1 Relations and orderings

Definition 1.1.

- R is reflexive in A if $\forall a \in A, a R a$.
- R is symmetric in A if $\forall a, b \in A, a R b \Longrightarrow b R a$.
- R is transitive in A if $\forall a, b, c \in A, a R a \wedge b R c \Longrightarrow a R c$.
- R is antisymmetric if $\forall a, b \in A, a R b \wedge b R a \Longrightarrow a=b$.
- R is asymmetric if $a R b \Longrightarrow \neg b R a$.
- R is connex if $a R y \vee y R a$.

Definition 1.2.

- Equivalence relation: reflexive, symmetric, transitive.
- Partial ordering: reflexive, antisymmetric, transitive.
- Strict partial ordering: asymmetric, transitive.
- Linear/total ordering: partial order + connex.

Definition 1.3 (Dense sets). An linearly ordered set $(X,<)$ is dense if it has at least two elements and

$$
\forall a, b \in X, \exists x \in X[a<b \Longrightarrow a<x<b]
$$

Definition 1.4 (Relations). A binary relation is a set of ordered pairs Let R be a binary relation, then

- the domain of R is defined as $\operatorname{dom}(R)=\{x \mid \exists y,(x, y) \in R\}$
- and the range of R is defined as $\operatorname{ran}(R)=\{y \mid \exists y,(x, y) \in R\} . \square$

Definition 1.5. Let \leq be a partial ordering on A, and let $B \subseteq A$.

- $b \in B$ is the least element of B if $b \leq x$ for all $x \in B$.
- $b \in B$ is the minimal element of B is there exists no $x \in B$ such that $x \leq b$ and $x \neq b$.
- $a \in A$ is a lower bound of B if $a \leq x$ for all $x \in B$.
- $a \in A$ is called the infimum of B if it is the greatest element of the set of all lower bounds of B (greatest lower bound).
- The greatest element, maximal element, upper bound, supremum can be defined similarly.

Definition 1.6 (Functions). A function f is a binary relation such that for every x there is at most one y for which $(x, y) \in f$:

$$
(x, y) \in f \wedge(x, z) \in f \Longrightarrow y=z
$$

Theorem 1.1. Let A and B and A_{i} be sets and I an indexing set.
i. $f\left[\bigcup\left\{A_{i} \mid i \in I\right\}\right]=\bigcup\left\{f\left[A_{i}\right] \mid i \in I\right\}$.
ii. $f\left[\bigcap\left\{A_{i} \mid i \in I\right\}\right] \subseteq \bigcap\left\{f\left[A_{i}\right] \mid i \in I\right\}$.
iii. $f[A]-f[B] \subseteq F[A-B]$.

Corollary 1.1.1. Let A and B and A_{i} be sets and I an indexing set.
i. $f^{-1}\left[\bigcup\left\{A_{i} \mid i \in I\right\}\right]=\bigcup\left\{f^{-1}\left[A_{i}\right] \mid i \in I\right\}$.
ii. $f^{-1}\left[\bigcap\left\{A_{i} \mid i \in I\right\}\right]=\bigcap\left\{f^{-1}\left[A_{i}\right] \mid i \in I\right\}$.
iii. $f^{-1}[A-B]=f^{-1}[A]-f^{-1}[B]$.

$\square \quad 2$ Cardinals and cardinalities

Definition 2.1. Let A and B be sets. We say that the cardinality of
A is less than or equal to the cardinality of B if there is an one-to-one mapping of A into B (i.e. injection). We write $|A| \leq|B|$.

We say that A are equipotent (same cardinality) if there is an one-to-one from A onto B (i.e. a bijection). We write $|A|=|B|$.
Theorem 2.1 (Arithmetic laws).
i. $\kappa+\lambda=\lambda+\kappa$ and $\kappa \cdot \lambda=\lambda \cdot \kappa$
ii. $\kappa+(\lambda+\mu)=(\kappa+\lambda)+\mu$ and $\kappa \cdot(\lambda \cdot \mu)=(\kappa \cdot \lambda) \cdot \mu$
iii. $\kappa \cdot(\lambda+\mu)=\kappa \cdot \lambda+\kappa \cdot \mu$.
iv. $\kappa^{\lambda+\mu}=\kappa^{\lambda} \cdot \kappa^{\mu}$.
v. $\left(\kappa^{\lambda}\right)^{\mu}=\kappa^{\lambda \cdot \mu}$.
vi. $(\kappa \cdot \lambda)^{\mu}=\kappa^{\mu} \cdot \lambda^{\mu}$.
vii. $\kappa+\kappa=2 \cdot \kappa$.
viii. $\kappa^{2}=\kappa \cdot \kappa$.
$i x . \kappa^{\kappa} \leq 2^{\kappa \cdot \kappa}$.
Theorem 2.2 (Arithmetic properties of $2^{\aleph_{0}}$).
i. $\aleph_{0} \cdot \aleph_{0}=\aleph_{0}, 2^{\aleph_{0}} \cdot 2^{\aleph_{0}}=2^{\aleph_{0}}$.
ii. $\forall n \in \mathbb{N}\left[n+2^{\aleph_{0}}=\aleph_{0}+2^{\aleph_{0}}=2^{\aleph_{0}}+2^{\aleph_{0}}=2^{\aleph_{0}}\right]$
iii. $\forall n \in \mathbb{N}, n>0\left[n \cdot 2^{\aleph_{0}}=\aleph_{0} \cdot 2^{\aleph_{0}}=2^{\aleph_{0}} \cdot 2^{\aleph_{0}}=2^{\aleph_{0}}\right]$
iv. $\forall n \in \mathbb{N}, n>0\left[\left(2^{\aleph_{0}}\right)^{n}=\left(2^{\aleph_{0}}\right)^{\aleph_{0}}=2^{\aleph_{0}}\right]$
v. $\forall n \in \mathbb{N}, n>1\left[n^{\aleph_{0}}=\aleph_{0} \aleph_{0}=2^{\aleph_{0}}\right]$

Theorem 2.3. The set of all open subsets of the reals has cardinality $2^{\aleph_{0}}$.
Theorem 2.4. Every open interval in the reals has cardinality $2^{\aleph_{0}}$. Every non-empty open set of reals has cardinality $2^{\aleph_{0}}$.

3 Ordinals

Definition 3.1 (Initial segments). Let $(L,<)$ be a linearly ordered set. A set $S \subsetneq L$ is called an initial segment if it is closed downwards, i.e. $\forall a \in S, x<a \Longrightarrow x \in S$.

Lemma 3.1. If $(W,<)$ is a well-ordered set and if $f: W \rightarrow W$ is an increasing (i.e. order preserving) function, then $f(x) \geq x$ for all $x \in W$.

Corollary 3.1.1.

i. No well-ordered set is isomorphic to an initial segment of itself.
ii. Each well-ordered set has only one automorphism, the identity.
iii. If W_{1} and W_{2} are isomorphic well-ordered sets, then the isomorphism between W_{1} and W_{2} is unique.

Theorem 3.2. If W_{1} and W_{2} are well-ordered sets, then one and exactly one of the following holds:
i. W_{1} and W_{2} are isomorphic, or
ii. W_{2} is isomorphic to an initial segment of W_{1}, or
iii. W_{1} is isomorphic to an initial segment of W_{2}.

In all cases the isomorphism is unique.
Definition 3.2 (Transitive sets). A set T is transitive if every element of T is also a subset of T. In other words, $u \in v \in T \Longrightarrow u \in T$. \square

Definition 3.3 (Ordinals). A set α is an ordinal or ordinal number if α if transitive and α is well-ordered by \in_{α}.

Definition 3.4 (Successor ordinals). The successor of ordinal α is given by $\alpha \cup\{\alpha\}$. If $\alpha=\beta+1$ for some ordinal β then it is called a successor ordinal. Otherwise it is called a limit ordinal.

Definition 3.5 (Supremum). Define $\sup S=\bigcup S$.
Theorem 3.3. Let α be an ordinal.
i. $\alpha \notin \alpha$.
ii. Every element of α is an ordinal.
iii. If β is an ordinal, $\alpha \subset \beta \Longleftrightarrow \alpha \in \beta$.

Theorem 3.4. Let α, β, γ be ordinal numbers.
i. If $\alpha<\beta$ and $\beta<\gamma$, then $\alpha<\gamma$.
ii. $\alpha<\beta$ and $\beta<\alpha$ cannot both be true.
iii. $\alpha<\beta$ or $\alpha=\beta$ or $\beta<\alpha$.
iv. Every set of ordinals is well-ordered by $<$.
v. For every set of ordinal numbers X, there is an ordinal number $\alpha \notin X$, namely $\bigcup X$.

4 Transfinite recursion and induction

Theorem 4.1 (Transfinite induction). Let $P(x)$ be a property. Assume that

- $P(0)$ holds.
- $\forall \alpha[P(\alpha) \Longrightarrow P(\alpha+1)]$.
- For all limit ordinals $\alpha \neq 0$, if $P(\beta)$ holds for all $\beta<\alpha$, then $P(\alpha)$ holds.

Then $P(\alpha)$ holds for all ordinals α.
Theorem 4.2 (Parametric transfinite recursion). Let G_{1}, G_{2}, and G_{3} be operations defined on the class of all sets. Then there is an unique operation $F(z, \alpha)$ defined on the class of all sets z and all ordinals α such that

- $F(z, 0)=G_{1}(z)$,
- $F(z, \alpha+1)=G_{2}(z, \alpha, F(z, \alpha))$,
- $F(z, \alpha)=G_{3}(z,\{(\beta, F(z, \beta)) \mid \beta<\alpha\})$ if $\alpha \neq 0$ is a limit ordinal.

Definition 4.1 (Addition of ordinals). For all ordinals α :

- $\alpha+0=\beta$,
- $\alpha+(\alpha+1)=(\alpha+\beta)+1$,
- $\alpha+\beta=\sup \{\alpha+\gamma \mid \gamma<\beta\}$ for all limit ordinals $\alpha \neq 0$

Adition is left cancellative, associative, left subtractive (exists unique solution to $\alpha=\gamma+\beta$).

Definition 4.2 (Ordinal multiplication). For all ordinals α,

- $\alpha \cdot 0=0$.
- $\alpha \cdot(\beta+1)=(\alpha \cdot \beta)+\alpha$.
- $\alpha \cdot \beta=\sup \{\alpha \cdot \gamma \mid \gamma<\alpha\}$ for all limit ordinals $\beta \neq 0$.

Multiplication is left cancellative (not shown), associative, left distributive.

Definition 4.3 (Ordinal exponentiation). For all ordinals α,

- $\alpha^{0}=1$.
- $\alpha^{\beta+1}=\alpha^{\beta} \cdot \alpha$.
- $\alpha^{\beta}=\sup \left\{\alpha^{\gamma} \mid \gamma<\beta\right\}$ for all limit ordinals $\beta \neq 0$.

5 Alephs

Definition 5.1 (Initial ordinal). An ordinal α is called an initial ordinal if it is not equipotent (equinumerous) to any $\beta<\alpha$.

Definition 5.2 (Hartogs number). For any set A, let $h(A)$ be the least ordinal which is not equipotent to any subset of A. We call $h(A)$ the Hartogs number of A. In other words, $h(A)$ is the least ordinal such that $|h(A)| \not \leq|A|$.

Definition 5.3. Define

- $\omega_{0}=\omega$.
- $\omega_{\alpha+1}=h\left(\omega_{\alpha}\right)$.
- $\omega_{\alpha}=\sup \left\{\omega_{\beta} \mid \beta<\alpha\right\}$. If $\alpha \neq 0$ is a limit ordinal.

6 Axiom of choice

Definition 6.1 (Choice functions). Let S be a system of sets. A function g defined on S is called a choice function for S if $g(X) \in X$ for all non-empty $X \in S$.

Axiom of choice There exists a choice function for every system of sets.
Theorem 6.1 (Zorn's lemma). If every chain in a partially ordered set has an upper bound, then the partially ordered set has a maximal element.

7 Other things

The axiom schema of replacement Let $P(x, y)$ be a property such that $\forall x, \exists!y P(x, y)$. Then for every set A, there is a set B, such that for every $x \in A$, there is a $y \in B$ for which $P(x, y)$ holds.
Definition 7.1. A Dedekind cut in \mathbb{Q} is a subset $A \subseteq \mathbb{Q}$ such that

- $A \neq \emptyset$ and $A \neq \mathbb{Q}$
- $\forall p \in \mathbb{Q}, \forall q \in A(p<q \Longrightarrow p \in A)$.
- A does not have a greatest element.

Definition 7.2 (Open sets). A set $A \subseteq \mathbb{R}$ is open if

$$
\forall a \in A, \exists \delta>0(|x-a|<\delta \Longrightarrow x \in A)
$$

In other words, there is an open interval (neighbourhood) $(a-\delta, a+\delta) \subseteq A$. A set B is closed if $\mathbb{R} \backslash B$ is open.

Theorem 7.1. Every system of mutually disjoint open intervals in \mathbb{R} is at most countable.

Definition 7.3 (Accumulation points). $a \in \mathbb{R}$ is an accumulation (limit) point of $A \subseteq \mathbb{R}$ if

$$
\forall \delta>0, \exists x \in A(x \neq a \wedge|x-a|<\delta) .
$$

$$
\exists \delta>0, \forall x \neq a(|x-a|<\delta \Longrightarrow x \notin A) .
$$

Definition 7.5 (Perfect sets). A non-empty set A is called a perfect set if A is closed without isolated points.
$\mathbb{Z}:$
\mathbb{Q} :
$(a, b) \sim(c, d) \Longleftrightarrow a+d=b+c$.
$[(a, b)]<[(c, d)] \Longleftrightarrow a+d<\mathbb{N} b+c$
$[(a, b)]+[(c, d)]=[(a+c, b+d)]$
$[(a, b)] \cdot[(c, d)]=[(a c+b d, a d+b c)]$
$(a, b) \sim(c, d) \Longleftrightarrow a d=b c$.
$[(a, b)]<[(c, d)] \Longleftrightarrow a d<_{\mathbb{N}} b c$
$[(a, b)]+[(c, d)]=[(a d+b c, b d)]$
$[(a, b)] \cdot[(c, d)]=[(a c, b d)]$

