1 Relations and orderings

Definition 1.1.

- R is reflexive in A if $\forall a \in A, aRa$.
- R is symmetric in A if $\forall a, b \in A, aRb \implies bRa$.
- R is transitive in A if $\forall a, b, c \in A, aRa \land bRc \implies aRc.$
- R is antisymmetric if $\forall a, b \in A, aRb \land bRa \implies a = b$.
- R is asymmetric if $aRb \implies \neg bRa$.
- R is connex if $aRy \lor yRa$.

Definition 1.2.

- Equivalence relation: reflexive, symmetric, transitive.
- Partial ordering: reflexive, antisymmetric, transitive.
- Strict partial ordering: asymmetric, transitive.
- Linear/total ordering: partial order + connex.

Definition 1.3 (Dense sets). An linearly ordered set (X, <) is *dense* if it has at least two elements and

$$\forall a, b \in X, \exists x \in X \ [a < b \implies a < x < b]$$

Definition 1.4 (Relations). A *binary relation* is a set of ordered pairs. Let R be a binary relation, then

- the domain of R is defined as $dom(R) = \{x \mid \exists y, (x, y) \in R\}$
- and the range of R is defined as $ran(R) = \{y \mid \exists y, (x, y) \in R\}$. \Box

Definition 1.5. Let \leq be a partial ordering on A, and let $B \subseteq A$.

- $b \in B$ is the *least* element of B if $b \leq x$ for all $x \in B$.
- $b \in B$ is the *minimal* element of B is there exists no $x \in B$ such that $x \leq b$ and $x \neq b$.
- $a \in A$ is a lower bound of B if $a \leq x$ for all $x \in B$.
- $a \in A$ is called the *infimum* of B if it is the greatest element of the set of all lower bounds of B (greatest lower bound).
- The greatest element, maximal element, upper bound, supremum can be defined similarly.

 2^{\aleph_0} .

Π

Definition 1.6 (Functions). A function f is a binary relation such that for every x there is at most one y for which $(x, y) \in f$:

$$(x,y)\in f\wedge (x,z)\in f\implies y=z.$$

Theorem 1.1. Let A and B and A_i be sets and I an indexing set.

 $i. \ f[\bigcup\{A_i \mid i \in I\}] = \bigcup\{f[A_i] \mid i \in I\}.$ $ii. \ f[\bigcap\{A_i \mid i \in I\}] \subseteq \bigcap\{f[A_i] \mid i \in I\}.$ $iii. \ f[A] - f[B] \subseteq F[A - B].$ Corollary 1.1.1. Let A and B and A_i be sets and I an indexing set. $i. \ f^{-1}[\bigcup\{A_i \mid i \in I\}] = \bigcup\{f^{-1}[A_i] \mid i \in I\}.$ $ii. \ f^{-1}[\bigcap\{A_i \mid i \in I\}] = \bigcap\{f^{-1}[A_i] \mid i \in I\}.$

$^{\square}$ 2 Cardinals and cardinalities

iii. $f^{-1}[A - B] = f^{-1}[A] - f^{-1}[B]$.

Definition 2.1. Let A and B be sets. We say that the *cardinality* of A is less than or equal to the cardinality of B if there is an one-to-one mapping of A into B (i.e. injection). We write $|A| \leq |B|$.

We say that A are *equipotent* (same cardinality) if there is an one-to-one from A onto B (i.e. a bijection). We write |A| = |B|.

Theorem 2.1 (Arithmetic laws).

i. $\kappa + \lambda = \lambda + \kappa$ and $\kappa \cdot \lambda = \lambda \cdot \kappa$ *ii.* $\kappa + (\lambda + \mu) = (\kappa + \lambda) + \mu$ and $\kappa \cdot (\lambda \cdot \mu) = (\kappa \cdot \lambda) \cdot \mu$ *iii.* $\kappa \cdot (\lambda + \mu) = \kappa \cdot \lambda + \kappa \cdot \mu$. *iv.* $\kappa^{\lambda+\mu} = \kappa^{\lambda} \cdot \kappa^{\mu}$. $v. \ \left(\kappa^{\lambda}\right)^{\mu} = \kappa^{\lambda \cdot \mu}.$ vi. $(\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu}$. *vii.* $\kappa + \kappa = 2 \cdot \kappa$. *viii.* $\kappa^2 = \kappa \cdot \kappa$. ix. $\kappa^{\kappa} < 2^{\kappa \cdot \kappa}$. **Theorem 2.2** (Arithmetic properties of 2^{\aleph_0}). *i*. $\aleph_0 \cdot \aleph_0 = \aleph_0$, $2^{\aleph_0} \cdot 2^{\aleph_0} = 2^{\aleph_0}$. *ii.* $\forall n \in \mathbb{N} \ [n+2^{\aleph_0} = \aleph_0 + 2^{\aleph_0} = 2^{\aleph_0} + 2^{\aleph_0} = 2^{\aleph_0}]$ *iii.* $\forall n \in \mathbb{N}, n > 0$ $\left[n \cdot 2^{\aleph_0} = \aleph_0 \cdot 2^{\aleph_0} = 2^{\aleph_0} \cdot 2^{\aleph_0} = 2^{\aleph_0}\right]$ *iv.* $\forall n \in \mathbb{N}, n > 0 \left[(2^{\aleph_0})^n = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0} \right]$ $v. \forall n \in \mathbb{N}, n > 1 \left[n^{\aleph_0} = \aleph_0^{\aleph_0} = 2^{\aleph_0} \right]$ **Theorem 2.3.** The set of all open subsets of the reals has cardinality

Theorem 2.4. Every open interval in the reals has cardinality 2^{\aleph_0} . Every non-empty open set of reals has cardinality 2^{\aleph_0} .

3 Ordinals

Definition 3.1 (Initial segments). Let (L, <) be a linearly ordered set. A set $S \subsetneq L$ is called an *initial segment* if it is closed downwards, i.e. $\forall a \in S, x < a \implies x \in S.$

Lemma 3.1. If (W, <) is a well-ordered set and if $f : W \to W$ is an increasing (i.e. order preserving) function, then $f(x) \ge x$ for all $x \in W$.

Corollary 3.1.1.

- i. No well-ordered set is isomorphic to an initial segment of itself.
- ii. Each well-ordered set has only one automorphism, the identity.
- iii. If W_1 and W_2 are isomorphic well-ordered sets, then the isomorphism between W_1 and W_2 is unique.

Theorem 3.2. If W_1 and W_2 are well-ordered sets, then one and exactly one of the following holds:

i. W_1 and W_2 are isomorphic, or

ii. W_2 is isomorphic to an initial segment of W_1 , or

iii. W_1 is isomorphic to an initial segment of W_2 .

In all cases the isomorphism is unique.

Definition 3.2 (Transitive sets). A set T is *transitive* if every element of T is also a subset of T. In other words, $u \in v \in T \implies u \in T$. \Box

Definition 3.3 (Ordinals). A set α is an ordinal or ordinal number if α if transitive and α is well-ordered by \in_{α} .

Definition 3.4 (Successor ordinals). The successor of ordinal α is given by $\alpha \cup \{\alpha\}$. If $\alpha = \beta + 1$ for some ordinal β then it is called a *successor* ordinal. Otherwise it is called a *limit ordinal*.

Definition 3.5 (Supremum). Define $\sup S = \bigcup S$.

Theorem 3.3. Let α be an ordinal.

i. $\alpha \not\in \alpha$.

ii. Every element of α is an ordinal.

iii. If β is an ordinal, $\alpha \subset \beta \iff \alpha \in \beta$.

Theorem 3.4. Let α , β , γ be ordinal numbers.

i. If $\alpha < \beta$ and $\beta < \gamma$, then $\alpha < \gamma$.

ii. $\alpha < \beta$ and $\beta < \alpha$ cannot both be true.

 $\textit{iii.} \ \alpha < \beta \ \textit{or} \ \alpha = \beta \ \textit{or} \ \beta < \alpha.$

iv. Every set of ordinals is well-ordered by <.

v. For every set of ordinal numbers X, there is an ordinal number $\alpha \notin X$, namely $\bigcup X$.

4 Transfinite recursion and induction

Theorem 4.1 (Transfinite induction). Let P(x) be a property. Assume that

• *P*(0) holds.

• $\forall \alpha \ [P(\alpha) \implies P(\alpha+1)].$

For all limit ordinals α ≠ 0, if P(β) holds for all β < α, then P(α) holds.

Then $P(\alpha)$ holds for all ordinals α .

Theorem 4.2 (Parametric transfinite recursion). Let G_1 , G_2 , and G_3 be operations defined on the class of all sets. Then there is an unique operation $F(z, \alpha)$ defined on the class of all sets z and all ordinals α such that

• $F(z,0) = G_1(z),$

• $F(z, \alpha + 1) = G_2(z, \alpha, F(z, \alpha)),$

- $F(z, \alpha) = G_3(z, \{(\beta, F(z, \beta)) \mid \beta < \alpha\})$ if $\alpha \neq 0$ is a limit ordinal.
- **Definition 4.1** (Addition of ordinals). For all ordinals α :
 - $\alpha + 0 = \beta$,

• $\alpha + (\alpha + 1) = (\alpha + \beta) + 1$,

• $\alpha + \beta = \sup\{\alpha + \gamma \mid \gamma < \beta\}$ for all limit ordinals $\alpha \neq 0$

Addition is left cancellative, associative, left subtractive (exists unique solution to $\alpha = \gamma + \beta$).

Definition 4.2 (Ordinal multiplication). For all ordinals α ,

- $\alpha \cdot 0 = 0.$
- $\alpha \cdot (\beta + 1) = (\alpha \cdot \beta) + \alpha.$
- $\alpha \cdot \beta = \sup\{\alpha \cdot \gamma \mid \gamma < \alpha\}$ for all limit ordinals $\beta \neq 0$.

Multiplication is left cancellative (not shown), associative, left distributive.

Definition 4.3 (Ordinal exponentiation). For all ordinals α ,

- $\alpha^0 = 1.$
- $\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha$.
- $\alpha^{\beta} = \sup\{\alpha^{\gamma} \mid \gamma < \beta\}$ for all limit ordinals $\beta \neq 0$.

5 Alephs

Definition 5.1 (Initial ordinal). An ordinal α is called an *initial ordinal* if it is not equipotent (equinumerous) to any $\beta < \alpha$.

Definition 5.2 (Hartogs number). For any set A, let h(A) be the least ordinal which is not equipotent to any subset of A. We call h(A) the *Hartogs number* of A. In other words, h(A) is the least ordinal such that $|h(A)| \leq |A|$.

Definition 5.3. Define

• $\omega_0 = \omega$.

• $\omega_{\alpha+1} = h(\omega_{\alpha}).$

• $\omega_{\alpha} = \sup\{\omega_{\beta} \mid \beta < \alpha\}$. If $\alpha \neq 0$ is a limit ordinal.

6 Axiom of choice

Definition 6.1 (Choice functions). Let *S* be a system of sets. A func- \mathbb{Q} : tion *g* defined on *S* is called a *choice function* for *S* if $g(X) \in X$ for all non-empty $X \in S$.

Axiom of choice There exists a choice function for every system of sets.

Theorem 6.1 (Zorn's lemma). If every chain in a partially ordered set has an upper bound, then the partially ordered set has a maximal element.

7 Other things

The axiom schema of replacement Let P(x, y) be a property such that $\forall x, \exists ! y \ P(x, y)$. Then for every set A, there is a set B, such that for every $x \in A$, there is a $y \in B$ for which P(x, y) holds.

Definition 7.1. A Dedekind *cut* in \mathbb{Q} is a subset $A \subseteq \mathbb{Q}$ such that

• $A \neq \emptyset$ and $A \neq \mathbb{Q}$.

- $\forall p \in \mathbb{Q}, \forall q \in A \ (p < q \implies p \in A).$
- A does not have a greatest element.

Definition 7.2 (Open sets). A set $A \subseteq \mathbb{R}$ is open if

 $\forall a \in A, \exists \delta > 0 \ (|x - a| < \delta \implies x \in A).$

In other words, there is an open interval (neighbourhood) $(a-\delta, a+\delta) \subseteq A$.

A set B is closed if $\mathbb{R} \setminus B$ is open.

Theorem 7.1. Every system of mutually disjoint open intervals in \mathbb{R} \Box is at most countable.

Definition 7.3 (Accumulation points). $a \in \mathbb{R}$ is an accumulation (limit) point of $A \subseteq \mathbb{R}$ if

$$\forall \delta > 0, \exists x \in A \ (x \neq a \ \land |x - a| < \delta).$$

Definition 7.4 (Isolated points). $a \in \mathbb{R}$ is an *isolated point* of $A \subseteq \mathbb{R}$ if

$$\exists \delta > 0, \forall x \neq a \ (|x - a| < \delta \implies x \notin A).$$

Definition 7.5 (Perfect sets). A non-empty set A is called a *perfect set* if A is closed without isolated points.

 \mathbb{Z} :

- $$\begin{split} (a,b) &\sim (c,d) \iff a+d=b+c.\\ [(a,b)] &< [(c,d)] \iff a+d <_{\mathbb{N}} b+c.\\ [(a,b)] + [(c,d)] &= [(a+c,b+d)]\\ [(a,b)] \cdot [(c,d)] &= [(ac+bd,ad+bc)] \end{split}$$
 - $$\begin{split} &(a,b)\sim(c,d)\iff ad=bc.\\ &[(a,b)]<[(c,d)]\iff ad<_{\mathbb{N}}bc\\ &[(a,b)]+[(c,d)]=[(ad+bc,bd)]\\ &[(a,b)]\cdot[(c,d)]=[(ac,bd)] \end{split}$$

 \square