (−1, 1). It does not however
converge uniformly on this interval, since ‖𝑥𝑛‖(−1,1) = sup{|𝑥𝑛|} = 1. However, if we take 0 < 𝑟 < 1
and restrict the interval to [−𝑟 , 𝑟], then ‖𝑥𝑛‖[−𝑟 ,𝑟] ≤ 𝑟𝑛 and so the series converges uniformly on
[−𝑟 , 𝑟]. ♦

In fact, since 𝑓𝑛 is continuous, the partial sums will also be continuous, and so the limit function will
also be continuous by the uniform convergence. So infinite series can produce new functions for us
with certain desired properties.

Theorem 4.3. If∑∞
𝑛=1𝑓𝑛 converges uniformly to 𝑓 on an interval 𝐼 and each 𝑓𝑛 is continuous at 𝑥0 ∈ 𝐼,

then 𝑓 is continuous at 𝑥0.

Proof. For each 𝑛 ∈ ℕ, since all 𝑓𝑖 are continuous on at 𝑥0, the partial sum 𝑆𝑛 = ∑𝑛
𝑘=1𝑓𝑘 is also

continuous. Since (𝑆𝑛) converges uniformly to 𝑓 on 𝐼, then 𝑓 is also continuous at 𝑥0. �

It immediately follows that if the functions are continuous on the entire interval then the limit
function is also continuous on the entire interval.

Theorem 4.4. If∑∞
𝑛=1𝑓𝑛 converges uniformly to 𝑓 on [𝑎, 𝑏] and each 𝑓𝑛 is integrable on [𝑎, 𝑏], then 𝑓 is

integrable on [𝑎, 𝑏] and for every 𝑥 ∈ [𝑎, 𝑏] we have the uniform convergence

∞
∑
𝑛=1

∫
𝑥

𝑎
𝑓𝑛 = ∫

𝑥

𝑎
𝑓 = ∫

𝑥

𝑎

∞
∑
𝑛=1

𝑓𝑛.

Proof. For each 𝑛 ∈ ℕ, since all 𝑓𝑖 are integrable on [𝑎, 𝑏], the partial sum 𝑆𝑛 = ∑∞
𝑘=1𝑛𝑓𝑘 is also

integrable. Since (𝑆𝑛) converges uniformly to 𝑓 on [𝑎, 𝑏], then 𝑓 is also integrable on [𝑎, 𝑏], and ∫𝑥
𝑎 𝑆𝑛

converges uniformly to ∫𝑥
𝑎 𝑓. �

Example 4.3. Consider the series ∑∞
𝑛=0

𝑥𝑛
𝑛! . For any 𝑟 > 0, we have ‖𝑓𝑛‖[−𝑟 ,𝑟] ≤

𝑟𝑛
𝑛! . By the ratio test,

the series ∑∞
𝑛=0

𝑟𝑛
𝑛! converges, so by the M-test, the given series converges uniformly on [−𝑟 , 𝑟].

Now define 𝐹(𝑥) = ∫𝑥
0 ∑∞

𝑛=0
𝑡𝑛
𝑛!d𝑡. Uniform convergence tells us that 𝐹 converges uniformly to

∑∞
𝑛=0

1
𝑛!

𝑥𝑛+1
𝑛+1 = ∑∞

𝑛=0
𝑥𝑛
𝑛! − 1. ♦

Theorem 4.5. Suppose that ∑∞
𝑛=1𝑓𝑛(𝑥0) converges for some 𝑥0 ∈ [𝑎, 𝑏], and ∑∞

𝑛=1𝑓
′
𝑛 converges uni-

formly on [𝑎, 𝑏], then∑∞
𝑛=1𝑓𝑛 converges uniformly on [𝑎, 𝑏] to a differentiable function 𝑓 and for 𝑥 ∈ [𝑎, 𝑏]

∞
∑
𝑛=1

𝑓 ′𝑛 (𝑥) = 𝑓 ′(𝑥)

Proof. For each 𝑛 ∈ ℕ, let 𝑆𝑛 = ∑𝑛
𝑘=1𝑓𝑘. Since (𝑆𝑛(𝑥0)) converges, and (𝑆′𝑛) converges uniformly on

[𝑎, 𝑏], then (𝑆𝑛) converges uniformly to 𝑓 on [𝑎, 𝑏] and 𝑓 ′ = lim𝑛→∞ 𝑆′𝑛. �

Example 4.4. Let 𝑓𝑛(𝑥) = (−1)𝑛 1
√𝑛

cos 𝑥
𝑛 . Then∑∞

𝑛=1𝑓𝑛(0) = ∑∞
𝑛=1

(−1)𝑛

√𝑛
converges by the alternating

series test. Furthermore,∑∞
𝑛=1𝑓

′
𝑛 (𝑥) = ∑∞

𝑛=1
(−1)𝑛+1

𝑛
3
2

sin 𝑥
𝑛 . This converges uniformly on [−𝑟 , 𝑟] by the

M-test (skipped). Then we know that the series converges uniformly to some differentiable function
𝑓 on [−𝑟 , 𝑟]. ♦
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Theorem 4.6. There exists a function 𝑓 :ℝ → ℝ such that 𝑓 is continuous atℝ but is not differentiable
at any point of ℝ.

Proof. Let 𝑓 (𝑥) = |𝑥| for 𝑥 ∈ [−1, 1]. Extend 𝑓 to the entire real line by 𝑓 (𝑥 +2𝑘) = 𝑓 (𝑥) for all 𝑘 ∈ ℤ.
For 𝑥, 𝑦 ∈ [−1, 1], we have |𝑓 (𝑥) − 𝑓 (𝑦)| = ||𝑥| − |𝑦|| ≤ |𝑥 − 𝑦|. Due to the periodicity this is actually
true for all 𝑥, 𝑦 ∈ ℝ.

Now for 𝑛 ∈ ℕ let 𝑓𝑛(𝑥) = (34)
𝑛
𝑓 (4𝑛𝑥), and consider ∑∞

𝑛=0𝑓𝑛. Since |𝑓𝑛(𝑥)| ≤ (34)
𝑛
, so by the M-test

the series converges uniformly on ℝ. Furthermore since all 𝑓𝑛 are continuous, the sum function is
continuous as well.

Let 𝑎 ∈ ℝ. There is an integer in either (4𝑛𝑎 − 1
2 , 4

𝑛𝑎), or (4𝑛𝑎, 4𝑛𝑎 + 1
2). Define ℎ𝑛 such that there is

no integer between 4𝑛𝑎 and 4𝑛𝑎 + 4𝑛ℎ𝑛 (so ℎ𝑛 takes the form of ±4−𝑛
2 ). Now let 𝑔𝑛 =

𝑓 (𝑎+ℎ𝑛)−𝑓 (𝑎)
ℎ𝑛

. If
𝑓 ′(𝑎) exists, then 𝑔𝑛 will converge to 𝑓 ′(𝑎). We claim that (𝑔𝑛) diverges and so 𝑓 ′(𝑎) does not exist.

Firstly 𝑓 (𝑎 + ℎ𝑚) − 𝑓 (𝑎) = ∑∞
𝑛=0(

3
4)

𝑛
(𝑓 (4𝑛𝑎 + 4𝑛ℎ𝑚) − 𝑓 (4𝑛𝑎)). Since 4𝑛ℎ𝑚 is even for 𝑛 > 𝑚, the

periodicity means that we can reduce it to a finite sum since the difference goes to 0 for 𝑛 > 𝑚. Then
using the (reverse) triangle inequality

|𝑓 (𝑎 + ℎ𝑚) − 𝑓 (𝑎)| = |
𝑚
∑
𝑛=0

(
3
4)

𝑛
(𝑓 (4𝑛𝑎 + 4𝑛ℎ𝑚) − 𝑓 (4𝑛𝑎))|

≥ (
3
4)

𝑚
|𝑓 (4𝑚𝑎 + 4𝑚ℎ𝑚) − 𝑓 (4𝑚𝑎)| −

𝑚−1
∑
𝑛=0

(
3
4)

𝑛
|𝑓 (4𝑛𝑎 + 4𝑛ℎ𝑚) − 𝑓 (4𝑛𝑎)|

≥ (
3
4)

𝑚
4𝑚ℎ𝑚 −

𝑚−1
∑
𝑛=0

(
3
4)

𝑛
|4𝑛ℎ𝑚|

= |ℎ𝑚|(3𝑚 −
𝑚−1
∑
𝑛=0

3𝑛)

= |ℎ𝑚|
3𝑚 + 1

2
.

Thus |𝑔𝑚| ≥
3𝑚+1
2 which diverges. �

4.2 Power series

Definition 4.3 (Power series). A power series is a series of functions of the form ∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛

where 𝑥0, 𝑎1, 𝑎2, … are constants. Furthermore 𝑥0 is called the centre of the power series. �

Every power series converges at at least one point, which is at the centre 𝑥0.

Theorem 4.7. Let ∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛 be a power series.

i. If it converges at 𝑥1, then it is absolutely convergent for all 𝑥 such that |𝑥 − 𝑥0| < |𝑥1 − 𝑥0|.

ii. If it diverges at 𝑥2, then it is divergent for all 𝑥 such that |𝑥 − 𝑥0| > |𝑥2 − 𝑥0|.

Proof.
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i. We are given that∑∞
𝑛=0𝑎𝑛(𝑥1−𝑥0)𝑛 converges. Then lim𝑛→∞ 𝑎𝑛(𝑥1−𝑥0)𝑛 = 0, so (𝑎𝑛(𝑥1−𝑥0)𝑛)

is a bounded sequence. Let it be bounded by 𝑀. Now let 𝑥 such that |𝑥 − 𝑥0| < |𝑥1 − 𝑥0|. We
want to apply the comparison test. Consider

|𝑎𝑛(𝑥 − 𝑥0)𝑛| = |𝑎𝑛(𝑥1 − 𝑥0)𝑛||
(𝑥 − 𝑥0)𝑛

(𝑥1 − 𝑥0)𝑛
|

Due to the conditions on 𝑥, we see that 𝑟 = | 𝑥−𝑥0𝑥1−𝑥0 | < 1. Therefore we have |𝑎𝑛(𝑥 − 𝑥0)𝑛| < 𝑀𝑟𝑛.
But the series ∑∞

𝑛=0𝑀𝑟𝑛 converges as it is a geometric series. Therefore by the comparison
test, ∑∞

𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛 converges uniformly.

ii. Suppose ∑∞
𝑛=0𝑎𝑛(𝑥2 − 𝑥0)𝑛 diverges. Let 𝑥 be such that |𝑥 − 𝑥0| > |𝑥2 − 𝑥0|. If ∑

∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛

converges, then by the earlier part, the series should converge at 𝑥2, which is a contradiction.

�

This means that every power series converges either at only one point or in some interval. This
leads us to the following definition:

Definition 4.4 (Radius of convergence). Given a power series, let 𝑆 = {|𝑥 − 𝑥0| ∣ the series
converges at 𝑥}. Then the radius of convergence for the series is defined as 𝑅 = sup 𝑆. �

Theorem 4.8. A power series∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛 with a radius of convergence of 𝑅

i. converges absolutely for all 𝑥 ∈ (𝑥0 − 𝑅, 𝑥0 + 𝑅), and

ii. diverges for all 𝑥 where |𝑥 − 𝑥0| > 𝑅.

Proof.

i. Let 𝑥 ∈ (𝑥0 − 𝑅, 𝑥0 + 𝑅), so |𝑥 − 𝑥0| < 𝑅. Then there exists 𝑥1 such that |𝑥1 − 𝑥0| ∈ 𝑆. Since
|𝑥 − 𝑥0| < |𝑥1 − 𝑥0| and the series converges at 𝑥1, the series converges absolutely at 𝑥.

ii. Assume |𝑥 − 𝑥0| > 𝑅. If the series converges at 𝑥, then |𝑥 − 𝑥0| ∈ 𝑆 and |𝑥 − 𝑥0| > 𝑅 which is a
contradiction.

�

Note that the theorem makes no statement about the end points. We will need to use other methods
to determine the behaviour there.

Theorem 4.9. Let ∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛 be a power series. Suppose that 𝑎𝑛 ≠ 0. Consider the limit 𝐿 =

lim𝑛→∞|
𝑎𝑛+1
𝑎𝑛 |.

i. If the 𝐿 exists, then the radius of convergence of the series is given by 𝑅 = 1
𝐿 if 𝐿 > 0 and 𝑅 = ∞

if 𝐿 = 0.

ii. If 𝐿 = ∞ then 𝑅 = 0.
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Proof. For 𝑥 ≠ 𝑥0, apply the ratio test to the series:

lim𝑛→∞|
𝑎𝑛+1(𝑥 − 𝑥0)𝑛+1

𝑎𝑛(𝑥 − 𝑥0)𝑛
| = lim𝑛→∞|

𝑎𝑛+1
𝑎𝑛

||𝑥 − 𝑥0|

= 𝐿|𝑥 − 𝑥0|

Therefore when |𝑥 − 𝑥0| <
1
𝐿 , the series converges, and when |𝑥 − 𝑥0| >

1
𝐿 the series diverges. �

Example 4.5. Consider∑∞
𝑛=1

(−1)𝑛+1
𝑛 (𝑥−1)𝑛. We have 𝐿 = lim𝑛→∞|

𝑎𝑛+1
𝑎𝑛 | = lim𝑛→∞

𝑛
𝑛+1 = 1. Therefore

the series converges absolutely on (0, 2). ♦

Theorem 4.10 (Cauchy-Hadamard formula). Let ∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛 be a power series and let 𝐿 =

lim sup |𝑎𝑛|
1
𝑛 . The radius of convergence is given by

𝑅 =
⎧

⎨
⎩

0, if 𝐿 = ∞
1
𝐿 , if 0 < 𝐿 < ∞
∞, if 𝐿 = 0

Proof. Apply the ratio test to the series.

lim sup |𝑎𝑛(𝑥 − 𝑥0)𝑛|
1
𝑛 = |𝑥 − 𝑥0| lim sup |𝑎𝑛|

1
𝑛 = |𝑥 − 𝑥0|𝐿

The root test tells us that the power series converges everywhere if 𝐿 = 0, and if 𝐿 = ∞ it diverges
everywhere. Otherwise, if 0 < 𝐿 < ∞ then for |𝑥 − 𝑥0| <

1
𝐿 , the series converges absolutely, whereas

for |𝑥 − 𝑥0| >
1
𝐿 the series diverges. �

Example 4.6. Consider the series ∑∞
𝑛=0𝑥

𝑛 sin 𝑛𝜋
4 . Some of the coefficients are zero, so lim𝑛→∞|

𝑎𝑛+1
𝑎𝑛 |

does not exist. We try the Cauchy-Hadamard formula instead. Notice that there exists a con-

stant subsequence converging to 1, for example (sin 𝜋
2 , sin

5𝜋
2 , … ). But |sin 𝑛𝜋

4 |
1
𝑛 ≤ 1 for all 𝑛 so

lim sup |𝑎𝑛|
1
𝑛 = 1. The radius of convergence is therefore 1.

At the two endpoints 𝑥 = ±1 the series clearly diverges, since the (±1)𝑛 sin 𝑛𝜋
4 never tends to 0. ♦

Example 4.7. Consider the series ∑∞
𝑛=0

1
2𝑛𝑥

2𝑛 = 1 + 𝑥2
2 + 𝑥4

22 + ⋯ . We have |𝑎2𝑛|
1
2𝑛 = 1

√2
. Therefore

lim sup |𝑎𝑛|
1
𝑛 = 1

√2
. Alternatively the ratio test gives lim𝑛→∞|

𝑎𝑛+1
𝑎𝑛 | = 𝑥2

2 which gives the same radius

of convergence of √2.

At the endpoints where 𝑥 = ±√2 the terms in the series become 1 so it clearly diverges there. ♦

4.3 Properties of power series

Power series can be used to create functions with desirable properties.

Definition 4.5 (Sum function). Given a power series∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛 with a radius of convergence

𝑅 > 0, we can define a function 𝑓 : (𝑥0 − 𝑅, 𝑥0 + 𝑅) → ℝ by 𝑓 (𝑥) = ∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛. We call 𝑓 the

sum function of the series. �
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Theorem 4.11. Let ∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛 have a radius of convergence 𝑅 > 0 and let 𝑎 and 𝑏 be such that

𝑥0 − 𝑅 < 𝑎 < 𝑏 < 𝑥0 + 𝑅. Then ∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛 converges uniformly on [𝑎, 𝑏].

Proof. Consider a larger interval that is symmetric about 𝑥0, given by [𝑥0 − 𝑟, 𝑥0 + 𝑟], where 𝑟 =
max(|𝑎 − 𝑥0|, |𝑏 − 𝑥0|).

Evaluated at 𝑥 = 𝑥0+𝑟, the series becomes∑∞
𝑛=0𝑎𝑛𝑟

𝑛 and we know that it converges absolutely. Now
for 𝑥 ∈ [𝑎, 𝑏], since |𝑥 − 𝑥0| ≤ 𝑟, we have |𝑎𝑛(𝑥 − 𝑥0)𝑛| ≤ |𝑎𝑛𝑟𝑛|. Therefore, ‖𝑎𝑛(𝑥 − 𝑥0)‖[𝑎,𝑏] ≤ |𝑎𝑛𝑟𝑛|. By
the Weierstrass 𝑀-test, the power series converges uniformly on [𝑎, 𝑏]. �

We immediately get that the sum function is continuous on [𝑎, 𝑏]. Continuity is preserved even after
infinite unions, so in fact the sum function is continuous on the entire interval (𝑥0 − 𝑅, 𝑥0 + 𝑅).

Theorem 4.12. Suppose that 𝑓 (𝑥) = ∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛 has a radius of convergence 𝑅 > 0. Then 𝑓 is

infinitely differentiable on (𝑥0 − 𝑅, 𝑥0 + 𝑅), and furthermore (term by term differentiation)

𝑓 (𝑘)(𝑥) =
∞
∑
𝑛=𝑘

𝑛(𝑛 − 1)… (𝑛 − 𝑘 + 1)𝑎𝑛(𝑥 − 𝑥0)𝑛−𝑘

and it has a radius of convergence 𝑅.

Proof. Write 𝑓𝑛(𝑥) = 𝑎𝑛(𝑥 − 𝑥0)𝑛. We have 𝑓 ′0 (𝑥) = 0 and 𝑓 ′𝑛 (𝑥) = 𝑛𝑎𝑛(𝑥 − 𝑥0)𝑛−1.

We check the radius of convergence of∑∞
𝑛=1 𝑛𝑎𝑛(𝑥 −𝑥0)

𝑛−1. This has the same radius of convergence

as∑∞
𝑛=0

∞𝑛𝑎𝑛(𝑥 −𝑥0)𝑛. Now lim sup |𝑛𝑎𝑛|
1
𝑛 = lim sup 𝑛

1
𝑛 |𝑎𝑛|

1
𝑛 = lim sup |𝑎𝑛|

1
𝑛 = 1

𝑅 so∑𝑓 ′𝑛 has the same
radius of convergence as the original series. Furthermore it converges uniformly on any closed
subinterval of (𝑥0 − 𝑅, 𝑥0 + 𝑅).

Hence by theorem 4.5, 𝑓 is differentiable on any closed subinterval of (𝑥0 − 𝑅, 𝑥0 + 𝑅), and 𝑓 ′(𝑥) =
∑ 𝑓 ′𝑛 (𝑥). Taking the union of all closed subintervals we see that it is also true for the entire interval
(𝑥0 − 𝑅, 𝑥0 + 𝑅).

We can then inductively apply this for all higher derivatives. �

Although a power series and its derivatives may have the same radius of convergence, their be-
haviours at the endpoints might differ. Consider the following example.

Example 4.8. Let 𝑓 (𝑥) = ∑∞
𝑛=1

𝑥𝑛
𝑛2 . Since lim𝑛→∞

𝑎𝑛+1
𝑎𝑛 = 1, the radius of convergence 𝑅 = 1. At

𝑥 = ±1 it also converges.

Now consider 𝑓 ′(𝑥) = ∑∞
𝑛=1

𝑥𝑛−1
𝑛 . It still has a radius of convergence 𝑅 = 1. Now at 𝑥 = 1 we get the

harmonic series which diverges. ♦

Corollary 4.12.1. If 𝑓 (𝑥) = ∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛 for 𝑥 ∈ (𝑥0 − 𝑟, 𝑥0 + 𝑟) for some 𝑟 > 0, then 𝑎𝑘 =

𝑓 (𝑘)(𝑥0)
𝑘! .

Proof. Let 𝑅 be the radius of convergence of ∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛. Then for 𝑟 ≤ 𝑅, by the previous

theorem

𝑓 (𝑘)(𝑥) =
∞
∑
𝑛=𝑘

𝑛(𝑛 − 1)… (𝑛 − 𝑘 + 1)𝑎𝑛(𝑥 − 𝑥0)𝑛−𝑘

= 𝑘!𝑎𝑘 +
(𝑘 + 1)!

2
𝑎𝑘+1(𝑥 − 𝑥0) + ⋯ .

�
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This leads directly to the following corollary.

Corollary 4.12.2 (Uniqueness of power series). If ∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛 = ∑∞

𝑛=0𝑏𝑛(𝑥 − 𝑥0)𝑛 on some
interval (𝑥0 − 𝑟, 𝑥0 + 𝑟) for 𝑟 > 0, then 𝑎𝑛 = 𝑏𝑛 for all 𝑛.

Example 4.9. Consider the power series∑∞
𝑛=0

𝑥3𝑛
𝑛+1 . We skip the checking but it converges on [−1, 1).

We want to find a closed form for its sum function. We want to relate it to the geometric series, and
to do this we need to remove the coefficient. One way of doing this is through differentiating. Here
is a neat trick:

d
d𝑥

𝑥3𝑓 (𝑥) =
d
d𝑥

∞
∑
𝑛=0

𝑥3(𝑛 + 1)
𝑛 + 1

=
∞
∑
𝑛=0

3𝑥3𝑛+2

= 3𝑥2
∞
∑
𝑥=0

𝑥3𝑛

=
3𝑥2

1 − 𝑥3

Integrating, we find that

𝑡3𝑓 (𝑡) |
𝑥

0
= ∫

𝑥

0

3𝑡2

1 − 𝑡3
= − ln(1 − 𝑥3).

So 𝑓 (𝑥) = −
ln(1−𝑥3)

𝑥3 and 𝑓 (0) = ∑∞
𝑛=0

03𝑛
𝑛+1 = 1. ♦

Theorem 4.13. Let 𝑓 (𝑥) = ∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛 have a radius of convergence 𝑅 > 0. Then for any 𝑎 and

𝑏 such that 𝑥0 − 𝑅 < 𝑎 < 𝑏 < 𝑥0 + 𝑅,

∫
𝑏

𝑎
𝑓 (𝑥) =

∞
∑
𝑛=0

∫
𝑏

𝑎
𝑎𝑛(𝑥 − 𝑥0)𝑛.

Proof. Theorem 4.4. �

Example 4.10. The geometric series gives us ∑∞
𝑛=0(−𝑥)

𝑛 = 1
1+𝑥 . Integrating, we get ln(1 + 𝑥) =

∑∞
𝑛=0

(−1)𝑛
𝑛+1 𝑥

𝑛+1 for −1 < 𝑥 < 1. ♦

This also holds for indefinite integrals. Define 𝐹(𝑥) = ∫𝑥
𝑥0
𝑓 (𝑡) = ∑∞

𝑛=0∫
𝑥
𝑥0
𝑎𝑛(𝑡 − 𝑥0)𝑛 = ∑∞

𝑛=0
𝑎𝑛
𝑛+1(𝑥 −

𝑥𝑛+10 . If we differentiate this we get the original series back, so they must have the same radius of
convergence.

Theorem 4.14 (Abel’s formula). Let (𝑏𝑛) and (𝑐𝑛) be sequences of real numbers, and for integers 𝑛 and
𝑚 such that 𝑛 ≥ 𝑚 ≥ 1, let

𝐵𝑛𝑚 =
𝑛
∑
𝑘=𝑚

𝑏𝑘.

Then
𝑛
∑
𝑘=𝑚

𝑏𝑘𝑐𝑘 = 𝐵𝑛𝑚𝑐𝑛 −
𝑛−1
∑
𝑘=𝑚

𝐵𝑘𝑚(𝑐𝑘+1 − 𝑐𝑘).
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Proof. Fix 𝑚 ≥ 1. For 𝑘 > 𝑚, we have 𝐵𝑘𝑚 − 𝐵𝑘−1,𝑚 = 𝑏𝑘 and 𝑏𝑚 = 𝐵𝑚𝑚. Hence for 𝑛 > 𝑚 ≥ 1, we
have

𝑛
∑
𝑘=𝑚

𝑏𝑘𝑐𝑘 = 𝑏𝑚𝑐𝑚 +
𝑛
∑

𝑘=𝑚+1
(𝐵𝑘𝑚 − 𝐵𝑘−1,𝑚)𝑐𝑘

= 𝐵𝑛𝑚𝑐𝑚 +
𝑛
∑

𝑘=𝑚+1
𝐵𝑘𝑚𝑐𝑘 −

𝑛
∑

𝑘=𝑚+1
𝐵𝑘−1,𝑚𝑐𝑘

= 𝐵𝑛𝑚𝑐𝑛 +
𝑛−1
∑
𝑘=𝑚

𝐵𝑘𝑚𝑐𝑘 −
𝑛
∑
𝑘=𝑚

𝐵𝑘𝑚𝑐𝑘+1

= 𝐵𝑛𝑚𝑐𝑛 −
𝑛−1
∑
𝑘=𝑚

𝐵𝑘𝑚(𝑐𝑘+1 − 𝑐𝑘).

�

Theorem 4.15 (Abel’s theorem). Suppose that the power series∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛 has a finite radius of

convergence 𝑅 > 0.

i. If the series converges at 𝑥 = 𝑥0 + 𝑅 then it converges uniformly on [𝑥0, 𝑥0 + 𝑅].

ii. If the series converges at 𝑥 = 𝑥0 − 𝑅 then it converges uniformly on [𝑥0 − 𝑅, 𝑥0].

Proof. Assume that ∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛 converges at 𝑥 = 𝑥0 + 𝑅. In other words ∑∞

𝑛=0𝑎𝑛𝑅
𝑛 converges.

Let 𝑥1 ∈ (𝑥0, 𝑥0 + 𝑅].
∞
∑
𝑛=0

𝑎𝑛(𝑥1 − 𝑥0)𝑛 =
∞
∑
𝑛=0

𝑎𝑛𝑅𝑛(
𝑥1 − 𝑥0

𝑅 )
𝑛

=
∞
∑
𝑛=0

𝑏𝑛𝑐𝑛

where 𝑏𝑛 = 𝑎𝑛𝑅𝑛 and 𝑐𝑛 = (𝑥1−𝑥0𝑅 )
𝑛
. Now 𝑥1 − 𝑥0 < 𝑅 so (𝑐𝑛) is a decreasing sequence. Furthermore,

since ∑∞
𝑛=0𝑏𝑛 converges, by the Cauchy criterion

∀𝜖 > 0, ∃𝐾 ∈ ℕ, ∀𝑛, 𝑚 [𝑛 ≥ 𝑚 ≥ 𝐾 ⟹ |
𝑛
∑
𝑗=𝑚

𝑏𝑗| < 𝜖].

Now applying Abel’s formula, for 𝑛 ≥ 𝑚 ≥ 𝐾,

|
𝑛
∑
𝑘=𝑚

𝑎𝑘(𝑥1 − 𝑥0)𝑘| = |𝐵𝑛𝑚𝑐𝑛 +
𝑛−1
∑
𝑘=𝑚

𝐵𝑘𝑚(𝑐𝑘 − 𝑐𝑘+1)|

≤ |𝐵𝑛𝑚𝑐𝑛| +
𝑛−1
∑
𝑘=𝑚

|𝐵𝑘𝑚(𝑐𝑘 − 𝑐𝑘+1)|

= 𝑐𝑛|
𝑛
∑
𝑗=𝑚

𝑏𝑗| +
𝑛−1
∑
𝑘=𝑚

(𝑐𝑘 − 𝑐𝑘+1)|
𝑘
∑
𝑗=𝑚

𝑏𝑗|

< 𝑐𝑛𝜖 +
𝑛−1
∑
𝑘=𝑚

(𝑐𝑘 − 𝑐𝑘+1)𝜖

= 𝑐𝑚𝜖
≤ 𝜖.

�
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Corollary 4.15.1. Suppose that 𝑓 (𝑥) = ∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛 has a radius of convergence 𝑅 > 0. Then

i. If the series converges at 𝑥 = 𝑥0 + 𝑅,

lim
𝑥→(𝑥0+𝑅)−

𝑓 (𝑥) =
∞
∑
𝑛=0

𝑎𝑛𝑅𝑛

ii. If the series converges at 𝑥 = 𝑥0 − 𝑅,

lim
𝑥→(𝑥0−𝑅)−

𝑓 (𝑥) =
∞
∑
𝑛=0

(−1)𝑛𝑎𝑛𝑅𝑛

Proof. By Abel’s theorem 𝑓 (𝑥) converges uniformly on [𝑥0, 𝑥0+𝑅] so the sum function is continuous
at 𝑥 = 𝑥0 + 𝑅. Hence lim𝑥→(𝑥0+𝑅)− 𝑓 (𝑥) = 𝑓 (𝑥0 + 𝑅) = ∑∞

𝑛=0𝑎𝑛𝑅
𝑛. �

Theorem 4.16 (Dirichlet’s test). Let (𝑓𝑛) and (𝑔𝑛) be sequences of functions on 𝐸 and suppose that
∀𝑛 ∈ ℕ, ∀𝑥 ∈ 𝐸,

• ∃𝑀 > 0 [|∑𝑛
𝑘=1𝑓𝑘(𝑥)| ≤ 𝑀],

• (𝑔𝑛) converges uniformly on 𝐸 to the zero function,

• (𝑔𝑛(𝑥)) is a decreasing sequence.

Then the series∑∞
𝑛=1𝑓𝑛𝑔𝑛 converges uniformly on 𝐸.

Proof. Let

𝐹𝑛𝑚(𝑥) = ∑𝑘 = 𝑚𝑛𝑓𝑘(𝑥).

Then we have

|𝐹𝑛𝑚(𝑥)| = |
𝑛
∑
𝑘=1

𝑓𝑘(𝑥) −
𝑚−1
∑
𝑘=1

𝑓𝑘(𝑥)| ≤ |
𝑛
∑
𝑘=1

𝑓𝑘(𝑥)| + |
𝑚−1
∑
𝑘=1

𝑓𝑘(𝑥)| ≤ 2𝑀

By Abel’s formula,

|
𝑛
∑
𝑘=𝑚

𝑓𝑘(𝑥)𝑔𝑘(𝑥)| = |𝐹𝑛𝑚(𝑥)𝑔𝑛(𝑥) −
𝑛−1
∑
𝑘=𝑚

𝐹𝑘𝑚(𝑔𝑘+1(𝑥) − 𝑔𝑘(𝑥)|

= |𝐹𝑛𝑚(𝑥)|𝑔𝑛(𝑥) +
𝑛−1
∑
𝑘=𝑚

|𝐹𝑘𝑚|(𝑔𝑘(𝑥) − 𝑔𝑘+1(𝑥)

≤ 2𝑀𝑔𝑛(𝑥) +
𝑛−1
∑
𝑘=𝑚

2𝑀(𝑔𝑘(𝑥) − 𝑔𝑘+1(𝑥))

= 2𝑀𝑔𝑚(𝑥).

For the second step we note that 𝑔𝑛(𝑥) is positive since it is decreasing and it converges to 0. Now
let 𝜖 > 0. Since 𝑔𝑛 converges uniformly on 𝐸,

∃𝐾 ∈ ℕ [𝑛 ≥ 𝐾 ⟹ |𝑔𝑛(𝑥) − 0| <
𝜖
2𝑀].

Therefore

𝑛 ≥ 𝑚 ≥ 𝐾 ⟹ |
𝑛
∑
𝑘=𝑚

𝑓𝑘(𝑥)𝑔𝑘(𝑥)| ≤ 2𝑀
𝜖
2𝑀

= 𝜖

�
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4.4 Taylor series and Maclaurin series

Definition 4.6 (Taylor series). Let 𝑓 be infinitely differentiable on (𝑥0 − 𝑟, 𝑥0 + 𝑟) for some 𝑟 > 0.
The power series

∞
∑
𝑛=0

𝑓 (𝑛)(𝑥0)
𝑛!

(𝑥 − 𝑥0)𝑛

is called the Taylor series of 𝑓 about 𝑥0. If 𝑥0 = 0 then we call it the Maclaurin series. �

Note that this only defines a Taylor series for an infinitely differentiable function but it does not say
anything about convergence or equivalence. However, once we can show that the function has a
power series representation, then it must be equivalent to the Taylor series.

Example 4.11. We have seen how ln(1 + 𝑥) = ∑∞
𝑛=0

(−1)𝑛
𝑛+1 𝑥

𝑛+1 for −1 < 𝑥 < 1. We want to find a
Taylor series about 𝑥0 for 𝑓 (𝑥) = ln(𝑥).

ln 𝑥 = ln(𝑥0 + 𝑥 − 𝑥0)

= ln 𝑥0(1 +
𝑥 − 𝑥0
𝑥0

)

= ln 𝑥0 +
∞
∑
𝑛=0

(−1)𝑛

𝑛 + 1 (
𝑥 − 𝑥0
𝑥0

)
𝑛+1

This converges if |𝑥−𝑥0𝑥0 | < 1, or in other words 0 < 𝑥 < 2𝑥0. ♦

Recall Taylor’s theorem. It tells us that we can write a function as a sum of two polynomials, 𝑓 (𝑥) =
𝑃𝑛(𝑥) + 𝑅𝑛(𝑥). Notice that 𝑃𝑛(𝑥) is just a partial sum of the Taylor series. When 𝑓 is infinitely
differentiable, we can let 𝑛 go to infinity to get the following theorem.

Theorem 4.17. Let 𝑓 be infinitely differentiable on 𝐼 = (𝑥0 − 𝑟, 𝑥0 + 𝑟) and let 𝑥 ∈ 𝐼. Then

𝑓 (𝑥) =
∞
∑
𝑛=0

𝑓 (𝑛)(𝑥0)
𝑛!

(𝑥 − 𝑥0)𝑛

iff

lim𝑛→∞𝑅𝑛(𝑥) = lim𝑛→∞
𝑓 (𝑛+1)(𝑐𝑛)
(𝑛 + 1)!

(𝑥 − 𝑥0)𝑛+1 = 0

where the 𝑐𝑛 are between 𝑥 and 𝑥0.

Corollary 4.17.1. If 𝑓 is infinitely differentiable on (−𝑟, 𝑟) and if there is 𝐵 > 0 such that |𝑓 (𝑛)(𝑥)| < 𝐵
for all 𝑥 ∈ (−𝑟, 𝑟), then the Maclaurin series of 𝑓 converges to 𝑓 (𝑥).

Proof. Consider the remainder term:

|𝑅𝑛(𝑥)| =
|𝑓 (𝑛+1)(𝑐𝑛)|
(𝑛 + 1)!

𝑥𝑛+1

≤
𝐵

(𝑛 + 1)!
𝑟𝑛+1.

Since lim𝑛→∞
𝐵

(𝑛+1)! 𝑟
𝑛+1 = 0, by the squeeze theorem lim𝑛→∞𝑅𝑛 = 0, and hence the Maclaurin series

of 𝑓 converges to 𝑓 (𝑥). �
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Definition 4.7 (Analytic functions). A function 𝑓 is analytic on (𝑎, 𝑏) if 𝑓 is infinitely differentiable
on (𝑎, 𝑏) and for any 𝑥0 ∈ (𝑎, 𝑏) the Taylor series of 𝑓 about 𝑥0 converges to 𝑓 in a neighbourhood of
𝑥0. �

Theorem 4.18. If the Taylor series of a function 𝑓 centred at 𝑥0 ∈ (𝑎, 𝑏) converges to 𝑓 on an open
interval (𝑎, 𝑏), then 𝑓 is analytic on (𝑎, 𝑏).

4.5 Arithmetic on power series

Addition of two series, and multiplication by a single number is easily defined. However the multi-
plication of two series is not so obvious. Term by term multiplication for finite sums motivate the
Cauchy product.

Definition 4.8 (Cauchy product). The Cauchy product of ∑∞
𝑛=0𝑎𝑛 and ∑∞

𝑛=0𝑏𝑛 is the series ∑∞
𝑛=0𝑐𝑛

where for each 𝑛

𝑐𝑛 =
∞
∑
𝑘=0

𝑎𝑘𝑏𝑛−𝑘 = ∑
𝑖+𝑗=𝑛

𝑎𝑖𝑏𝑗

�

Theorem 4.19 (Mertens’ theorem). If∑∞
𝑛=0𝑎𝑛 converges absolutely and∑

∞
𝑛=0𝑏𝑛 converges, then their

Cauchy product converges and is given by

(
∞
∑
𝑛=0

𝑎𝑛)(
∞
∑
𝑛=0

𝑏𝑛).

Proof. Let 𝛼 = ∑∞
𝑛=0|𝑎𝑛| and 𝐴 = ∑∞

𝑛=0𝑎𝑛 and 𝐵 = ∑∞
𝑛=0𝑏𝑛. Furthermore denote 𝐴𝑘 = ∑𝑘

𝑛=0𝑎𝑛 and

𝐵𝑘 = ∑𝑘
𝑛=0𝑏𝑛 and 𝐶𝑘 = ∑𝑘

𝑛=0𝑐𝑛 where 𝑐𝑛 = ∑𝑖+𝑗=𝑛 𝑎𝑖𝑏𝑗. (𝐴𝑘) converges to 𝐴, (𝐵𝑘) converges to 𝐵, and
we want to show that (𝐶𝑘) converges to 𝐴𝐵.

Consider the following

𝐶𝑘 = (𝑎0𝑏0) + (𝑎0𝑏1 + 𝑎1𝑏0) + (𝑎0𝑏2 + 𝑎1𝑏1 + 𝑎2𝑏0) + ⋯ + (𝑎0𝑏𝑘 + 𝑎1𝑏𝑘−1 + ⋯ + 𝑎𝑘𝑏0)
= 𝑎0(𝑏0 + 𝑏1 + ⋯ + 𝑏𝑘) + 𝑎1(𝑏0 + 𝑏1 + ⋯ + 𝑏𝑘−1) + ⋯ + (𝑎𝑘𝑏0)
= 𝑎0𝐵𝑘 + 𝑎1𝐵𝑘−1 + ⋯ + 𝑎𝑛𝐵0
= 𝑎0(𝐵 + 𝛽𝑘) + 𝑎1(𝐵 + 𝛽𝑘−1) + ⋯ + 𝑎𝑘(𝐵 + 𝛽0)
= (𝑎0 + 𝑎1 + ⋯ + 𝑎𝑘)𝐵 + 𝑎0𝛽𝑘 + 𝑎1𝛽𝑘−1 + ⋯ + 𝑎𝑘𝛾0
= 𝐴𝑛𝐵 + 𝛽𝑘,

where 𝛽𝑘 = 𝐵𝑘 − 𝐵 and 𝛾𝑘 = 𝑎0𝛽𝑘 + …𝑎𝑘𝛽0. Hence now we need to show that lim𝑘→∞𝛾𝑘 = 0.

Let 𝜖 > 0. Since lim𝑛→∞𝛽𝑛 = 0, ∃𝑖 ∈ ℕ [𝑛 ≥ 𝑖 ⟹ |𝛽𝑛| <
𝜖
2𝛼]. Furthermore, since it is a convergent

sequence, it is bounded, so ∃𝑀 > 0, ∀𝑛 [|𝛽𝑛| ≤ 𝑀]. Furthermore, we also note that ∑∞
𝑛=0|𝑎𝑗| satisfies
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the Cauchy criterion, so ∃𝑘 ∈ 𝑁 [∑𝑘
𝑚=𝑘−𝑖+1 |𝑎𝑚| <

𝜖
2𝑀].

|𝛾𝑘| = |𝑎0𝛽𝑘 + ⋯ + 𝑎𝑘𝛽0|
≤ |𝑎0||𝛽𝑘| + … |𝑎1||𝛽𝑘−1| + ⋯ + |𝑎𝑘−𝑖||𝛽𝑖| + ⋯ + |𝑎𝑘|𝛽0

≤ (
𝑘−𝑖
∑
𝑛=0

|𝑎𝑛|)
𝜖
2𝛼

+ (
𝑘
∑

𝑚=𝑘−𝑖+1
|𝑎𝑚|)𝑀

≤ 𝛼
𝜖
2𝛼

+
𝜖
2𝑀

𝑀

= 𝜖.

�

Corollary 4.19.1. If both∑∞
𝑛=0𝑎𝑛 and∑

∞
𝑛=0𝑏𝑛 converge absolutely then their Cauchy product converges

absolutely.

Proof. Let

𝑐𝑛 =
∞
∑
𝑘=0

𝑎𝑘𝑏𝑛−𝑘 𝑑𝑛 =
∞
∑
𝑘=0

|𝑎𝑘||𝑏𝑛−𝑘|.

Since∑∞
𝑛=0|𝑎𝑛| converges absolutely and∑∞

𝑛=0𝑏𝑛 converges, by Merten’s theorem∑∞
𝑛=0𝑑𝑛 converges.

However notice that

|𝑐𝑛| = |
𝑛
∑
𝑘=0

𝑎𝑘𝑏𝑛−𝑘| ≤
𝑛
∑
𝑘=0

|𝑎𝑘||𝑏𝑛−𝑘| = 𝑑𝑛

which means by the comparison test, ∑∞
𝑛=0|𝑐𝑛| converges. Hence the Cauchy product converges

absolutely. �

Theorem 4.20. Let 𝑓 (𝑥) = ∑∞
𝑛=0𝑎𝑛(𝑥 − 𝑥0)𝑛 for |𝑥 − 𝑥0| < 𝑅1 and 𝑔(𝑥) = ∑∞

𝑛=0𝑏𝑛(𝑥 − 𝑥0)𝑛 for
|𝑥 − 𝑥0| < 𝑅2. Let 𝛼 and 𝛽 be constants. Then

i. 𝛼𝑓 (𝑥) + 𝛽𝑔(𝑥) = ∑∞
𝑛=0(𝛼𝑎𝑛 + 𝛽𝑏𝑛)(𝑥 − 𝑥0)𝑛 for |𝑥 − 𝑥0| < min(𝑅1, 𝑅2).

ii. 𝑓 (𝑥)𝑔(𝑥) = ∑∞
𝑛=0𝑐𝑛(𝑥 − 𝑥0)𝑛 where 𝑐𝑛 = ∑∞

𝑘=0𝑎𝑘𝑏𝑛−𝑘 for |𝑥 − 𝑥0| < min(𝑅1, 𝑅2).

Proof. We will only show part (ii). Let 𝑥 be such that |𝑥 − 𝑥0| < min(𝑅1, 𝑅2). Let us rewrite 𝑓 (𝑥) =
∑∞

𝑛=0𝛼𝑛 and 𝑔(𝑥) = ∑∞
𝑛=0𝛽𝑛. They converge absolutely, and by Merten’s theorem their Cauchy

product converges to ∑∞
𝑛=0𝛾𝑛 = (∑∞

𝑛=0𝛼𝑛)(∑
∞
𝑛=0𝛽𝑛) where

𝛾𝑛 =
𝑛
∑
𝑘=0

𝛼𝑘𝛽𝑛−𝑘

=
𝑛
∑
𝑘=0

𝑎𝑘(𝑥 − 𝑥0)𝑘𝑏𝑛−𝑘(𝑥 − 𝑥0)𝑛−𝑘

=
𝑛
∑
𝑘=0

𝑎𝑘𝑏𝑛−𝑘(𝑥 − 𝑥0)𝑛

= 𝑐𝑛(𝑥 − 𝑥0)𝑛

�
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5 Appendix

This section is a brief recap of concepts covered in Analysis I.

5.1 Preliminaries

Definition 5.1 (Increasing functions). Let 𝑓 : 𝐼 → 𝑅. Function 𝑓 is said to be increasing on 𝐼 if
𝑥1, 𝑥2 ∈ 𝐼 𝑥1 < 𝑥2 ⟹ 𝑓(𝑥1) ≤ 𝑓 (𝑥2). �

A similar definition follows for decreasing functions. Since we allow for equality, constant functions
are increasing and decreasing functions. If we are strict on the inequality, then we call it a strictly
increasing (decreasing) function.

5.2 Limits of functions

A quit refresher on limits. Intuitively a function 𝑓 has a limit 𝐿 at 𝑎 if 𝑓 (𝑥) ≈ 𝐿 as we approach 𝑥 = 𝑎.

Definition 5.2 (Limits of functions). A function 𝑓 is said to have a limit 𝐿 at 𝑥 = 𝑎 if

∀𝜖 > 0, ∃𝛿 > 0 [|𝑥 − 𝑎| < 𝛿 ⟹ |𝑓 (𝑥) − 𝐿| < 𝜖].

�

Note that the value of 𝑓 (𝑎) is not important for the limit, only those points around it.

Recall all the other types of limits we can make by switching out the terms in the implication sign.

Limit taken at Antecedent Limit equals Consequent

𝑥 → 𝑎 |𝑥 − 𝑎| < 𝛿 𝐿 ∈ ℝ |𝑓 (𝑥) − 𝐿| < 𝜖
𝑥 → 𝑎+ 𝑎 < 𝑥 < 𝑎 + 𝛿 ∞ 𝑓 (𝑥) > 𝑀
𝑥 → 𝑎− 𝑎 − 𝛿 < 𝑥 < 𝑎 −∞ 𝑓 (𝑥) < 𝑀
𝑥 → ∞ ∃𝑘 𝑥 > 𝑘
𝑥 → −∞ ∃𝑘 𝑥 < 𝑘

An equivalent definition is the following.

Definition 5.3 (Sequential criterion for limits). For a function 𝑓, lim𝑥→𝑎 𝑓 (𝑥) = 𝐿 iff (𝑥𝑛) is a se-
quence in the domain of 𝑓 such that 𝑥𝑛 ≠ 𝑎 for all 𝑛 and 𝑥𝑛 → 𝑎, then 𝑓 (𝑥𝑛) → 𝐿. �

Some quick facts:

Theorem 5.1. Suppose lim𝑥→𝑎 𝑓 (𝑥) = 𝐿 exists.

i. If 𝐿 > 0, then
∃𝛿 > 0 [0 < |𝑥 − 𝑎| < 𝛿 ⟹ 𝑓 (𝑥) > 0]

54



ii. If 𝐿 ≠ 0, then
∃𝛿 > 0 [0 < |𝑥 − 𝑎| < 𝛿 ⟹ 𝑓 (𝑥) ≠ 0]

Proof.

i. Since the limit exists,

∀𝜖 > 0, ∃𝛿 > 0 [|𝑥 − 𝑎| < 𝛿 ⟹ |𝑓 (𝑥) − 𝐿| < 𝜖].

Pick 0 < 𝜖 < 𝐿. Then

∃𝛿 > 0 [|𝑥 − 𝑎| < 𝛿 ⟹ (0 < 𝑓 (𝑥) − 𝐿 < 𝜖) ∨ (0 < 𝐿 − 𝑓 (𝑥) < 𝜖) ⟹ 𝑓 (𝑥) > 0].

ii. Do the same as above but for 𝐿 < 0, then we get the result we want.

�

Theorem 5.2. Suppose that function 𝑓 is defined in a deleted neighbourhood of a point 𝑐 and 𝐿 ∈ ℝ.
Then lim𝑥→𝑐 𝑓 (𝑥) = 𝐿 iff lim𝑥→𝑐+ 𝑓 (𝑥) = 𝐿 = lim𝑥→𝑐− 𝑓 (𝑥).

Proof. ( ⟹ ) follows directly from the definition.

( ⟸ ): Let 𝛿+ and 𝛿− be the witnesses for the limits 𝑥 → 𝑐+ and 𝑥 → 𝑐− respectively, then let
𝛿 = min(𝛿+, 𝛿−), and we have

∀𝜖 > 0, ∃𝛿 > 0, 𝑐 + 𝛿− ≤ 𝑐 + 𝛿 < 𝑥 < 𝑐 + 𝛿 ≤ 𝑐 + 𝛿+ ⟹ |𝑓 (𝑥) − 𝐿| < 𝜖. (1)

�

Theorem 5.3. Let 𝑓 : (0, 1) → ℝ and 𝐿 ∈ ℝ, then lim𝑥→0+ 𝑓 (𝑥) = 𝐿 iff lim𝑦→∞ 𝑓 (1𝑦 ) = 𝐿.

Proof. Let 𝑦 = 1
𝑥 , then

∀𝜖 > 0, ∃𝛿 > 0 [0 <
1
𝑦
< 𝛿 ⟹ |𝑓(

1
𝑦)

− 𝐿| < 𝜖]

⟺ ∀𝜖 > 0, ∃𝛿 > 0 [𝑦 >
1
𝛿

⟹ |𝑓(
1
𝑦)

− 𝐿| < 𝜖]

�

5.3 Continuity

Definition 5.4 (Continuity). A function 𝑓 is continuous at 𝑎 if lim𝑥→𝑎 𝑓 (𝑥) = 𝑓 (𝑎). �

Definition 5.5 (Uniform continuity). A function 𝑓 is uniformly continuous on an interval 𝐼 if

∀𝜖 > 0, ∃𝛿 > 0, ∀𝑥, 𝑦 ∈ 𝐼 [|𝑥 − 𝑦| < 𝛿 ⟹ |𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜖]. �

Theorem 5.4 (Extreme value theorem). If 𝑓 is continuous on [𝑎, 𝑏], then

∃𝑥1, 𝑥2 ∈ [𝑎, 𝑏], ∀𝑥 ∈ [𝑎, 𝑏] [𝑓 (𝑥1) ≤ 𝑓 (𝑥) ≤ 𝑓 (𝑥2)]

Theorem 5.5 (Intermediate value theorem). If 𝑓 is continuous on [𝑎, 𝑏], and 𝑓 (𝑎) < 𝑘 < 𝑓 (𝑏), then
there exists 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 (𝑐) = 𝑘.
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5.4 Series

Definition 5.6 (Infinite series). Given a sequence (𝑎𝑛), define a new sequence (𝑠𝑛) where 𝑠𝑛 = 𝑎1 +
⋯ + 𝑎𝑛 = ∑𝑛

𝑘=1 𝑎𝑘. We call it the infinite series generated by (𝑎𝑛) and denote it as ∑∞
𝑛=1𝑎𝑛.

If (𝑠𝑛) converges to 𝑠, then we say ∑∞
𝑛=1𝑎𝑛 converges and define ∑∞

𝑛=1𝑎𝑛 = 𝑠. Otherwise we say that
it diverges. �

Theorem 5.6. If∑∞
𝑛=1𝑎𝑛 converges, then lim𝑛→∞ 𝑎𝑛 = 0.

The converse is false, with the harmonic series being a famous counterexample: ∑∞
𝑛=1

1
𝑛 .

Since series are just sequences, then theorems on sequences apply to series as well.

Theorem 5.7 (Cauchy criterion for series). ∑∞
𝑛=1𝑎𝑛 converges iff

∀𝜖 > 0, ∃𝐾 ∈ ℕ [𝑛 > 𝑚 ≥ 𝐾 ⟹ |
𝑛
∑
𝑘=1

𝑎𝑘 −
𝑚
∑
𝑘=1

𝑎𝑘| = |
𝑛
∑

𝑘=𝑚+1
𝑎𝑘| < 𝜖]

Definition 5.7 (Positive series). A positive series ∑∞
𝑛=1𝑎𝑛 is a series where 𝑎𝑛 ≥ 0 for all 𝑛. �

Theorem 5.8 (Comparison test). Let (𝑎𝑛) and (𝑏𝑛) be positive series and suppose ∃𝐾 ∈ ℕ, ∀𝑛 ≥ 𝐾 [𝑎𝑛 ≤
𝑏𝑛], then if ∑∞

𝑛=1𝑏𝑛 converges, so does ∑
∞
𝑛=1𝑎𝑛.

Theorem 5.9 (Alternating series test). If (𝑎𝑛) is a positive and decreasing sequence, then the series
∑∞

𝑛=1(−1)
𝑛𝑎𝑛 converges.

Definition 5.8 (Absolute convergence). Let (𝑎𝑛) be a sequence, if ∑∞
𝑛=1|𝑎𝑛| converges, then we say

that ∑∞
𝑛=1𝑎𝑛 converges absolutely. �

Theorem 5.10. Absolute convergence implies convergence.

Theorem 5.11 (Ratio test). Suppose that all the terms of the series∑∞
𝑛=1𝑎𝑛 are non-zero and the limit

𝐿 = lim𝑛→∞ |𝑎𝑛+1𝑎𝑛 | exists.

• If 𝐿 < 1 then the series converges absolutely.

• If 𝐿 > 1 then the series diverges.

• There is no conclusion if 𝐿 = 1.

Theorem 5.12 (Root test). Consider the series∑∞
𝑛=1𝑎𝑛. Let 𝐿 = lim sup |𝑎𝑛|

1
𝑛 .

i. If 𝐿 < 1 then the series converge absolutely.

ii. If 𝐿 > 1 then the series diverges.

iii. There is no conclusion if 𝐿 = 1.

There is a weaker version of the root test involving just lim 𝑛 → inf|𝑎𝑛|
1
𝑛 . But do note that this limit

might not exist, whereas the limit superior always exists (even if though it might be ∞).
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