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1 Complex numbers

This section is a quick review of complex numbers.

Definition 1.1 (Complex numbers). A complex number takes the form 𝑧 = 𝑥 + 𝑖𝑦, where 𝑥, 𝑦 ∈ ℝ
and 𝑖2 = −1. Furthermore we define the real part of 𝑧 as ℜ(𝑧) = 𝑥 and the imaginary part of 𝑧 as
ℑ(𝑧) = 𝑦. �

Two complex numbers are equal iff both their real and imaginary parts are equal. The set of complex
numbers ℂ forms a field with the following operations:

Definition 1.2 (Operations in ℂ).

(𝑥1 + 𝑖𝑦1) + (𝑥2 + 𝑖𝑦2) = (𝑥1 + 𝑥2) + 𝑖(𝑦1 + 𝑦2)
(𝑥1 + 𝑖𝑦1) ⋅ (𝑥2 + 𝑖𝑦2) = (𝑥1𝑥2 − 𝑦1𝑦2) + 𝑖(𝑥1𝑦2 + 𝑥2𝑦1). �

Division is more easily performed if we multiply the numerator and denominator with a constant
that makes the denominator real. We will see how this is done later.

It is also possible to identify a complex number with a vector in ℝ2. Then we have the familiar
notion of length.

Definition 1.3 (Modulus). Define the modulus of a complex number 𝑧 = 𝑥 + 𝑖𝑦 as

|𝑧| = √𝑥2 + 𝑦2. �

The distance between two complex numbers 𝑧1 and 𝑧2 is given through the same way for vectors:
|𝑧1 − 𝑧2|. We also have the following relations regarding the modulus:

ℜ(𝑧) ≤ |ℜ(𝑧)| ≤ |𝑧|
ℑ(𝑧) ≤ |ℑ(𝑧)| ≤ |𝑧|
|𝑧1𝑧2| = |𝑧1||𝑧2|

Definition 1.4 (Conjugate). The conjugate of 𝑧 = 𝑥 + 𝑖𝑦 is given by 𝑧 = 𝑥 − 𝑖𝑦. �

The following are some simple properties of the complex conjugate:
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• ℜ(𝑧) = (𝑧 + 𝑧)/2, ℑ(𝑧) = (𝑧 − 𝑧)/2.

• 𝑧1 ± 𝑧2 = 𝑧1 ± 𝑧2.

• 𝑧1𝑧2 = 𝑧1𝑧2, 𝑧1/𝑧2 = 𝑧1/𝑧2.

• 𝑧𝑧 = |𝑧|2.

The last property is also what we can use to perform division easily:

𝑧1
𝑧2

=
𝑧1
𝑧2

𝑧2
𝑧2

=
𝑧1𝑧2
|𝑧2|

2 .

Theorem 1.1 (Triangle inequality). For 𝑧1, 𝑧2 ∈ ℂ, we have

|𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2|.

Generally,

|𝑧1 + 𝑧2 + ⋯ + 𝑧𝑛| ≤ |𝑧1| + |𝑧2| + ⋯ + |𝑧𝑛|.

Proof. We have

|𝑧1 + 𝑧2|
2 = (𝑧1 + 𝑧2)(𝑧1 + 𝑧2)

= |𝑧1|
2 + 2ℜ(𝑧1𝑧2) + |𝑧2|

2

≤ |𝑧1|
2 + 2𝑧1𝑧2 + |𝑧2|

2

= (|𝑧1| + |𝑧2|)2.

We can show the general case with induction. �

Corollary 1.1.1 (Reverse triangle inequality). For 𝑧1, 𝑧2 ∈ ℂ, we have

||𝑧1| − |𝑧2|| ≤ |𝑧1 − 𝑧2|.

Proof. Using the triangle inequality we have |𝑧1| = |𝑧1 − 𝑧2 + 𝑧2| ≤ |𝑧1 − 𝑧2| + |𝑧2|, so we have |𝑧1| −
|𝑧2| ≤ |𝑧1 − 𝑧2|. Repeating the same for the roles reversed, we also have |𝑧2|−|𝑧1| ≤ |𝑧2 − 𝑧1| = |𝑧1 − 𝑧2|.
Notice that |𝑧2| − |𝑧1| = −(|𝑧1| − |𝑧2|), so in both cases ||𝑧1| − |𝑧2|| ≤ |𝑧1 − 𝑧2|. �

Taking the vector analogy further, every non-zero complex number has a polar form representation:

Definition 1.5 (Polar form). The polar form of a complex number 𝑧 = 𝑥 + 𝑖𝑦 is given by 𝑧 =
𝑟(𝑐𝑜𝑠𝜃 + 𝑖 sin 𝜃) with 𝑟 = |𝑧| and 𝜃 = arctan 𝑦/𝑥. �

Since the trigonometric functions are periodic, there can be multiple values of 𝜃 that represent 𝑧.

Definition 1.6 (Argument). The set of all possible 𝜃s is called the argument of 𝑧, denoted as arg 𝑧.
In other words

arg 𝑧 = {𝜃 ∣ 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃)}.

If Θ ∈ arg 𝑧 and −𝜋 < Θ ≤ 𝜋, we call Θ the principle argument of 𝑧 and write Arg 𝑧 = Θ. �
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Theorem 1.2 (Euler’s formula).

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃.

This also means that for any complex number 𝑧 we can write 𝑧 = 𝑟𝑒𝑖𝜃. Also note that 𝑧 = 𝑟𝑒−𝑖𝜃.

Theorem 1.3 (de Moivre’s Theorem). For 𝑛 ∈ ℤ,

(cos 𝜃 + 𝑖 sin 𝜃)𝑛 = cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃.

Proof. Inductively show (𝑒𝑖𝜃)𝑛 = 𝑒𝑖𝜃𝑛, result follows. �

Since we can find exponents, naturally we are interested in roots.

Definition 1.7 (Roots). For some 𝑧0 ∈ ℂ, The solutions 𝑧 that satisfy 𝑧𝑛 = 𝑧0 are called the 𝑛-th
roots of 𝑧0. �

If 𝑧 = 𝑟𝑒𝑖𝜃 is a 𝑛-th root, then 𝑧𝑛 = 𝑟𝑛𝑒𝑖𝑛𝜃 = 𝑧0 = 𝑟0𝑒𝑖𝜃0 , giving us the relations

𝑟𝑛 = 𝑟0 𝜃 =
𝜃0 + 2𝑘𝜋

𝑛
, 𝑘 = 0, 1, … , 𝑛 − 1.

The following are some definitions in topology.

Definition 1.8 (Open balls). An open ball centred at 𝑧0 with radius 𝑟 is the set of points

𝐵(𝑧0, 𝑟 ) = {𝑧 ∈ ℂ ∣ |𝑧 − 𝑧0| < 𝑟}. �

Definition 1.9 (Interior points, exterior points, boundary points). Let 𝑆 ⊆ ℂ and 𝑧 ∈ ℂ.

• 𝑧 is an interior point of 𝑆 if there is an open ball 𝐵(𝑧, 𝑟) ⊆ 𝑆.

• 𝑧 is an exterior point of 𝑆 if there is an open ball 𝐵(𝑧, 𝑟) ∩ 𝑆 = ∅.

• 𝑧 is a boundary point of 𝑆 if for all 𝑟 > 0, 𝐵(𝑧, 𝑟) ∩ 𝑆 ≠ ∅ and 𝐵(𝑧, 𝑟) ∩ 𝑆𝑐 ≠ ∅ 1

�

Definition 1.10 (Boundary of a set). The boundary of 𝑆 ⊆ ℂ, denoted 𝜕𝑆, is the set of all boundary
points of 𝑆. �

Definition 1.11 (Open sets, closed sets). A set 𝑆 ⊆ 𝐶 is called open if 𝜕𝑆 ∩ 𝑆 ≠ ∅, i.e. 𝑆 does not
contain any of its boundary points. A set 𝑆 ⊆ 𝐶 is called closed if 𝜕𝑆 ⊆ 𝑆, i.e. 𝑆 contains its boundary
points. �

Note that a set can be both not open and not closed, in other words, a set that is not open might not
be closed!

Theorem 1.4. 𝑆 ⊆ ℂ is open iff 𝑆𝑐 is closed.

Definition 1.12 (Closure). The closure of 𝑆 ⊆ ℂ is the set 𝑆 = 𝑆 ∪ 𝜕𝑆. �
1𝑆𝑐 = ℂ − 𝑆 is the complement of 𝑆.
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Definition 1.13 (Closed segments). Let 𝑧1, 𝑧2 ∈ ℂ. The line segment joining them is denoted

[𝑧1, 𝑧2] = {𝑧 ∈ ℂ ∣ 𝑧 = 𝑧1 + 𝑡(𝑧2 − 𝑧1), 0 ≤ 𝑡 ≤ 1}.

A polygonal line is a finite union of line segments. �

Definition 1.14 (Connected sets, domains). An open set 𝑆 ⊆ ℂ is called connected if any two points
𝑧1, 𝑧2 ∈ 𝑆 can be joined by a polygonal line which lies entirely in 𝑆. An open connected set is called
a domain. �

Example 1.1. All open balls are domains. ♦

Definition 1.15 (Bounded sets). A set 𝑆 ⊆ ℂ is bounded if there exists 𝑅 > 0 such that for all 𝑧 ∈ 𝑆,
|𝑧| < 𝑅, or equivalently 𝑆 ⊆ 𝐵(0, 𝑅). A set that is not bounded is called unbounded. �

Definition 1.16 (Compact sets). A set that is closed and bounded is called compact. �

Example 1.2. All closed balls are compact. ♦

2 Analytic functions

Definition 2.1 (Complex functions). Let 𝑆 ⊆ ℂ. A function 𝑓 ∶ 𝑆 → ℂ is called a complex valued
function of a complex variable. �

A complex function may be thought of as two real valued functions of real variables:

𝑓 (𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦).

2.1 Limits

Definition 2.2 (Limits). Let 𝑓 be a complex function defined in some deleted open ball 𝐵(𝑧0, 𝑟 )− {𝑧0}
of 𝑧0. We say 𝑤0 is the limit of 𝑓 as 𝑧 approaches 𝑧0, and write

lim𝑧→𝑧0
𝑓 (𝑧) = 𝑤0

if

∀𝜖 > 0, ∃𝛿 > 0, [|𝑧 − 𝑧0| < 𝛿 ⟹ |𝑓 (𝑧) − 𝑤0| < 𝜖]

or in other words

𝑧 ∈ 𝐵(𝑧0, 𝛿) − {𝑧0} ⟹ 𝑓 (𝑧) ∈ 𝐵(𝑤0, 𝜖).

�

Example 2.1. Let 𝑓 (𝑧) = 𝑧2. Prove that lim𝑧→𝑖 𝑓 (𝑧) = −1. Let 𝜖 > 0. Choose 𝛿 = min(1, 𝜖/3). Then
when |𝑧 − 𝑖| < 𝛿 ≤ 1,

|𝑧 + 𝑖| = |𝑧 − 𝑖 + 2𝑖|
≤ |𝑧 − 𝑖| + |2𝑖|
≤ 1 + 2
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Thus

|𝑧 − 𝑖| < 𝛿 ⟹ |𝑧 − 𝑖||𝑧 + 𝑖| <
𝜖
3
⋅ 3

⟹ |𝑧2 − (−1)| < 𝜖.

♦

Theorem 2.1. Let 𝑧0 = 𝑥0+𝑖𝑦0, 𝑤0 = 𝑢0+𝑖𝑣0 and let 𝑓 (𝑧) = 𝑢(𝑥, 𝑦)+𝑖𝑣(𝑥, 𝑦). Then lim𝑧→𝑧0 𝑓 (𝑧) = 𝑤0
iff lim(𝑥,𝑦)→(𝑥0,𝑦0) 𝑢(𝑥, 𝑦) = 𝑢0 and lim(𝑥,𝑦)→(𝑥0,𝑦0) 𝑣(𝑥, 𝑦) = 𝑣0.

Proof. We have the following:

|𝑢(𝑥, 𝑦) − 𝑢0| = |ℜ(𝑓 (𝑧) − 𝑤0)| ≤ |𝑓 (𝑧) − 𝑤0|
|𝑣(𝑥, 𝑦) − 𝑣0| = |ℑ(𝑓 (𝑧) − 𝑤0)| ≤ |𝑓 (𝑧) − 𝑤0|

�

Theorem 2.2. Suppose that lim𝑧→𝑧0 𝑓 (𝑧) = 𝐴 and lim𝑧→𝑧0 𝑔(𝑧) = 𝐵. Then

(i) lim𝑧→𝑧0[𝑓 (𝑧) ± 𝑔(𝑧)] = 𝐴 ± 𝐵.

(ii) lim𝑧→𝑧0 𝑓 (𝑧)𝑔(𝑧) = 𝐴𝐵.

(iii) If 𝐵 ≠ 0, then lim𝑧→𝑧0 𝑓 (𝑧)/𝑔(𝑧) = 𝐴/𝐵.

Definition 2.3 (Limits with infinity). The statement lim𝑧→∞ 𝑓 (𝑧) = 𝑤 means lim𝑧→0 𝑓 (1/𝑧) = 𝑤.
The statement lim𝑧→𝑧0 𝑓 (𝑥) = ∞ means that lim𝑧→𝑧0 1/𝑓 (𝑧) = 0. �

2.2 Continuity

Definition 2.4 (Continuity). The function 𝑓 is said to be continuous at 𝑧0 if lim𝑧→𝑧0 𝑓 (𝑧) = 𝑓 (𝑧0).
That is,

∀𝜖 > 0, ∃𝛿 > 0 [|𝑧 − 𝑧0| < 𝛿 ⟹ |𝑓 (𝑧) − 𝑓 (𝑧0)| < 𝜖]

We say that 𝑓 is continuous in a set 𝑆 if 𝑓 is continuous at every point in 𝑆. �

2.3 Derivatives

Definition 2.5 (Derivatives). Let 𝑓 be defined on 𝐵(𝑧0, 𝑟 ) for some 𝑟 > 0. The derivative of 𝑓 at 𝑧0 is
defined as

d
d𝑧

𝑓 (𝑧) |
𝑧=𝑧0

= lim𝑧→𝑧0

𝑓 (𝑧) − 𝑓 (𝑧0)
𝑧 − 𝑧0

We also write the derivative as 𝑓 ′(𝑧0). If 𝑓 ′(𝑧0) exists, we say that 𝑓 is differentiable at 𝑧0. �

Theorem 2.3 (L’Hopital’s rule). Let 𝑓 and 𝑧 be differentiable at 𝑧0. Suppose that 𝑓 (𝑧0) = 𝑔(𝑧0) = 0
and 𝑔′(𝑧0) ≠ 0. Then

lim𝑧→𝑧0

𝑓 (𝑧)
𝑔(𝑧)

=
𝑓 ′(𝑧0)
𝑔′(𝑧0)
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The standard rules of differentiation apply such as the chain rule or product rule. We will assume
they are known and not write them down.

Definition 2.6 (Partial derivatives). The partial derivative of a multi variable function 𝑓 at a point
(𝑥0, 𝑦0) is defined as

𝜕
𝜕𝑥

𝑓 (𝑥0, 𝑦0) = lim𝑥→𝑥0

ℎ(𝑥, 𝑦0) − ℎ(𝑥0, 𝑦0)
𝑥 − 𝑥0

Of course this is easily generalised to a higher arity. We also write 𝑓𝑥 =
𝜕𝑓
𝜕𝑥 . �

Let 𝑓 (𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦). If 𝑓 ′(𝑧0) exists, where 𝑧0 = 𝑥0 + 𝑖𝑦0, then we must obtain the same limit
no matter which path we take.

Taking the path along the line 𝑦 = 𝑦0,

𝑓 ′(𝑧0) = lim
(𝑥,𝑦0)→(𝑥0,𝑦0)

𝑢(𝑥, 𝑦0) − 𝑢(𝑥0, 𝑦0) + 𝑖[𝑣(𝑥, 𝑦0) − 𝑣(𝑥0, 𝑦0)]
(𝑥 − 𝑥0) + 𝑖(𝑦0 − 𝑦0)

= lim𝑥→𝑥0

𝑢(𝑥, 𝑦0) − 𝑢(𝑥0, 𝑦0)
𝑥 − 𝑥0

+ 𝑖 lim𝑥→𝑥0

𝑣(𝑥, 𝑦0) − 𝑣(𝑥0, 𝑦0)
𝑥 − 𝑥0

=
𝜕
𝜕𝑥

𝑢(𝑥0, 𝑦0) + 𝑖
𝜕
𝜕𝑦

𝑣(𝑥0, 𝑦0).

Taking the path along the line 𝑥 = 𝑥0,

𝑓 ′(𝑧0) = lim
(𝑥,𝑦0)→(𝑥0,𝑦0)

𝑢(𝑥0, 𝑦) − 𝑢(𝑥0, 𝑦0) + 𝑖[𝑣(𝑥0, 𝑦) − 𝑣(𝑥0, 𝑦0)]
(𝑥0 − 𝑥0) + 𝑖(𝑦 − 𝑦0)

=
1
𝑖
lim𝑦→𝑦0

𝑢(𝑥0, 𝑦) − 𝑢(𝑥0, 𝑦0)
𝑦 − 𝑦0

+ lim𝑦→𝑦0

𝑣(𝑥0, 𝑦) − 𝑣(𝑥0, 𝑦0)
𝑦 − 𝑦0

= −𝑖
𝜕
𝜕𝑥

𝑢(𝑥0, 𝑦0) +
𝜕
𝜕𝑦

𝑣(𝑥0, 𝑦0).

Theorem 2.4 (Cauchy Riemann equations). 𝑓 (𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) is differentiable at 𝑧0 = 𝑥0 + 𝑖𝑦0
iff 𝑢 and 𝑣 must satisfy the following equations:

{
𝜕
𝜕𝑥𝑢(𝑥0, 𝑦0) =

𝜕
𝜕𝑦𝑣(𝑥0, 𝑦0)

𝜕
𝜕𝑥𝑣(𝑥0, 𝑦0) = − 𝜕

𝜕𝑦𝑢(𝑥0, 𝑦0)
.

This also means

𝑓 ′(𝑧0) =
𝜕𝑢
𝜕𝑥

+ 𝑖
𝜕𝑣
𝜕𝑥

=
𝜕𝑣
𝜕𝑦

− 𝑖
𝜕𝑢
𝜕𝑦

.

Theorem 2.5. Let 𝑓 (𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) be defined in a neighbourhood 𝐵(𝑧0, 𝜖) of the point 𝑧0 =
𝑥0 + 𝑖𝑦0. Suppose that the first order partial derivatives of 𝑢 and 𝑣 exist in 𝐵(𝑧0, 𝜖) and satisfy the
following:

(i) the satisfy the Cauchy-Riemann equations, and

(ii) they are continuous at (𝑥0, 𝑦0).

Then 𝑓 is differentiable at 𝑧0.
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Proof. For 𝑧 = 𝑥 + 𝑖𝑦 ∈ 𝐵(𝑧0, 𝜖) such that 𝑧 ≠ 𝑧0, we have

𝑓 (𝑧) − 𝑓 (𝑧0)
= 𝑢(𝑥, 𝑦) − 𝑢(𝑥, 𝑦0) + 𝑢(𝑥, 𝑦0) − 𝑢(𝑥0, 𝑦0) + 𝑖[𝑣(𝑥, 𝑦) − 𝑣(𝑥, 𝑦0) + 𝑣(𝑥, 𝑦0) − 𝑣(𝑥0, 𝑦0)]

By the mean value theorem,

𝑢(𝑎) − 𝑢(𝑏)
𝑦 − 𝑦0

=
𝜕
𝜕𝑦

𝑢(𝑥, 𝑦1)

for some 𝑦1 between 𝑦 and 𝑦0. Thus

𝑢(𝑥, 𝑦) − 𝑢(𝑥, 𝑦0) = (𝑦 − 𝑦0)
𝜕
𝜕𝑦

𝑢(𝑥, 𝑦1).

Let

𝜖1 =
𝜕
𝜕𝑦

𝑢(𝑥, 𝑦1) −
𝜕
𝜕𝑦

𝑢(𝑥0, 𝑦0)

such that

𝜕
𝜕𝑦

𝑢(𝑥, 𝑦1) =
𝜕
𝜕𝑦

𝑢(𝑥0, 𝑦0) + 𝜖1.

Since 𝜕𝑢/𝜕𝑦 is continuous at (𝑥0, 𝑦0), lim(𝑥,𝑦1)→(𝑥0,𝑦0) 𝜖1 = 0.

Do the same for the other three pairs of terms. If we put it all together, we get

𝑓 (𝑧) − 𝑓 (𝑧0)

= (𝑦 − 𝑦0)[
𝜕
𝜕𝑦

𝑢(𝑥0, 𝑦0) + 𝜖1] + (𝑥 − 𝑥0)[
𝜕
𝜕𝑥

𝑢(𝑥0, 𝑦0) + 𝜖2]

+ 𝑖(𝑦 − 𝑦0)[
𝜕
𝜕𝑦

𝑣(𝑥0, 𝑦0) + 𝜖3] + 𝑖(𝑥 − 𝑥0)[
𝜕
𝜕𝑥

𝑣(𝑥0, 𝑦0) + 𝜖4]

=
𝜕
𝜕𝑥

𝑢(𝑥0, 𝑦0)(𝑧 − 𝑧0) + 𝑖
𝜕
𝜕𝑥

𝑣(𝑥0, 𝑦0)(𝑧 − 𝑧0) + (𝜖2 + 𝑖𝜖4)(𝑥 − 𝑥0) + (𝜖1 + 𝑖𝜖3)(𝑦 − 𝑦0),

such that

𝑓 (𝑧) − 𝑓 (𝑧0)
𝑧 − 𝑧0

=
𝜕
𝜕𝑥

𝑢(𝑥0, 𝑦0) + 𝑖
𝜕
𝜕𝑥

𝑣(𝑥0, 𝑦0) + (𝜖2 + 𝑖𝜖4)
𝑥 − 𝑥0
𝑧 − 𝑧0

+ (𝜖1 + 𝑖𝜖3)
𝑦 − 𝑦0
𝑧 − 𝑧0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑅

.

Note that the trailing term 𝑅 tends to 0 as 𝑧 → 𝑧0:

𝑅 ≤ (|𝜖2| + |𝜖4|)|
𝑥 − 𝑥0
𝑧 − 𝑧0

| + (|𝜖1| + |𝜖3|)|
𝑦 − 𝑦0
𝑧 − 𝑧0

|

≤ |𝜖1| + |𝜖2| + |𝜖3| + |𝜖4|.

Thus the derivative exists and is given by

lim𝑧→𝑧0

𝑓 (𝑧) − 𝑓 (𝑧0)
𝑧 − 𝑧0

=
𝜕
𝜕𝑥

𝑢(𝑥0, 𝑦0) + 𝑖
𝜕
𝜕𝑥

𝑣(𝑥0, 𝑦0). �
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Example 2.2. Let 𝑓 (𝑧) = 𝑥3 + 𝑖(1 − 𝑦)3. We want to find the set on which 𝑓 is differentiable.

The first order partial derivatives:

𝜕𝑢
𝜕𝑣

= 3𝑥2
𝜕𝑢
𝜕𝑦

= 0
𝜕𝑣
𝜕𝑥

= 0
𝜕𝑣
𝜕𝑦

= −3(1 − 𝑦)2.

Solve the Cauchy-Riemann equations:

{
3𝑥2 = −3(1 − 𝑦)2

0 = 0
.

The only solution is at 𝑥 = 0 and 𝑦 = 1. The first order partial derivatives of 𝑢 and 𝑣 are continuous
everywhere but since the Cauchy-Riemann equations are only satisfied at 𝑧 = 𝑖, thus we conclude
that 𝑓 is differentiable only at 𝑧 = 𝑖, and

𝑓 ′(𝑖) = 0.

♦

2.4 Analytic functions

Definition 2.7 (Analytic functions). Let 𝑆 be a set. A function 𝑓 is said to be analytic in 𝑆 if

(i) 𝑆 is an open set and 𝑓 ′(𝑧) exists for all 𝑧 ∈ 𝑆, or

(ii) if 𝑓 is analytic in an open set containing 𝑆

We say 𝑓 is analytic at a point 𝑧0 if 𝑓 is analytic in some open ball 𝐵(𝑧0, 𝑟 ). �

Definition 2.8 (Entire functions). If 𝑓 is analytic in ℂ, then we call 𝑓 an entire function. �

Example 2.3. We have seen previously that 𝑓 (𝑧) = 𝑥3 + 𝑖(1 − 𝑦)3 is differentiable only at 𝑧 = 𝑖.
However at all other points in 𝐵(0, 𝑟), it is not differentiable. Thus 𝑓 is nowhere analytic. ♦

The previous example should make it quite clear that if a function is differentiable at finitely many
points, then it is nowhere analytic.

Theorem 2.6. If 𝑓 is analytic in a domain 𝐷 and if 𝑓 ′(𝑧) = 0 everywhere in 𝐷, then 𝑓 (𝑧) is constant
in 𝐷.

Proof. Let 𝑓 (𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦). Then

𝑓 ′(𝑧) =
𝜕𝑢
𝜕𝑥

+ 𝑖
𝜕𝑣
𝜕𝑥

=
𝜕𝑣
𝜕𝑦

− 𝑖
𝜕𝑢
𝜕𝑦

= 0.

It follows that 𝜕𝑢/𝜕𝑥 = 𝜕𝑢/𝜕𝑦 = 0 and 𝜕𝑣/𝜕𝑥 = 𝜕𝑣/𝜕𝑦 = 0 on 𝐷. Hence 𝑢 and 𝑣 are constants. �

Theorem 2.7. Let 𝑓 (𝑧) be a function that is analytic in𝐷. Each of the following conditions alone imply
that 𝑓 is constant in 𝐷.

(i) ℜ𝑓 (𝑧) is constant in 𝐷.

8



(ii) 𝑓 (𝑧) is real valued for all 𝑧 ∈ 𝐷.

(iii) 𝑓 (𝑧) is analytic in 𝐷.

(iv) |𝑓 (𝑧)| is constant in 𝐷.

(v) Arg 𝑓 (𝑧) is constant in 𝐷.

Proof. Let 𝑓 (𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦).

(i) Then 𝑢 is constant and so the derivatives of 𝑢 are all 0. Then from the Cauchy-Riemann
equations 𝜕𝑣

𝜕𝑥 = 0 as well. Thus 𝑓 ′(𝑧) = 𝜕𝑢
𝜕𝑥 + 𝑖 𝜕𝑣𝜕𝑥 = 0.

(ii) If 𝑓 is real valued then 𝑣 = 0, and so similar to the above, the derivatives end up being 0.

(iii) If 𝑓 (𝑧) = 𝑢(𝑧) + 𝑖𝑣(𝑧) and 𝑓 (𝑧) = 𝑢(𝑧) − 𝑖𝑣(𝑧) are both analytic in 𝐷, then they satisfy the
Cauchy-Riemann equations:

𝜕𝑢
𝜕𝑥

=
𝜕𝑣
𝜕𝑦

𝜕𝑢
𝜕𝑦

= −
𝜕𝑣
𝜕𝑥

𝜕𝑢
𝜕𝑥

= −
𝜕𝑣
𝜕𝑦

𝜕𝑢
𝜕𝑦

=
𝜕𝑣
𝜕𝑥

.

Solving this set of equations show us that the partial derivatives are all 0.

(iv) Let |𝑓 (𝑧)| = 𝑐 where 𝑐 is a constant. Then |𝑓 (𝑧)|2 = 𝑓 (𝑧)𝑓 (𝑧) = 𝑐2. If 𝑟 = 0 then 𝑓 (𝑧) = 0 is a
constant. Otherwise, 𝑓 (𝑧) is analytic on 𝐷 by the quotient rule.

(v) If Arg 𝑓 (𝑧) = 𝑐 is constant, then the ratio 𝑣(𝑧)/𝑢(𝑧) = arctan 𝑐 = 𝑑 is also a constant. Then by
the Cauchy-Riemann equations:

𝜕𝑢
𝜕𝑥

=
𝜕𝑣
𝜕𝑦

𝜕𝑢
𝜕𝑦

= −
𝜕𝑣
𝜕𝑥

𝜕𝑢
𝜕𝑥

= 𝑑
𝜕𝑢
𝜕𝑦

𝜕𝑢
𝜕𝑦

= −𝑑
𝜕𝑢
𝜕𝑥

.

Solving this set of equations show us that the partial derivatives are all 0.

�

2.5 Harmonic functions

Definition 2.9 (Harmonic functions). Let 𝑆 be a set. A function 𝑓 ∶ 𝑆 → ℝ is said to be harmonic
in 𝑆 if

(i) 𝑓 has continuous first and second partial derivatives, and

(ii) 𝑓 satisfies the Laplace equation
𝜕2𝑓
𝜕𝑥2

+
𝜕2𝑓
𝜕𝑦2

= 0 �

Theorem 2.8. If 𝑓 (𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) is analytic in a domain 𝐷, then 𝑢 and 𝑣 are harmonic in 𝐷.
We call 𝑣 a harmonic conjugate of 𝑢 in 𝐷.
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Proof. Since 𝑓 is differentiable in 𝐷, it satisfies the Cauchy-Riemann equations. Differentiating these
equations once more gives

𝜕2𝑢
𝜕𝑥2

=
𝜕2𝑣
𝜕𝑥𝜕𝑦

𝜕2𝑢
𝜕𝑦2

=
𝜕2𝑣
𝜕𝑥𝜕𝑦

.

This means

𝜕2𝑢
𝜕𝑥2

+
𝜕2𝑢
𝜕𝑦2

= 0.

Thus 𝑢 is harmonic. We can do the same for 𝑣 to see that it too is harmonic. �

Example 2.4. Given 𝑢(𝑥, 𝑦) = 𝑦3 − 3𝑥2𝑦, we want to find all of its harmonic conjugates.

Firstly, 𝜕𝑢/𝜕𝑥 = −6𝑥𝑦 and 𝜕𝑢/𝜕𝑦 = 3𝑦2 − 3𝑥2. Solve the Cauchy-Riemann equations:

𝜕𝑣
𝜕𝑦

= −6𝑥𝑦
𝜕𝑣
𝜕𝑥

− −3𝑦2 + 3𝑥2

The end result is 𝑣(𝑥, 𝑦) = −3𝑥𝑦2 + 𝑥3 + 𝐶. ♦

3 Elementary functions

We want to construct some common complex analytic functions. We will be looking at their prop-
erties as real functions, and extending them to the complex plane.

3.1 Exponential function

The main properties of the exponential function are

𝑓 (𝑥 + 𝑖0) = 𝑒𝑥 𝑓 ′(𝑧) = 𝑓 (𝑧).

It can be checked that

𝑓 (𝑥 + 𝑖𝑦) = 𝑒𝑥(cos 𝑦 + 𝑖 sin 𝑦)

satisfies the properties. It satisfies the Cauchy-Riemann equations everywhere and is entire. Thus

Definition 3.1 (Exponential function). Define for all 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ, the exponential function

𝑒𝑧 = exp(𝑧) = 𝑒𝑥(cos 𝑦 + 𝑖 sin 𝑦).

�

Notice that for the case where 𝜃 ∈ ℝ,

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃

which is Euler’s formula. Thus we can also write

𝑒𝑥+𝑖𝑦 = 𝑒𝑥𝑒𝑖𝑦.

Note that |𝑒𝑖𝑦| = 1. Therefore,

|𝑒𝑥+𝑖𝑦| = 𝑒𝑥.
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3.2 Logarithm function

We want to define an inverse for the exponential function. One problem is that the complex expo-
nential is not even one-to-one. This is because exp(𝑧) = exp(𝑧 + 2𝑛𝜋𝑖) for all 𝑛 ∈ ℤ.

Theorem 3.1. The range of the complex exponential function is ℂ ⧵ {0}.

Proof. Take any 𝑤 = 𝑟0𝑒𝑖𝜃0 ≠ 0. We show that there exists a 𝑧 = 𝑥 + 𝑖𝑦 such that 𝑒𝑧 = 𝑤, or in other
words 𝑒𝑥𝑒𝑖𝑦 = 𝑟0𝑒𝑖𝜃0 . Simply by solving the previous equation, we have solutions 𝑧 = ln 𝑟 + 𝑖(𝜃0+2𝑛𝜋)
for all 𝑛 ∈ ℤ. �

The above theorem also clearly gives us a definition for the logarithm function:

log 𝑧 = {ln |𝑧| + 𝑖𝜃 ∣ 𝜃 ∈ arg 𝑧}.

which is a multi-value function. Recall the notion of the principle argument Arg 𝑧. This reduces the
multi-value function into a single value function.

Definition 3.2 (Logarithm function). Define the single-valued logarithm function log ∶ 𝐶−{0} → ℂ
by

Log 𝑧 = ln |𝑧| + 𝑖Arg 𝑧.

We also call this the principle value of log 𝑧. �

Theorem 3.2. The function Log 𝑧 is analytic on the cut complex plane ℂ ⧵ (−∞, 0] and furthermore
d
d𝑧

Log 𝑧 =
1
𝑧
.

Proof. Let 𝑧0 ∈ ℂ ⧵ (−∞, 0]. Let 𝑤 = Log 𝑧 and 𝑧0 = Log 𝑧0, such that

d
d𝑧

Log 𝑧 |
𝑧=𝑧0

= lim𝑧→𝑧0

𝑤 − 𝑤0
𝑧 − 𝑧0

= lim𝑧→𝑧0

𝑤 − 𝑤0
𝑒𝑤 − 𝑒𝑤0

Note that

lim𝑧→𝑧0

𝑒𝑤 − 𝑒𝑤0

𝑤 − 𝑤0
=

d
d𝑤

𝑒𝑤 |
𝑤=𝑤0

= 𝑒𝑤0 = 𝑧0.

�

Definition 3.3 (Branches). 𝐹(𝑧) is said to be a branch of a multiple-valued function 𝑓 (𝑧) in a domain
𝐷 if

(i) 𝐹(𝑧) is single-valued and analytic on 𝐷 and

(ii) for all 𝑧 ∈ 𝐷, 𝐹(𝑧) is one of the values of 𝑓 (𝑧). �

This means that Log 𝑧 is a branch of log 𝑧 in the cut complex plane, called the principle branch of
log 𝑧. We can define other branches of log 𝑧. Define

𝐿𝛼(𝑧) = ln |𝑧| + 𝑖𝜃

where 𝜃 ∈ arg 𝑧 ∩ (𝛼, 𝛼 + 2𝜋). The ray 𝜃 = 𝛼 is called the branch cut for 𝐿𝛼. Each 𝐿𝛼 is analytic on
the complex plane without the ray 𝜃 = 𝛼 and the point 0:

ℂ𝛼 = ℂ ⧵ {𝑧 ∣ Arg 𝑧 = 𝛼} ⧵ {0}
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3.3 Complex exponents

Definition 3.4 (Complex exponents). For 𝑧, 𝑐 ∈ ℂ with 𝑧 ≠ 0, define

𝑧𝑐 = exp(𝑐 log 𝑧).

The principal branch of the exponent is defined by

Pr(𝑧𝑐) = exp(𝑐 Log 𝑧).�

Theorem 3.3. The function Pr(𝑧𝑐) is analytic on the cut complex plane ℂ − (−∞, 0] and

d
d𝑧

Pr(𝑧𝑐) = 𝑐 Pr(𝑧𝑐−1).

Proof. We have via the chain rule

d
d𝑧

Pr(𝑧𝑐) = exp(𝑐 Log 𝑧)
𝑐
𝑧

= exp(𝑐 Log 𝑧)
𝑐

exp(Log 𝑧)
= 𝑐 exp(𝑐 − 1 Log 𝑧)
= 𝑐 Pr(𝑧𝑐−1). �

More generally for each 𝛼 ∈ ℝ, the function defined on ℂ𝛼

𝐹𝛼,𝑐(𝑧) = exp(𝑐𝐿𝛼(𝑧))

is a branch of 𝑧𝑐 and

d
d𝑧

𝐹𝛼,𝑐(𝑧) = 𝑐𝐹𝛼,𝑐−1(𝑧).

3.4 Trigonometric functions

The following follows directly from our definition of the complex exponential function.

Definition 3.5 (Sine and cosine). For 𝑧 ∈ ℂ, define

sin 𝑧 =
1
2𝑖(

𝑒𝑖𝑧 − 𝑒−𝑖𝑧)

cos 𝑧 =
1
2(
𝑒𝑖𝑧 + 𝑒−𝑖𝑧). �

The usual trigonometric identities also hold in the complex plane, as well as the familiar derivatives.

Theorem 3.4. We have d cos 𝑧
d𝑧 = − sin 𝑧 and d sin 𝑧

d𝑧 = cos 𝑧.

The other trigonometric functions like tan 𝑧, sec 𝑧, are all defined as per usual from sin 𝑧 and cos 𝑧.
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3.5 Hyperbolic functions

Definition 3.6. For 𝑧 ∈ 𝐶, define

sinh 𝑧 =
1
2(
𝑒𝑧 − 𝑒−𝑧)

cosh 𝑧 =
1
2(
𝑒𝑧 + 𝑒−𝑧). �

Theorem 3.5. We have d sinh 𝑧
d𝑧 = cosh 𝑧 and d cosh 𝑧

d𝑧 = sinh 𝑧.

4 Integrals

4.1 Integration

Definition 4.1. Let 𝑤(𝑡) = 𝑢(𝑡) + 𝑖𝑣(𝑡) be a complex valued function of a real variable. Define the
integral of 𝑤 to be

∫
𝑏

𝑎
𝑤(𝑡) d𝑡 = ∫

𝑏

𝑎
𝑢(𝑡) d𝑡 + 𝑖∫

𝑏

𝑎
𝑣(𝑡) d𝑡 . �

Theorem 4.1. Suppose 𝐹 ′(𝑡) = 𝑓 (𝑡). Then

∫
𝑏

𝑎
𝑓 (𝑡) d𝑡 = 𝐹(𝑏) − 𝐹(𝑎).

Theorem 4.2. If 𝑤 ∶ [𝑎, 𝑏] → ℂ, then

|∫
𝑏

𝑎
𝑤(𝑡) d𝑡| ≤ ∫

𝑏

𝑎
|𝑤(𝑡)| d𝑡 .

Proof. Let 𝑟𝑒𝑖𝜃 = ∫𝑏
𝑎 𝑤(𝑡) d𝑡. Now

𝑟 = |∫
𝑏

𝑎
𝑤(𝑡) d𝑡|

= 𝑒−𝑖𝜃∫
𝑏

𝑎
𝑤(𝑡) d𝑡

= ∫
𝑏

𝑎
ℜ[𝑒−𝑖𝜃𝑤(𝑡)] d𝑡

≤ |∫
𝑏

𝑎
ℜ[𝑒−𝑖𝜃𝑤(𝑡)] d𝑡|

≤ ∫
𝑏

𝑎
|ℜ[𝑒−𝑖𝜃𝑤(𝑡)] d𝑡|

≤ ∫
𝑏

𝑎
|𝑒−𝑖𝜃𝑤(𝑡)| d𝑡

= ∫
𝑏

𝑎
|𝑤(𝑡)| d𝑡 .

�
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Definition 4.2 (Simple curves). For a curve 𝛾 ∶ [𝑎, 𝑏] → ℂ, we call it simple if for 𝑡1, 𝑡2 ∈ (𝑎, 𝑏),
𝑡1 ≠ 𝑡2 ⟹ 𝛾(𝑡1) ≠ 𝛾(𝑡2). In other words it does not cross itself except possibly at the endpoints.

�

Definition 4.3 (Closed curves). For a curve 𝛾 ∶ [𝑎, 𝑏] → ℂ, we call it closed if 𝛾 (𝑎) = 𝛾(𝑏). �

Definition 4.4 (Smooth curves). For a curve 𝛾 ∶ [𝑎, 𝑏] → ℂ, we call it smooth if 𝛾 ′(𝑡) exists and is
continuous on [𝑎, 𝑏], and 𝛾 ′(𝑡) ≠ 0 for all 𝑡 ∈ (𝑎, 𝑏). �

Definition 4.5 (Length of a smooth curve). The length of a smooth curve 𝛾 ∶ [𝑎, 𝑏] → ℂ is defined
by

∫
𝑏

𝑎
|𝛾 ′(𝑡)| d𝑡 .

�

Definition 4.6 (Path integrals). Let 𝑆 be an open set and let 𝛾 ∶ [𝑎, 𝑏] → ℂ be a smooth curve in
𝛾 ∶ [𝑎, 𝑏] → ℂ be a smooth curve in 𝑆. If 𝑓 ∶ 𝑆 → ℂ is continuous, then the integral of 𝑓 along 𝛾 is
defined as

∫
𝛾
𝑓 (𝑧) d𝑧 = ∫

𝑏

𝑎
𝑓 (𝛾 (𝑡))𝛾 ′(𝑡) d𝑡 .

�

Theorem 4.3. Let 𝛾 ∶ [𝑎, 𝑏] → ℂ be a smooth curve, and let 𝜙[𝑐, 𝑑] → [𝑎, 𝑏] be such that

(i) 𝜙′(𝑡) exists and is continuous on [𝑐, 𝑑], and

(ii) 𝜙(𝑐) = 𝑎 and 𝜙(𝑑) = 𝑏.

Let 𝛼(𝑡) = 𝛾(𝜙(𝑡)). In other words, 𝛼 is a re-parametrisation of 𝛾. Then for any continuous function 𝑓,

∫
𝛾
𝑓 (𝑧) d𝑧 = ∫

𝛼
𝑓 (𝑧) d𝑧 .

Proof. The last step uses a change of variables 𝑠 = 𝛾(𝑡):

∫
𝛼
𝑓 (𝑧) d𝑧 = ∫

𝑑

𝑐
𝑓 [𝛼(𝑡)]𝛼′(𝑡) d𝑡

= ∫
𝑑

𝑐
𝑓 [𝛾 (𝜙(𝑡))]𝛾 ′(𝜙(𝑡))𝜙′(𝑡) d𝑡

= ∫
𝑏

𝑎
𝑓 [𝛾 (𝑠)]𝛾 ′(𝑠) d𝑠

= ∫
𝛾
𝑓 (𝑧) d𝑧 . �

Definition 4.7 (Opposite curve). Let 𝛾 ∶ [𝑎, 𝑏] → ℂ be a curve. Define its opposite curve as

(−𝛾)(𝑡) = 𝛾(−𝑡).

�
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Theorem 4.4. For any smooth curve 𝛾, and function 𝑓,

∫
−𝛾

𝑓 (𝑧) d𝑧 = −∫
𝛾
𝑓 (𝑧) d𝑧 .

Proof. Perform a change of variable in the integral of 𝑠 = −𝑡. �

Definition 4.8 (Contours). A contour Γ is a sequence of smooth curves {𝛾1, … , 𝛾𝑛} such that the end
point of 𝛾𝑘 coincides with the start point of 𝛾𝑘+1. We write Γ = 𝛾1 + ⋯ + 𝛾𝑛. �

Integrals along contours are defined as the piecewise sum of integrals over the constituent curves.
The same goes for other notions like length, opposite contours, etc.

Theorem 4.5 (ML inequality). Suppose that 𝑓 is continuous on an open set containing a contour Γ and
|𝑓 (𝑧)| ≤ 𝑀 for all 𝑧 ∈ ran Γ. Let 𝐿 be the length of 𝛾. Then

|∫
𝛾
𝑓 (𝑧) d𝑧| ≤ 𝑀𝐿.

Proof. First assume that 𝛾 ∶ [𝑎, 𝑏] → ℂ is a smooth curve. Then

|∫
𝛾
𝑓 (𝑧) d𝑧| = |∫

𝑏

𝑎
𝑓 [𝛾 (𝑡)]𝛾 ′(𝑡) d𝑡|

≤ ∫
𝑏

𝑎
|𝑓 [𝛾 (𝑡)𝛾 ′(𝑡)| d𝑡

≤ 𝑀 ∫
𝑏

𝑎
|𝛾 ′(𝑡)| d𝑡

= 𝑀𝐿.

For the case when Γ is a contour where 𝛾 = 𝛾1 + ⋯ + 𝛾𝑛, then

|∫
Γ
𝑓 (𝑧) d𝑧| = |∑

𝑘
∫
𝛾𝑘
𝑓 (𝑧) d𝑧|

≤ ∑
𝑘
|∫
𝛾𝑘
𝑓 (𝑧) d𝑧|

≤ ∑
𝑘
𝑀𝐿(𝛾𝑘)

= 𝑀𝐿.

�

Example 4.1. Let 𝛾 (𝑡) = 2𝑒𝑖𝑡 and 𝑓 (𝑧) = 𝑒𝑧
𝑧2+1 . Apply the ML-inequality on the integral ∫𝛾 𝑓 (𝑧) d𝑧.

First of all, for all 𝑧 ∈ ran 𝛾, |𝑧| = 2. Thus |𝑒𝑧| ≤ 𝑒2. Also, |𝑧2 + 1| = |𝑧2 − (−1)| ≥ ||𝑧2| − |−1|| = 3.

Putting it all together,

|∫
𝛾
𝑓 (𝑧) d𝑧| ≤

𝑒2

3
⋅ 4𝜋. ♦
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4.2 Antiderivatives

Definition 4.9 (Antiderivatives). Let 𝑓 be a continuous function on an open domain 𝐷. A function
𝐹 such that 𝐹 ′(𝑧) = 𝑓 (𝑧) for all 𝑧 ∈ 𝐷 is called an antiderivative of 𝑓 in 𝐷. �

Note that if 𝑓 has an antiderivative 𝐹, then since 𝐹 is analytic, so must 𝑓. This also means that the
domain that 𝑓 is defined on must be an open set to begin with.

Theorem 4.1. Suppose 𝑓 has an antiderivative 𝐹 on an open domain 𝐷. If Γ is a contour in 𝐷 with
endpoints 𝑧1 and 𝑧2, then

∫
Γ
𝑓 (𝑧) d𝑧 = 𝐹(𝑧2) − 𝐹(𝑧1).

In particular, if Γ is a closed contour (𝑧1 = 𝑧2), then

∫
Γ
𝑓 (𝑧) d𝑧 = 0.

Proof. Let Γ = 𝛾1 + ⋯ + 𝛾𝑛 where 𝛾𝑗 ∶ [𝑎𝑗−1, 𝑎𝑗] → ℂ is a smooth curve. For each 𝑖 ≤ 𝑗 ≤ 𝑛, we have

d
d𝑡
𝐹 [𝛾𝑗(𝑡)] = 𝐹 ′[𝛾𝑗(𝑡)]𝛾 ′𝑗 (𝑡) = 𝑓 [𝛾𝑗(𝑡)]𝛾 ′𝑗 (𝑡).

Thus,

∫
𝛾𝑗
𝑓 (𝑧) d𝑧 = ∫

𝑎𝑗

𝑎𝑗−1
𝑓 [𝛾𝑗(𝑡)]𝛾 ′𝑗 (𝑡) d𝑡

= 𝐹[𝛾𝑗(𝑎𝑗)] − 𝐹[𝛾𝑗(𝑎𝑗−1)].

Then,

∫
Γ
𝑓 (𝑧) d𝑧 = ∫

𝛾1
𝑓 (𝑧) d𝑧 + ⋯ +∫

𝛾𝑛
𝑓 (𝑧) d𝑧

= 𝐹(𝑧2) − 𝐹(𝑧1).

�

Theorem 4.2. Let 𝑓 be continuous on an open domain 𝐷. The following statements are equivalent:

(i) 𝑓 has an antiderivative in 𝐷,

(ii) for any closed contour Γ in 𝐷, ∫Γ 𝑓 (𝑧) d𝑧 = 0,

(iii) the contour integrals of 𝑓 in 𝐷 are path-independent.

Proof. From theorem 4.1 we have shown (i) ⟹ (ii) and (i) ⟹ (iii).

Nowwe show (ii) ⟹ (iii). Let Γ1 and Γ2 in𝐷 be contours with the same endpoints. Then Γ1+(−Γ2)
is a closed contour in 𝐷. By (ii),

∫
Γ1
𝑓 (𝑧) d𝑧 −∫

Γ2
𝑓 (𝑧) d𝑧 = 0.
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Finally we show (iii) ⟹ (i). Take 𝑧0 ∈ 𝐷. For any 𝑧1 ∈ 𝐷, define

𝐹(𝑧1) = ∫
Γ
𝑓 (𝑧) d𝑧

where Γ is a contour in 𝐷 joining 𝑧0 to 𝑧1. This is well defined by (iii).

Since 𝑓 is continuous at 𝑧1, for any 𝜖 > 0, there exists 𝛿 > 0 such that

|𝑧 − 𝑧1| < 𝛿 ⟹ |𝑓 (𝑧) − 𝑓 (𝑧1)| < 𝜖.

Since 𝑓 is analytic, there is some ℎ ≠ 0 and |ℎ| < 𝛿 such that the line segment [𝑧1, 𝑧1 + ℎ] ⊆ 𝐷. Then,

𝐹(𝑧1 + ℎ) − 𝐹(𝑧1)
ℎ

=
1
ℎ(∫𝛾+[𝑧1,𝑧1+ℎ]

𝑓 (𝑧) d𝑧 −∫
𝛾
𝑓 (𝑧) d𝑧)

=
1
ℎ ∫

[𝑧1,𝑧1+ℎ]
𝑓 (𝑧) d𝑧

𝐹(𝑧1 + ℎ) − 𝐹(𝑧1)
ℎ

− 𝑓 (𝑧1) =
1
ℎ ∫

[𝑧1,𝑧1+ℎ]
𝑓 (𝑧) d𝑧 − 𝑓 (𝑧1)

1
ℎ ∫

[𝑧1,𝑧1+ℎ]
1 d𝑧

=
1
ℎ ∫

[𝑧1,𝑧1+ℎ]
𝑓 (𝑧) − 𝑓 (𝑧1) d𝑧 .

The limit of the last term as ℎ → 0 is actually 0, because by the ML-inequality,

|
1
ℎ ∫

[𝑧1,𝑧1+ℎ]
𝑓 (𝑧) − 𝑓 (𝑧1) d𝑧| ≤

1
|ℎ|

𝜖|ℎ| = 𝜖.

This means 𝐹 ′(𝑧1) = 𝑓 (𝑧1). �

Theorem 4.3 (Cauchy-Goursat theorem for rectangles). Let 𝑓 be a function which is analytic on
(including the interior) a rectangle 𝑅, with a positively oriented boundary 𝜕𝑅. Then

∫
𝜕𝑅

𝑓 (𝑧) d𝑧 = 0.

Proof. Divide 𝑅 into 4 congruent rectangles, 𝑅1 to 𝑅4. One of the rectangles among them has the
greatest integral, call it 𝑅1, such that

|∫
𝜕𝑅1

𝑓 (𝑧) d𝑧| = max
1≤𝑘≤4

|∫
𝜕𝑅𝑘

𝑓 (𝑧) d𝑧|.

This gives

|∫
𝜕𝑅

𝑓 (𝑧) d𝑧| ≤
4
∑
𝑘=1

|∫
𝜕𝑅𝑘

𝑓 (𝑧) d𝑧|

≤ 4|∫
𝜕𝑅1

𝑓 (𝑧) d𝑧|

Do the same step for 𝑅1 to obtain a smaller rectangle 𝑅2. Continuing this way, we obtain a sequence
of rectangles

𝑅 ⊂ 𝑅1 ⊂ 𝑅2 ⊂ ⋯
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such that

|∫
𝜕𝑅𝑘−1

𝑓 (𝑧) d𝑧| ≤ 4|∫
𝜕𝑅𝑘

𝑓 (𝑧) d𝑧|.

This means

|∫
𝜕𝑅

𝑓 (𝑧) d𝑧| ≤ 4𝑛|∫
𝜕𝑅𝑛

𝑓 (𝑧) d𝑧|

We claim that there is some point 𝑧0 that is common to all rectangles 𝑅𝑛. We briefly sketch a proof.
Form an sequence of closed intervals [𝑎𝑛, 𝑏𝑛] as follows. The interval [𝑎𝑖, 𝑏𝑖] is either the left or right
half of the previous interval [𝑎𝑖−1, 𝑏𝑖−1]. Then note that the sequence (𝑎𝑛) and (𝑏𝑛) are both bounded
monotonic sequences. Thus they have a limit. The length of the interval goes to 0, and so they must
tend to the same limit. Using this result, apply it to the two edges that form the rectangles 𝑅𝑛.

Next, let 𝑑𝑛 denote the length of the diagonal of 𝑅𝑛 and 𝑙𝑛 denote the length of 𝜕𝑅𝑛. Now let 𝜖 > 0.
As the size of the rectangles are decreasing, and yet they also contain 𝑧0, there exists some rectangle
𝑅𝑚 ⊆ 𝐵(𝑧0, 𝛿). Consequently, for all 𝑧 ∈ 𝜕𝑅𝑚,

0 < |𝑧 − 𝑧0| < 𝛿 ⟹ |𝑓 ′(𝑧) −
𝑓 (𝑧) − 𝑓 (𝑧0)

𝑧 − 𝑧0
| < 𝜖

⟹ |𝑓 (𝑧) − 𝑓 (𝑧0) − (𝑧 − 𝑧0)𝑓 ′(𝑧0)| < 𝜖𝑑𝑚

By the ML-inequality,

|∫
𝜕𝑅𝑚

𝑓 (𝑧) − 𝑓 (𝑧0) − (𝑧 − 𝑧0)𝑓 ′(𝑧0) d𝑧| ≤ 𝜖𝑑𝑚𝑙𝑚

= 𝜖
𝑑0
2𝑚

𝑙0
2𝑚

.

Note that 𝑓 (𝑧0) and 𝑓 ′(𝑧0) are constants in the integral, and (𝑧 − 𝑧0) has an antiderivative. Thus in
fact this reduces to

|∫
𝜕𝑅𝑚

𝑓 (𝑧) d𝑧| ≤ 𝜖
𝑑0𝑙0
4𝑚

and thus from a result above,

|∫
𝜕𝑅

𝑓 (𝑧) d𝑧| ≤ 𝜖𝑑0𝑙0

Thus as 𝜖 → 0 we have

∫
𝜕𝑅

𝑓 (𝑧) d𝑧 = 0.

�

Theorem 4.4 (Cauchy-Goursat theorem). If a function 𝑓 is analytic at all points on and interior to a
simple closed contour Γ, then

∫
Γ
𝑓 (𝑧) d𝑧 = 0.
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Proof. Let the region enclosed by Γ be called 𝑅. The only difference now is that we have to consider
rectangles that have points that are not in 𝑅. Call these rectangles that are intersections with an
rectangle and 𝑅, partial rectangles. We only need to change the upper bound on the integral to take
into account the perimeter of these partial rectangles. �

If a contour is able to be continuously deformed into another contour, always passing through points
in which the function is analytic, then the integral does not change.

Theorem 4.5 (Cauchy-Goursat theorem for simply connected domains). If a function 𝑓 is analytic
in a simply connected domain 𝐷, then

∫
Γ
𝑓 (𝑧) d𝑧 = 0

for every closed contour Γ in 𝐷.

Proof. If the curve intersects itself a finite number of times, the Cauchy-Goursat theorem can be
applied to each of the simple closed contours that it is made up of.

For the infinite case, TODO �

Theorem 4.6 (Cauchy-Goursat theorem for multiply connected domains). Let

• Γ is a simple positively oriented closed contour,

• 𝛾1, … , 𝛾𝑘 are mutually disjoint positively oriented simple closed contours interior to Γ,

• 𝐷 refer to the domain consisting of the points inside Γ and outside 𝛾1, … , 𝛾𝑘.

If a function 𝑓 is analytic on all of these contours as well as in 𝐷, then

∫
Γ
𝑓 (𝑧) d𝑧 +

𝑘
∑
𝑛=1

∫
𝛾𝑛
𝑓 (𝑧) d𝑧 = 0.

Proof. Refer to the figure for an example.

𝛾1

𝛾2
𝛾3

Γ

Create a new integration path with line segments joining Γ to 𝛾1, 𝛾1 to 𝛾2, so on and so forth, and
finally 𝛾𝑘 →Γ again. This essentially divides the boundary of 𝐷 into two simple closed contours in
which 𝑓 is analytic in. Apply the Cauchy-Goursat theorem on these two pieces and sum them up. We
will find that the integrals along the line segments cancel, leaving us with the contour integrals. �
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Corollary 4.5.1 (Principle of deformation of paths). Let Γ1 and Γ2 be positively oriented simple closed
contours with Γ2 interior to Γ1. If 𝑓 is analytic in the closed region consisting of these contours and the
region between them, then

∫
Γ1
𝑓 (𝑧) d𝑧 = ∫

Γ2
𝑓 (𝑧) d𝑧 .

Proof. It follows directly from the previous theorem. �

Example 4.2. Suppose that Γ is a positively oriented simple closed contour that contains 𝑧0. We
want to evaluate

∫
Γ

1
𝑧 − 𝑧0

d𝑧 .

There is a circle with radius 𝑟 small enough that is interior to Γ. 1/(𝑧 − 𝑧0) is analytic on the region
between the circle and Γ, as well as on these two contours. Therefore

∫
Γ

1
𝑧 − 𝑧0

d𝑧 = 2𝜋𝑖.

♦

Definition 4.10 (Simply connected domains). A domain𝐷 is simply connected if every simple closed
contour in 𝐷 encloses only points in 𝐷. In other words, 𝐷 has no “holes”. �

Example 4.3. The following are simply connected domains:

• Open balls.

• Interiors of simply closed contours.

• The cut complex plane.

• The entire complex plane.

The following are not simply connected domains:

• The annular domain {𝑧 ∣ 1 < |𝑧| < 2}.

• The puncture plane ℂ ⧵ {0}. ♦

Theorem 4.7 (Cauchy-Goursat theorem for simply connected domains). If 𝑓 is analytic in a simply
connected domain 𝐷, then

∫
Γ
𝑓 (𝑧) d𝑧 = 0

Proof. todo �

Corollary 4.5.2. If 𝑓 is analytic in a simply connected domain 𝐷, then it has an antiderivative in 𝐷.
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4.3 Cauchy’s formula

Theorem 4.8 (Cauchy integral formula). Let Γ be a positively oriented simple closed contour and let
𝑓 be analytic within and on Γ. Then for any 𝑧0 interior to Γ,

𝑓 (𝑧0) =
1
2𝜋𝑖 ∫Γ

𝑓 (𝑧)
𝑧 − 𝑧0

d𝑧

Proof. Let 𝜖 > 0. Since 𝑓 is continuous at 𝑧0, there is a 𝛿 > 0 such that

|𝑧 − 𝑧0| < 𝛿 ⟹ |𝑓 (𝑧) − 𝑓 (𝑧0)| <
𝜖
2𝜋

.

Now choose 0 < 𝑟 < 𝛿 such that the circle 𝛾 (𝑡) = 𝑧0 + 𝑟𝑒𝑖𝑡 is completely interior to Γ. Then the
integral evaluated on Γ is equal to the integral evaluated on 𝛾.

For all 𝑧 ∈ {𝛾 }, since 𝑟 < 𝛿, we also have |𝑧 − 𝑧0| < 𝛿. This means that

|
𝑓 (𝑧) − 𝑓 (𝑧0)

𝑧 − 𝑧0
| <

𝜖
2𝜋𝑟

.

Therefore, by the ML inequality,

|∫
𝛾

𝑓 (𝑧) − 𝑓 (𝑧0)
𝑧 − 𝑧0

d𝑧| ≤ 𝜖.

We also have

|∫
𝛾

𝑓 (𝑧) − 𝑓 (𝑧0)
𝑧 − 𝑧0

d𝑧| = |∫
Γ

𝑓 (𝑧)
𝑧 − 𝑧0

d𝑧 − 𝑓 (𝑧0)2𝜋𝑖|

≤ 𝜖

As 𝜖 → 0, we obtain the desired result. �

Example 4.4. Wewant to evaluate∫Γ
𝑧

(9−𝑧2)(𝑧+𝑖) where Γ is the circle centred around the origin with
radius 2.

Let 𝑓 (𝑧) = 𝑧
9−𝑧2 . Then 𝑓 is analytic within and on Γ. By Cauchy’s integral formula,

∫
Γ

𝑧
(9 − 𝑧2)(𝑧 + 𝑖)

d𝑧 = 2𝜋𝑖𝑓 (−𝑖) =
𝜋
5
.

♦

Example 4.5 (Cauchy’s formula in an annulus). Let 𝑓 be analytic in the closed annulus 𝐴 = {𝑧 ∣
𝑅1 ≤ |𝑧 − 𝑧0| ≤ 𝑅2} and let 𝑧1 be an interior point of 𝐴. Let 𝛾1 and 𝛾2 be the positively oriented circles
|𝑧 − 𝑧0| = 𝑅1 and |𝑧 − 𝑧0| = 𝑅2 respectively.
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𝛾1

𝛾2

𝑧0

𝑧1

Refer to the diagram. We split the annulus into two such that the function is analytic within these
two new contours. The integral then evaluates to

𝑓 (𝑧1) =
1
2𝜋𝑖[∫𝛾2

𝑓 (𝑧)
𝑧 − 𝑧1

d𝑧 −∫
𝛾1

𝑓 (𝑧)
𝑧 − 𝑧1

d𝑧].

♦

Theorem 4.9 (Cauchy’s integral formula for derivatives). Let Γ be a positively oriented simple closed
contour and let 𝑓 be analytic within and on Γ. Then for any point 𝑧0 interior to Γ,

𝑓 (𝑛)(𝑧0) =
𝑛!
2𝜋𝑖 ∫Γ

𝑓 (𝑧)
(𝑧 − 𝑧0)𝑛+1

d𝑧 .

Proof. We prove this by induction. This holds for 𝑛 = 0 as we showed previously.

Suppose this holds for 𝑛. For the case of 𝑛 + 1, first we evaluate

𝑓 (𝑛)(𝑧0 + ℎ) − 𝑓 (𝑛)(𝑧0) =
𝑛!
2𝜋𝑖 ∫Γ

𝑓 (𝑧)
(𝑧 − 𝑧0 − ℎ)𝑛+1

−
𝑓 (𝑧)

(𝑧 − 𝑧0)𝑛+1
d𝑧

=
𝑛!
2𝜋𝑖 ∫Γ

𝑓 (𝑧)
𝑤𝑛+1 − (𝑤 − ℎ)𝑛+1

𝑤𝑛+1(𝑤 − ℎ)𝑛+1
d𝑧

=
𝑛!
2𝜋𝑖 ∫Γ

𝑓 (𝑧)
ℎ[(𝑤 − ℎ)𝑛 + 𝑤(𝑤 − ℎ)𝑛−1 + ⋯ + 𝑤𝑛]

𝑤𝑛+1(𝑤 − ℎ)𝑛+1
d𝑧 .

where 𝑤 = 𝑧 − 𝑧0. Next,

𝑓 (𝑛)(𝑧0 + ℎ) − 𝑓 (𝑛)(𝑧0)
ℎ

−
(𝑛 + 1)!
2𝜋𝑖 ∫

Γ

𝑓 (𝑧)
𝑤𝑛+2 d𝑧

=
𝑛!
2𝜋𝑖 ∫Γ

𝑓 (𝑧)
𝑤(𝑤 − ℎ)𝑛 + 𝑤2(𝑤 − ℎ)𝑛−1 + ⋯ + 𝑤𝑛+1 − (𝑛 + 1)(𝑤 − ℎ)𝑛+1

𝑤𝑛+2(𝑤 − ℎ)𝑛+1
d𝑧 .

Let us try to simplify the numerator:

𝑤(𝑤 − ℎ)𝑛 + ⋯ + 𝑤𝑛(𝑤 − ℎ) + 𝑤𝑛+1 − (𝑤 − ℎ)𝑛+1 − 𝑛(𝑤 − ℎ)𝑛+1

=𝑤(𝑤−ℎ)𝑛+⋯+𝑤𝑛(𝑤−ℎ)+ℎ(𝑡𝑛+𝑡𝑛−1(𝑡−ℎ)⋯+(𝑡−ℎ)𝑛)−(𝑤−ℎ)𝑛(𝑤−ℎ)−(𝑛−1)(𝑤−ℎ)𝑛+1

=𝑤(𝑤−ℎ)𝑛+⋯+(𝑤−ℎ)ℎ(𝑤𝑛−1+⋯+(𝑤−ℎ)𝑛−1)+ℎ(𝑡𝑛+⋯+(𝑡−ℎ)𝑛)−(𝑤−ℎ)𝑛−1(𝑤−ℎ)−(𝑛−2)(𝑤−ℎ)𝑛+1

⋮
= ℎ{(𝑤 − ℎ)𝑛 + [𝑤 + (𝑤 − ℎ)](𝑤 − ℎ)𝑛−1 + ⋯ + [𝑤𝑛 + 𝑤𝑛−1(𝑤 − ℎ) + ⋯ + (𝑤 − ℎ)𝑛]}
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Now let 𝑀 = max𝑧∈{Γ} |𝑓 (𝑧)|, let 𝑑 be the shortest distance from 𝑧0 to Γ, and let 𝐷 be the greatest
distance from 𝑧0 to Γ. Then for ℎ such that |ℎ| < 𝑑/2,

𝑑 < |𝑤| = |𝑧 − 𝑧0| < 2𝐷
𝑑
2
< |𝑤 − ℎ| < 2𝐷

By the ML inequality,

= |
𝑓 (𝑛)(𝑧0 + ℎ) − 𝑓 (𝑛)(𝑧0)

ℎ
−
(𝑛 + 1)!
2𝜋𝑖 ∫

Γ

𝑓 (𝑧)
𝑤𝑛+2 d𝑧|

=
𝑛!ℎ
2𝜋𝑖 ∫Γ

𝑓 (𝑧)
(𝑤 − ℎ)𝑛 + [𝑤 + (𝑤 − ℎ)](𝑤 − ℎ)𝑛−1 + ⋯ + [𝑤𝑛 + ⋯ + (𝑤 − ℎ)𝑛]

𝑤𝑛+2(𝑤 − ℎ)𝑛+1
d𝑧

≤ |ℎ|
𝑛!𝑀
2𝜋

𝑂(𝐷𝑛)
𝑂(𝑑2𝑛+3)

𝐿(Γ)

which goes to 0 as ℎ → 0, since all the other terms are constants. �

Corollary 4.5.3. If 𝑓 is analytic in a domain 𝐷, then all its derivatives exist and are analytic in 𝐷. In
particular, if 𝑓 = 𝑢 + 𝑖𝑣, then 𝑢 and 𝑣 have continuous partial derivatives of all orders in 𝐷.

Theorem 4.10 (Morera’s theorem). If 𝑓 is continuous on a domain 𝐷 and ∫Γ 𝑓 (𝑧) d𝑧 = 0 for every
closed contour Γ in 𝐷, then 𝑓 is analytic in 𝐷.

Proof. By theorem 4.1, 𝑓 has an antiderivative 𝐹 in 𝐷. By the previous corollary 𝑓 = 𝐹 ′ is analytic
in 𝐷. �

Theorem 4.11 (Cauchy’s inequality). Let 𝐶 be a circle centred at 𝑧0 with radius 𝑅. Suppose 𝑓 is a
function that is analytic within and on 𝐶. Denote 𝑀 = max𝑧∈{𝐶} |𝑓 (𝑧)|. Then

|𝑓 (𝑛)(𝑧0)| ≤
𝑛!𝑀
𝑅𝑛

.

Proof. This is an immediate consequence of Cauchy’s formula:

|𝑓 (𝑛)(𝑧0)| = |
𝑛!
2𝜋𝑖 ∫𝐶

𝑓 (𝑧)
(𝑧 − 𝑧0)𝑛+1

d𝑧|

≤
𝑛!
2𝜋

𝑀
𝑅𝑛+1

2𝜋𝑅

=
𝑛!𝑀
𝑅𝑛

.

�

Theorem 4.12 (Liouville’s theorem). If an entire function 𝑓 is bounded, then it must be a constant
function.

Proof. Since 𝑓 is bounded, there exists 𝑀 such that |𝑓 (𝑧)| ≤ 𝑀 for all 𝑧 ∈ ℂ. By Cauchy’s inequality,

|𝑓 ′(𝑧)| ≤
𝑀
𝑅
.

Now this goes to 0 as 𝑅 → ∞. As this holds for arbitrary 𝑧, thus we conclude that 𝑓 ′(𝑧) = 0 for all
𝑧. �
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Theorem 4.13 (The Fundamental Theorem of Algebra). Let 𝑝(𝑧) = 𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 +⋯ + 𝑎1𝑧 + 𝑎0 be
a polynomial, then 𝑝(𝑧) = 0 has a solution in ℂ.

Proof. Suppose not. Suppose that instead 𝑝(𝑧) ≠ 0 for all 𝑧 ∈ ℂ. Then 1/𝑝(𝑧) would be an entire
function.

Next we show that 1/𝑝(𝑧) is bounded. Let 𝑀 = max(1, ‖𝑎0‖, … , |𝑎𝑛−1|) and 𝑅 = 2𝑛𝑀 > 1. Then for
all |𝑧| > 𝑅, 1 ≤ 𝑗 ≤ 𝑛, we have

|
𝑎𝑛−𝑗
𝑧𝑗

| ≤
𝑀
|𝑧|

<
𝑀
2𝑛𝑀

=
1
2𝑛

,

such that

|
𝑎𝑛−1
𝑧

+ ⋯ +
𝑎0
𝑧𝑛 |

≤ |
𝑎𝑛−1
𝑧 | + ⋯ + |

𝑎0
𝑧𝑛 |

≤
1
2𝑛

+ ⋯ +
1
2𝑛

=
1
2
.

Now this means that

|𝑝(𝑧)| = |𝑧𝑛||1 + (
𝑎𝑛−1
𝑧

+ ⋯ +
𝑎0
𝑧𝑛)|

≥ |𝑧𝑛||1 − |
𝑎𝑛−1
𝑧

+ ⋯ +
𝑎0
𝑧𝑛 ||

≥ |𝑧𝑛|(1 −
1
2)

>
𝑅𝑛

2

Thus 1/𝑝(𝑧) is bounded by 2
𝑅𝑛 for the case where |𝑧| > 𝑅. However the closed ball 𝐵(0, 𝑅) is compact,

so again 1/𝑝(𝑧) has to be bounded there as well. Hence 1/𝑝(𝑧) is bounded on the entire complex
plane. By Liouville’s theorem this would suggest that 𝑝(𝑧) is a constant function which is a contra-
diction. �

5 Sequences and series

The ideas are very similar to those real analysis. Many of the theorems will be stated without proof,
refer to the real analysis notes for proofs. Many times it is simply applying the real analytic methods
onto the real and complex components individually then putting them back.

5.1 Sequences

Definition 5.1 (Sequences). A sequence can be formally defined by a function ℕ → ℂ. We shall
denote a sequence of complex numbers 𝑧1, 𝑧2, … by (𝑧𝑛)∞𝑛=1 or as short by (𝑧𝑛). �
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Definition 5.2 (Limits). We say that the sequence (𝑧𝑛) has a limit at 𝑧 if

∀𝜖 > 0, ∃𝑁 ∈ ℕ [𝑛 ≥ 𝑁 ⟹ |𝑧𝑛 − 𝑧| < 𝜖].

We write lim𝑛→∞ 𝑧𝑛 = 𝑧. We also say it that (𝑧𝑛) converges to 𝑧. If a sequence does not have a limit
then we say it diverges. �

Theorem 5.1. If a sequence is convergent then its limit is unique.

Theorem 5.2. If a sequence is convergent then it is bounded.

Theorem 5.3. If 𝑧 ∈ ℂ and |𝑧| < 1, then lim𝑛→∞𝑧𝑛 = 0.

Proof. Let 𝜖 > 0. Let 𝑟 = |𝑧|. Then we know from real analysis that lim𝑛→∞𝑟𝑛 = 0, so there exists
𝑁 ∈ ℕ such that for all 𝑛 ≥ 𝑁, |𝑟𝑛| < 0. Then it follows that |𝑧𝑛| < 𝜖 as well. �

Theorem 5.4. For a sequence (𝑧𝑛), if 𝑧𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛, then

lim𝑛→∞𝑧𝑛 = 𝑥 + 𝑖𝑦 ⟺ lim𝑛→∞𝑥𝑛 = 𝑥 ∧ lim𝑛→∞𝑥𝑛 = 𝑦.

Proof. See theorem 2.1. �

Theorem 5.5. Let (𝑧𝑛) and (𝑤𝑛) be sequences, and lim𝑛→∞𝑧𝑛 = 𝑧 and lim𝑛→∞𝑤𝑛 = 𝑤. Then

(i) lim𝑛→∞(𝑧𝑛 + 𝑤𝑛) = 𝑧 + 𝑤.

(ii) lim𝑛→∞(𝑧𝑛𝑤𝑛) = 𝑧𝑤.

(iii) lim𝑛→∞
𝑧𝑛
𝑤𝑛

= 𝑧
𝑤 if 𝑤𝑛 ≠ 0 for all 𝑛.

Definition 5.3 (Cachy sequences). A sequence (𝑧𝑛) is called Cauchy if

∀𝜖 > 0, ∃𝑁 ∈ ℕ, [𝑛, 𝑚 ≥ 𝑁 ⟹ |𝑧𝑛 − 𝑧𝑚| < 𝜖]

�

Theorem 5.6 (Cauchy criterion). A sequence (𝑧𝑛) is convergent iff it is Cauchy.

5.2 Series

Definition 5.4 (Series). Given a sequence (𝑧𝑛), form the sequence of partial sums where 𝑆𝑛 = 𝑧1 +
⋯ + 𝑧𝑛 = ∑𝑛

𝑖=1𝑧𝑖. We call 𝑆 a series and write ∑∞
𝑛=1𝑧𝑛. �

Since a series is also a sequence, the same theorems and definitions for convergence/divergence
apply to it.

Theorem 5.7. If∑∞
𝑧=1𝑛 converges, then lim𝑛→∞𝑧𝑛 = 0.

Definition 5.5 (Absolute convergence). If ∑∞
𝑛=1|𝑧𝑛| converges, then we say that ∑∞

𝑛=1𝑧𝑛 converges
absolutely. �

Theorem 5.8. If a series converges absolutely then it converges.
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Theorem5.9 (Comparison test). If |𝑧𝑛| ≤ 𝑎𝑛, and∑
∞
𝑛=1𝑎𝑛 converges, then∑

∞
𝑛=1𝑧𝑛 converges absolutely.

Theorem 5.10 (Geometric series). If 𝑧 ∈ 𝐵(0, 1), then

∞
∑
𝑛=0

𝑧𝑛 =
1

1 − 𝑧
.

Proof. Each partial sum is given by

𝑆𝑛 = 1 + 𝑧 + 𝑧2 + ⋯ + 𝑧𝑛−1 =
1 − 𝑧𝑛

1 − 𝑧
.

Since |𝑧| < 1, lim𝑛→∞𝑧𝑛 = 0, so

lim𝑛→∞𝑆𝑛 =
1

1 − 𝑧
.

�

Definition 5.6 (Power series). A series of the form

∞
∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛

if called a power series. �

Theorem 5.11. If∑∞
𝑛=0𝑎𝑛(𝑧 − 𝑧0)𝑛 converges at 𝑧 = 𝑧1, then it converges absolutely for all 𝑧 such that

|𝑧 − 𝑧0| < |𝑧1 − 𝑧0|.

Theorem 5.12 (Convergence radius). For any power series ∑∞
𝑛=0𝑎𝑛(𝑧 − 𝑧0)𝑛, there is an unique 0 ≤

𝑅 ≤ ∞ such that

(i) the series converges absolutely for all |𝑧 − 𝑧0| < 𝑅,

(ii) the series diverges for all 𝑧 such that |𝑧 − 𝑧0| > 𝑅,

(iii) and no conclusion otherwise.

Theorem 5.13 (Ratio test). If lim𝑛→∞|
𝑧𝑛+1
𝑧𝑛 | = 𝐿, then

(i) if 𝐿 < 1, then∑∞
𝑛=1𝑧𝑛 converges absolutely,

(ii) if 𝐿 > 1, then∑∞
𝑛=1𝑧𝑛 diverges,

(iii) otherwise no conclusion can be made.

Furthermore, the convergence radius 𝑅 = 1/𝐿.

Theorem 5.14 (Cauchy-Hadamard). For any power series ∑∞
𝑛=0𝑎𝑛(𝑧 − 𝑧0)𝑛, its convergence radius is

given by

𝑅 =
1

lim sup𝑛→∞
𝑛√|𝑎𝑛|

.
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5.3 Sequences of functions

Definition 5.7 (Pointwise convergence). Let (𝑓𝑛) be a sequence of functions defined on a subset
𝐷 ⊆ ℂ. Suppose that for all 𝑧 ∈ 𝐷, the sequence (𝑓 (𝑧)) converges. Then we define a function
𝑓 ∶ 𝐷 → ℂ by

𝑓 (𝑧) = lim𝑛→∞ 𝑓𝑛(𝑧)

and say that (𝑓𝑛) converges to 𝑓 pointwise in 𝐷. �

Definition 5.8 (Uniform convergence). We say that a sequence of functions (𝑓𝑛) converge to 𝑓
uniformly if

∀𝜖 > 0, ∃𝑁 ∈ ℕ, [𝑛 ≥ 𝑁 ⟹ |𝑓𝑛(𝑧) − 𝑓 (𝑧)| < 𝜖].

�

The difference between the two is that for uniform convergence, the same value of 𝑁 works for all
points 𝑧 ∈ 𝐷.

Example 5.1. Let 𝑓𝑛(𝑧) = 𝑧𝑛. Then

• 𝑓𝑛 → 0 pointwise on 𝐵(0, 1).

• 𝑓𝑛 → 0 uniformly on 𝐵(0, 𝑟) where 0 < 𝑟 < 1.

♦

Theorem 5.15. Let (𝑓𝑛) be a sequence of functions. If lim𝑛→∞𝑓𝑛 = 𝑓 uniformly and each 𝑓𝑛 is contin-
uous then 𝑓 is also continuous.

Theorem 5.16. Let Γ be a contour and let (𝑓𝑛) be a sequence of functions continuous on {Γ}. If (𝑓𝑛)
converges uniformly to 𝑓 on {Γ}, then

lim𝑛→∞∫
Γ
𝑓𝑛(𝑧) d𝑧 = ∫

Γ
lim𝑛→∞𝑓𝑛(𝑧) d𝑧 = ∫

Γ
𝑓 (𝑧) d𝑧

Proof. Let 𝜖 > 0. Then there is 𝑁 ∈ ℕ such that

𝑛 ≥ 𝑁 ⟹ |𝑓𝑛(𝑧) − 𝑓 (𝑧)| <
𝜖

𝐿(Γ)
.

By the ML-inequality this means

|∫
Γ
𝑓𝑛(𝑧) − 𝑓 (𝑧) d𝑧| <

𝜖
𝐿(Γ)

𝐿(Γ) = 𝜖.

�

Theorem 5.17. Let (𝑓𝑛) be a sequence of analytic functions on a domain𝐷. If (𝑓𝑛) converges uniformly
to 𝑓 on 𝐷, then 𝑓 is analytic in 𝐷.

Proof. Take 𝑧0 ∈ 𝐷. Since 𝐷 is open, there is 𝑟 > 0 such that 𝐵(𝑧0, 𝑟 ) ⊆ 𝐷. Now let Γ be a closed
contour in 𝐵(𝑧0, 𝑟 ). Then

lim𝑛→∞∫
Γ
𝑓𝑛(𝑧) d𝑧 = ∫

Γ
𝑓 (𝑧) d𝑧 .

Since each 𝑓𝑛 is analytic, ∫Γ 𝑓𝑛(𝑧) d𝑧 = 0. Therefore the integral above evaluates to 0. Since each 𝑓𝑛
is continuous as well, 𝑓 is also continuous. Then Morera’s theorem says that 𝑓 is analytic in 𝐵(𝑧0, 𝑟 ).
The choice of 𝑧0 is arbitrary, so this means that 𝑓 is in fact analytic in the whole of 𝐷. �
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5.4 Series of functions

Definition 5.9 (Uniform convergence). We say that the series of functions ∑∞
𝑛=1𝑓𝑛(𝑧) converges to

𝑆(𝑧) uniformly if the sequence of partial sums 𝑆𝑛(𝑧) = ∑𝑛
𝑘=1𝑓𝑘(𝑧) converges to 𝑆(𝑧) uniformly. �

Theorem 5.18 (Interchangibility). If a series of functions converges uniformly on a contour Γ, then
we can interchange the summation with the integral.

∞
∑
𝑛=1

∫
Γ
𝑓𝑛(𝑧) d𝑧 = ∫

Γ

∞
∑
𝑛=1

𝑓𝑛(𝑧) d𝑧

Theorem 5.19 (Weierstrass M-test). Let ∑∞
𝑛=1𝑀𝑛 be a convergent series of positive numbers. Let

(𝑓𝑛(𝑧)) be a sequence of functions on a domain 𝐷 where |𝑓𝑛(𝑧)| ≤ 𝑀𝑛. Then ∑∞
𝑛=1𝑓𝑛(𝑧) converges

uniformly and absolutely on 𝐷.

Lemma 5.1. Let 𝑅 be the radius of convergence of the geometric series ∑∞
𝑛=0𝑎𝑛(𝑧 − 𝑧0)𝑛. For each

0 < 𝑅′ < 𝑅, the series converges uniformly on 𝐵(𝑧0, 𝑅′).

Proof. Take 𝑧1 such that 𝑅′ < |𝑧1 − 𝑧0| < 𝑅. Then ∑∞
𝑛=0𝑎𝑛(𝑧1 − 𝑧0)𝑛 converges. This means that it is

bounded, so there exists 𝑀 > 0 such that |𝑎𝑛(𝑧1 − 𝑧0)𝑛| ≤ 𝑀.

Let 𝑧 ∈ 𝐵(𝑧0, 𝑅′). Since |𝑧 − 𝑧0| ≤ 𝑅1 < |𝑧1 − 𝑧0|, so

|
𝑧 − 𝑧0
𝑧1 − 𝑧0

| ≤
𝑅1

|𝑧1 − 𝑧0|
< 1.

Now let 𝑟 = 𝑅1
|𝑧1−𝑧0|

, we have

|𝑎𝑛(𝑧 − 𝑧0)𝑛| = |𝑎𝑛(𝑧1 − 𝑧0)𝑛||
𝑧 − 𝑧0
𝑧1 − 𝑧0

|
𝑛
≤ 𝑀𝑟𝑛

Since |𝑟| < 1, the series ∑∞
𝑛=0𝑀𝑟𝑛 converges. By the Weierstrass M-test, the series ∑∞

𝑛=0𝑎𝑛(𝑧 − 𝑧0)𝑛
converges uniformly as well. �

Theorem 5.20. Let 𝑅 be the radius of convergence of 𝑆(𝑧) = ∑∞
𝑛=0𝑎𝑛(𝑧 − 𝑧0)𝑛. Then

(i) 𝑆(𝑧) is an analytic function on 𝐵(𝑧0, 𝑅).

(ii) If Γ is a contour in 𝐵(𝑧0, 𝑅) and 𝑔(𝑧) is continuous on {Γ}, then

∫
Γ
𝑔(𝑧)

∞
∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛 d𝑧 =
∞
∑
𝑛=0

∫
Γ
𝑔(𝑧)𝑎𝑛(𝑧 − 𝑧0)𝑛 d𝑧

(iii)

d
d𝑧

∞
∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛 =
∞
∑
𝑛=1

𝑎𝑛𝑛(𝑧 − 𝑧0)𝑛−1

Proof. Denote 𝑆𝑛 = ∑𝑛
𝑘=0𝑎𝑘(𝑧 − 𝑧0)𝑘.

(i) Let 𝑧1 ∈ 𝐵(𝑧0, 𝑅). Choose 𝑟 such that |𝑧1 − 𝑧0| < 𝑟 < 𝑅. Then by lemma 5.1, 𝑆𝑛(𝑧) converges
uniformly on 𝐵(𝑧0, 𝑟 ) to 𝑆(𝑧). By theorem 5.17, uniform convergence preserves analyticity on
a domain, so 𝑆(𝑧) is analytic on 𝐵(𝑧0, 𝑟 ). In particular, 𝑆(𝑧) is analytic at 𝑧1. Since this is true
for all points in 𝐵(𝑧0, 𝑅), therefore 𝑆(𝑧) is analytic in 𝐵(𝑧0, 𝑅).

28



(ii) Choose 0 < 𝑟 < 𝑅 such that {Γ} ⊆ 𝐵(𝑧0, 𝑟 ). Note that since 𝑔(𝑧) is continuous and 𝐵(𝑧0, 𝑟 ) is
compact, therefore 𝑔(𝑧) must be bounded. Then we can easily show that 𝑔(𝑧)𝑆𝑛(𝑧) converges
uniformly to 𝑔(𝑧)𝑆(𝑧). Thus,

lim𝑛→∞

𝑛
∑
𝑘=0

∫
Γ
𝑔(𝑧)𝑎𝑛(𝑧 − 𝑧0)𝑛 d𝑧 = lim𝑛→∞∫

Γ

𝑛
∑
𝑘=0

𝑔(𝑧)𝑎𝑛(𝑧 − 𝑧0)𝑛 d𝑧

= ∫
Γ
lim𝑛→∞

𝑛
∑
𝑘=0

𝑔(𝑧)𝑎𝑛(𝑧 − 𝑧0)𝑛 d𝑧

= ∫
Γ
𝑔(𝑧)𝑆(𝑧) d𝑧 .

(iii) Let 𝑧1 ∈ 𝐵(𝑧0, 𝑅). Let 𝛾 be a positively oriented circle centred at 𝑧 such that {𝛾 } ⊆ 𝐵(𝑧0, 𝑅).
which from Cauchy’s integral formula is the expression for 𝑆′(𝑧). From Cauchy’s formula
first note that

d
d𝑧(

𝑧 − 𝑧0)
𝑛 |
𝑧=𝑧1

=
1
2𝜋𝑖 ∫𝛾

(𝑧 − 𝑧0)𝑛

(𝑧 − 𝑧1)2
.

Again by Cauchy’s integral formula,

𝑆′(𝑧1) =
1
2𝜋𝑖 ∫𝛾

𝑆(𝑧)
(𝑧 − 𝑧1)2

d𝑧

=
∞
∑
𝑛=0

𝑎𝑛
1
2𝜋𝑖 ∫𝛾

(𝑧 − 𝑧0)𝑛

(𝑧 − 𝑧1)2
d𝑧

=
∞
∑
𝑛=0

𝑎𝑛
d
d𝑧(

𝑧 − 𝑧0)
𝑛 |
𝑧=𝑧1

=
∞
∑
𝑛=0

𝑎𝑛𝑛(𝑧1 − 𝑧0)𝑛−1

�

Theorem 5.21 (Taylor’s theorem). If 𝑓 is analytic in an open ball 𝐵(𝑧0, 𝑅), then

𝑓 (𝑧) =
∞
∑
𝑛=0

𝑓 (𝑛)(𝑧0)
𝑛!

(𝑧 − 𝑧0)𝑛

which is called the Taylor series of 𝑓 at 𝑧0.

Proof. Let 𝑧 ∈ 𝐵(𝑧0, 𝑟 ). Choose 𝑟 such that |𝑧 − 𝑧0| < 𝑟 < 𝑅 and let 𝛾 be the positively oriented circle
|𝑤 − 𝑧0| = 𝑟. For 𝑤 ∈ {𝛾 }, we have

1
𝑤 − 𝑧

=
1

(𝑤 − 𝑧0) − (𝑧 − 𝑧0)

=
1

𝑤 − 𝑧0

1
1 − 𝑧−𝑧0

𝑤−𝑧0

=
1

𝑤 − 𝑧0

∞
∑
𝑛=0

(
𝑧 − 𝑧0
𝑤 − 𝑧0

)
𝑛
.

This means that

𝑓 (𝑤)
𝑤 − 𝑧

=
∞
∑
𝑛=0

𝑓 (𝑤)
(𝑧 − 𝑧0)𝑛

(𝑤 − 𝑧0)𝑛+1
.
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By Cauchy’s integral formula,

𝑓 (𝑧) =
1
2𝜋𝑖 ∫𝛾

𝑓 (𝑤)
𝑤 − 𝑧

d𝑤

=
1
2𝜋𝑖 ∫𝛾

∞
∑
𝑛=0

𝑓 (𝑤)
(𝑧 − 𝑧0)𝑛

(𝑤 − 𝑧0)𝑛+1
d𝑤

=
∞
∑
𝑛=0

1
2𝜋𝑖 ∫𝛾

𝑓 (𝑤)
(𝑤 − 𝑧0)𝑛+1

d𝑤 (𝑧 − 𝑧0)𝑛

=
∞
∑
𝑛=0

𝑓 (𝑛)(𝑧0)
𝑛!

(𝑧 − 𝑧0)𝑛

�

Theorem 5.22. If ∑∞
𝑛=0𝑎𝑛(𝑧 − 𝑧0)𝑛 converges to 𝑓 (𝑧) in the open ball 𝐵(𝑧0, 𝑅), then the series is the

Taylor series of 𝑓 at 𝑧0.

Proof. Choose 𝑟 such that 0 < 𝑟 < 𝑅, and let 𝛾 be the positive oriented circle |𝑧 − 𝑧0| = 𝑟. Let

𝑔𝑘(𝑧) =
1

2𝜋𝑖(𝑧 − 𝑧0)𝑘+1

so that by Cauchy’s integral formula

∫
𝛾
𝑔𝑘(𝑧)𝜙(𝑧) d𝑧 =

𝜙(𝑘)(𝑧0)
𝑘!

.

Now

∫
𝛾
𝑔𝑘(𝑧)(𝑧 − 𝑧0)𝑛 d𝑧 =

1
𝑘!

d𝑘

d𝑧𝑘
(𝑧 − 𝑧0)

𝑛 |
𝑧=𝑧0

= {
1, if 𝑘 = 𝑛
0, otherwise

.

Thus

𝑎𝑘 =
∞
∑
𝑛=0

𝑎𝑛∫
𝛾
𝑔𝑘(𝑧)(𝑧 − 𝑧0)𝑛 d𝑧

= ∫
𝛾
𝑔𝑘(𝑧)𝑓 (𝑧) d𝑧

=
𝑓 (𝑘)(𝑧0)

𝑘!
.

�

The Taylor series where 𝑧0 = 0 is also called the Maclaurin series.

Example 5.2. Find the Maclaurin series of 𝑓 (𝑧) = 𝑒𝑧. We have 𝑓 (𝑛)(0) = 1. Thus the Maclaurin
series is simply

𝑒𝑧 =
∞
∑
𝑛=0

𝑧𝑛

𝑛!
.

♦
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Example 5.3. Find the Taylor series of 𝑓 (𝑧) = 1/𝑧 at 𝑧0 = 1. We can use the geometric series

1
𝑧
=

1
1 − (1 − 𝑧)

=
∞
∑
𝑛=0

(1 − 𝑧)𝑛

which converges for all |1 − 𝑧| < 1. This agrees with Taylor’s theorem because 𝑓 (𝑧) is not analytic
at 𝑧 = 0, so the largest ball it is analytic in is 𝐵(1, 1). ♦

Theorem 5.23 (Laurent’s theorem). If 𝑓 is analytic in an annulus 𝐴 = {𝑧 ∣ 𝑅1 < |𝑧 − 𝑧0| < 𝑅2}, then

𝑓 (𝑧) =
∞
∑
𝑛=−∞

𝑎𝑛(𝑧 − 𝑧0)𝑛

Proof. For 𝑧 ∈ 𝐴, let 𝛾1 and 𝛾2 be the positively oriented circles contained in 𝐴 such that the 𝛾 and 𝑧
are contained in the region between them. See the figure.

𝑧0𝑧0

𝑧

𝛾1

𝛾2

𝑅1

𝑅2

𝛾

From example 4.5 we have the following

𝑓 (𝑧) =
1
2𝜋𝑖[∫𝛾2

𝑓 (𝑤)
𝑤 − 𝑧

d𝑤 −∫
𝛾1

𝑓 (𝑤)
𝑤 − 𝑧

d𝑤].

Our task is to evaluate the two path integrals.

For 𝑤 ∈ {𝐶2},

1
𝑤 − 𝑧

=
1

𝑤 − 𝑧0

1
1 − 𝑧−𝑧0

𝑤−𝑧0

=
1

𝑤 − 𝑧0

∞
∑
𝑛=0

(
𝑧 − 𝑧0
𝑤 − 𝑧0

)
𝑛

31



Thus

∫
𝛾2

𝑓 (𝑤)
𝑤 − 𝑧

d𝑤 =
1
2𝜋𝑖 ∫𝛾2

𝑓 (𝑤)
∞
∑
𝑛=0

(𝑧 − 𝑧0)𝑛

(𝑤 − 𝑧0)𝑛+1
d𝑤

=
∞
∑
𝑛=0

[
1
2𝜋𝑖 ∫𝛾

𝑓 (𝑤)
(𝑤 − 𝑧0)𝑛+1

d𝑤](𝑧 − 𝑧0)
𝑛

where the last step is due to the Cauchy-Goursat theorem. The same goes for 𝑤 ∈ {𝐶1}:

∫
𝛾1

𝑓 (𝑤)
𝑧 − 𝑤

d𝑤 =
1
2𝜋𝑖 ∫𝛾1

𝑓 (𝑤)
∞
∑
𝑛=0

(𝑤 − 𝑧0)𝑛

(𝑧 − 𝑧0)𝑛+1
d𝑤

=
∞
∑
𝑛=0

[
1
2𝜋𝑖 ∫𝛾

𝑓 (𝑤)(𝑤 − 𝑧0)𝑛 d𝑤](𝑧 − 𝑧0)
−𝑛−1

=
−∞
∑
𝑛=−1

[
1
2𝜋𝑖 ∫𝛾

𝑓 (𝑤)
(𝑤 − 𝑧0)𝑛+1

d𝑤](𝑧 − 𝑧0)
𝑛

�

Note that if 𝑓 is analytic in 𝐵(𝑧0, 𝑅2), then since 𝑓 (𝑤)(𝑤 − 𝑧0)𝑛+1 is analytic, the integrals for the
negative indices will all vanish. In this case the Laurent series will reduce to the Taylor series.

Definition 5.10 (Principle and analytic parts). The terms in the Laurent series with 𝑛 ≥ 0 are
collectively called the analytic part, while the terms with 𝑛 < 0 are collectively called the principle
part. �

6 Residues and poles

6.1 Isolated singularities

Definition 6.1 (Singluar points). A point 𝑧0 is a singular point of a function 𝑓 if 𝑓 is not analytic at
𝑧0 but is analytic at some point in 𝐵(𝑧0, 𝜖) for all 𝜖 > 0. We say that a singular point 𝑧0 is isolated if
there exists 𝑅 > 0 such that 𝑓 is analytic in 𝐵(𝑧0, 𝑅) ⧵ {𝑧0}. �

Example 6.1. Log 𝑧 is analytic in ℂ ⧵ (−∞, 0]. Every point in (−∞, 0] is a singular point of Log 𝑧,
but they are not isolated singularities. ♦

Example 6.2. Let 𝑓 (𝑧) = 1/ sin(𝜋/𝑧). sin(𝜋/𝑧) = 0 iff 𝑧 = 1/𝑛 for 𝑛 ∈ ℤ+. So the singular points
of 𝑓 are {0} ∪ {1/𝑛 ∣ 𝑛 ∈ ℤ+}. The singularities at 1/𝑛 are isolated. However, 0 is not an isolated
singularity since for every 𝑅, we can always find 𝑛 such that 1/𝑛 ∈ 𝐵(0, 𝑅). ♦

Definition 6.2 (Residues). The residue of 𝑓 at an isolated singularity 𝑧0 is the 𝑛 = −1 coefficient of
its Laurent series expansion, or in other words

Res𝑧=𝑧0
𝑓 (𝑧) =

1
2𝜋𝑖 ∫𝛾

𝑓 (𝑧) d𝑧

where 𝛾 is any positively oriented simple closed contour around 𝑧0 in 𝐵(𝑧0, 𝑅) ⧵ {𝑧0}. �
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Example 6.3. We want to evaluate ∫𝛾 𝑧𝑒
4/𝑧 d𝑧 where 𝛾 is the unit circle. We have

𝑧𝑒4/𝑧 = 𝑧
∞
∑
𝑛=0

(4/𝑧)𝑛

𝑛!

=
∞
∑
𝑛=0

4𝑛

𝑛!𝑧𝑛−1
.

Thus Res𝑧=0 𝑓 is the coefficient of 1/𝑧, which is 8. Then

∫
𝛾
𝑧𝑒4/𝑧 d𝑧 = 2𝜋𝑖Res

𝑧=0
𝑧𝑒4/𝑧 = 16𝜋𝑖.

♦

Definition 6.3 (Removable singularities). Let 𝑓 have an isolated singular point at 𝑧0. If the principle
part of the Laurent series of 𝑓 around 𝑧 = 𝑧0 is 0, then we say that 𝑧0 is a removable singularity. �

For removable singularities the Laurent series reduces to a power series and the residue there is 0.
Note that is is not necessarily a Taylor series since 𝑓 is still not analytic in thewhole ball. Howeverwe
can make 𝑓 analytic in the whole ball if we set 𝑓 (𝑧0) = 𝑎0. This also explains why such singularities
are called “removable”.

Example 6.4. Consider 𝑓 (𝑧) = sin 𝑧
𝑧 .

sin 𝑧
𝑧

=
1
𝑧(

𝑧 −
𝑧3

3!
+
𝑧5

5!
+ ⋯)

= 1 −
𝑧2

3!
+
𝑧4

5!
+ ⋯

so 𝑧 = 0 is a removable singularity. If we redefine 𝑓 (0) = 1, then 𝑓 (𝑧) is equal to the above convergent
Taylor series. Thus it becomes analytic at 𝑧 = 0. ♦

Definition 6.4 (Essential singularity). Let 𝑓 have an isolated singular point at 𝑧0. If the principle
part of the Laurent series of 𝑓 around 𝑧 = 𝑧0 has infinitely many non-zero terms then we say that 𝑧0
is an essential singularity. �

Example 6.5. For all 𝑧,

𝑒1/𝑧 =
∞
∑
𝑛=0

(1/𝑧)𝑛

𝑛!𝑧𝑛

= 1 +
∞
∑
𝑛=1

1
𝑛!𝑧𝑛

so 𝑧 = 0 is an essential singularity. ♦

Definition 6.5 (Poles). Let 𝑓 have an isolated singular point at 𝑧0. Consider the Laurent series of 𝑓
around 𝑧 = 𝑧0. If there is 𝑁 ∈ ℕ such that the coefficients 𝑎−𝑛 = 0 for all 𝑛 > 𝑚, then we say 𝑧0 is a
pole. Furthermore, we call the smallest possible value of 𝑁 the order of the pole. �

We sometimes call poles of order 1 simple poles.
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Example 6.6. For all 𝑧,

𝑒𝑧

𝑧2
=

1
𝑧2

∞
∑
𝑛=0

𝑧𝑛

𝑛!

=
1
𝑧2

+
1
𝑧
+
1
2
+ ⋯

so 𝑧 = 0 is a pole of order 2. ♦

Theorem 6.1. A function 𝑓 has a pole of order 𝑚 at 𝑧0 iff there exists 𝑅 > 0 such that for all 𝑧 ∈
𝐵(𝑧0, 𝑅) ∖ {𝑧0},

𝑓 (𝑧) =
𝜙(𝑧)

(𝑧 − 𝑧0)𝑚

where 𝜙 is analytic and 𝜙(𝑧0) ≠ 0.

Proof.

( ⟹ ) Since 𝑓 has a pole of order 𝑚 at 𝑧0, there exists 𝑅 such that that for all 𝑧 ∈ 𝐵(𝑧0, 𝑅) ∖ {𝑧0},

𝑓 (𝑧) =
∞
∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛 +
𝑚
∑
𝑛=1

𝑎−𝑛
(𝑧 − 𝑧0)𝑛

.

Now consider if we multiply the series throughout by (𝑧 − 𝑧0)𝑚:

𝜙(𝑧) =
∞
∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛+𝑚 + 𝑎−1(𝑧 − 𝑧0)𝑚−1 + ⋯ + 𝑎−(𝑚−1)(𝑧 − 𝑧0) + 𝑎−𝑚

= {
𝑓 (𝑧)(𝑧 − 𝑧0)𝑚, if 𝑧 ≠ 𝑧0
𝑎−𝑚, otherwise

.

This is an analytic function in 𝐵(𝑧0, 𝑅) (theorem 5.20).

( ⟸ ). Since 𝜙 is analytic at 𝑧0, it has a Taylor expansion

𝜙(𝑧) =
∞
∑
𝑛=0

𝑐𝑛(𝑧 − 𝑧0)𝑛

for all 𝑧 ∈ 𝐵(𝑧0, 𝑅), for some 𝑅 > 0. Thus

𝑓 (𝑧) =
𝜙(𝑧)

(𝑧 − 𝑧0)𝑚

=
𝑐0

(𝑧 − 𝑧0)𝑚
+ ⋯ +

𝑐𝑚−1
𝑧 − 𝑧0

+ ⋯

and as 𝑐0 = 𝜙(𝑧0) ≠ by definition, 𝑓 has a pole of order 𝑚 at 𝑧 = 𝑧0. �

Corollary 6.0.1. A function 𝑓 has a pole at 𝑧 = 𝑧0, iff lim𝑧→𝑧0 𝑓 (𝑧) = ∞.

Proof. Equivalently,

lim𝑧→𝑧0

1
𝑓 (𝑧)

= lim𝑧→𝑧0

(𝑧 − 𝑧0)𝑚

𝜙(𝑧)

=
(𝑧0 − 𝑧0)𝑚

𝜙(𝑧0)
= 0.

�
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Theorem 6.2. Suppose that a function 𝑓 has an isolated singularity at 𝑧 = 𝑧0. Then if 𝑧 = 𝑧0 is a
removable singularity, 𝑓 is bounded in a deleted neighbourhood of 𝑧0.

Proof. The function 𝑓 is analytic in 𝐵(𝑧0, 𝑅) for some 𝑅 if we define 𝑓 (𝑧0) correctly. Then 𝑓 is con-
tinuous in the closed ball 𝐵(𝑧0, 𝑟 ) for all 𝑟 < 𝑅. Since it is closed 𝑓 is bounded there as well. Then it
must also be bounded on the deleted neighbourhood {𝑧 ∣ 0 < |𝑧 − 𝑧0| < 𝑟} ⊂ 𝐵(𝑧0, 𝑟 ). �

Theorem 6.3 (Reimann’s theorem). Suppose that a function 𝑓 is bounded and analytic in some deleted
neighbourhood {𝑧 ∣ 0 < |𝑧 − 𝑧0| < 𝑅} of 𝑧0. If 𝑓 has a singularity at 𝑧0, then it is a removable singularity.

Proof. If 𝑓 is not analytic at 𝑧0, then it must be an isolated singularity. So we can represent 𝑓 by a
Laurent series in the deleted neighbourhood. Let 𝛾 be the positively oriented circle |𝑧 − 𝑧0| = 𝑟where
𝑟 < 𝑅. Since 𝑓 is bounded, |𝑓 (𝑧)| ≤ 𝑀 for some𝑀. Then by the ML-inequality, the coefficients of the
principal part of the Laurent series (𝑛 < 0) are

|𝑎𝑛| = |
1
2𝜋𝑖 ∫𝛾

𝑓 (𝑧)
(𝑧 − 𝑧0)𝑛+1

d𝑧|

≤
1
2𝜋

𝑀
𝑟𝑛+1

2𝜋𝑟

= 𝑀𝑟−𝑛.

Since we can choose 𝑟 to be arbitrarily small, we can conclude that the principal of the Laurent series
is 0. �

Theorem 6.4 (Picard’s theorem). If 𝑓 has an essential singularity at 𝑧 = 𝑧0, then in any open neigh-
bourhood of 𝑧0, 𝑓 assumes every finite value, with one possible exception, for an infinite number of
times.

Theorem 6.5. If 𝑓 has a pole of order 𝑚 at 𝑧0, then

Res𝑧=𝑧0
𝑓 (𝑧) =

1
(𝑚 − 1)!

lim𝑧→𝑧0

d𝑚−1

d𝑧𝑚−1
(𝑧 − 𝑧0)

𝑚𝑓 (𝑧).

Proof. If 𝑓 has a pole of order𝑚 at 𝑧0, then there exists 𝑅 > 0 such that for all 𝑧where 0 < |𝑧 − 𝑧0| < 𝑅,

𝑓 (𝑧) =
∞
∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛 +
𝑎−1

𝑧 − 𝑧0
+ ⋯ +

𝑎−𝑚
(𝑧 − 𝑧0)𝑚

(𝑧 − 𝑧0)𝑚𝑓 (𝑧) =
∞
∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛+𝑚 + 𝑎−1(𝑧 − 𝑧0)𝑚−1 + ⋯ + 𝑎−𝑚

d𝑚−1

d𝑧𝑚−1
(𝑧 − 𝑧0)

𝑚𝑓 (𝑧) =
∞
∑
𝑛=0

(
𝑛+𝑚
∏
𝑘=𝑛+2

𝑘)𝑎𝑛(𝑧 − 𝑧0)𝑛+1 + (𝑚 − 1)!𝑎−1

lim𝑧→𝑧0

d𝑚−1

d𝑧𝑚−1
(𝑧 − 𝑧0)

𝑚𝑓 (𝑧) = (𝑚 − 1)!𝑎−1.

�

35



6.2 Poles and zeroes

Definition 6.6 (Zeroes). A point 𝑧0 is called a zero of 𝑓 if 𝑓 (𝑧0) = 0. If 𝑓 (𝑧0) = ⋯ = 𝑓 (𝑚−1)(𝑧0) = 0
but 𝑓 (𝑚)(𝑧0) ≠ 0, then we say that 𝑧0 is a zero of order 𝑚. �

We often call a zero of order 1 a simple zero.

Example 6.7. The function 𝑓 (𝑧) = 𝑧(𝑒𝑧 − 1) has zeroes at 𝑧 = 2𝑛𝜋𝑖 with 𝑛 ∈ ℤ. First consider the
zero at 𝑧 = 0.

𝑓 ′(𝑧) = (𝑧 + 1)𝑒𝑧 − 1 𝑓 ″(𝑧) = (𝑧 + 2)𝑒𝑧

𝑓 ′(0) = 0 𝑓 ″(0) = 2

so the zero at 𝑧 = 0 is of order 2. For the other zeroes, 𝑓 ′(2𝑛𝜋𝑖) ≠ 0 for 𝑛 ≠ 0 so they are simple
zeroes. ♦

Theorem 6.6. Let 𝑓 be analytic at 𝑧0. Then 𝑓 has a zero of order 𝑚 at 𝑧0 iff 𝑓 (𝑧) = (𝑧 −𝑧0)𝑚𝑔(𝑧), where
𝑔 is analytic at 𝑧0 and 𝑔(𝑧0) ≠ 0.

Proof.

( ⟹ ) Since 𝑓 is analytic at 𝑧 = 𝑧0, it has a Taylor series for all 𝑧 ∈ 𝐵(𝑧0, 𝑅) for some 𝑅. However
since the first 𝑚 − 1 derivatives at 𝑧 = 𝑧0 are all 0, the first 𝑚 − 1 coefficients are 0 as well. Thus

𝑓 (𝑧) =
∞
∑
𝑛=𝑚

𝑎𝑛(𝑧 − 𝑧0)𝑛

= (𝑧 − 𝑧0)𝑚
∞
∑
𝑛=𝑚

𝑎𝑛(𝑧 − 𝑧0)𝑛−𝑚

= (𝑧 − 𝑧0)𝑚𝑔(𝑧)

We define 𝑔(𝑧) be the summation term. It is represented by a convergent power series in 𝐵(𝑧0, 𝑅),
so it is also analytic at 𝑧0. Furthermore 𝑔(𝑧0) = 𝑎𝑚 ≠ 0.

( ⟸ ) Since 𝑔 is analytic at 𝑧 = 𝑧0, it has a Taylor series for all 𝑧 ∈ 𝐵(𝑧0, 𝑅) for some 𝑅.

𝑔(𝑧) =
∞
∑
𝑛=0

𝑐𝑛(𝑧 − 𝑧0)𝑛.

Furthermore, 𝑐0 = 𝑔(𝑧0) ≠ 0. Thus

𝑓 (𝑧) = (𝑧 − 𝑧0)𝑚𝑔(𝑧)

=
∞
∑
𝑛=0

𝑐𝑛(𝑧 − 𝑧0)𝑛+𝑚

Thus it is clear that

𝑓 (𝑧0) = ⋯ = 𝑓 (𝑚−1)(𝑧0) = 0 𝑓 (𝑚)(𝑧0) = 𝑚!𝑐0 ≠ 0.

�

Theorem 6.7. Let 𝑝 and 𝑞 be analytic at 𝑧0 and suppose 𝑝(𝑧0) ≠ 0. Then if 𝑞 has a zero of order 𝑚 at
𝑧0, the function 𝑓 (𝑧) = 𝑝(𝑧)/𝑞(𝑧) has a pole of order 𝑚 at 𝑧0.
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Proof. There exists 𝑅 > 0 such that for all 𝑧 ∈ 𝐵(𝑧0, 𝑅),

𝑞(𝑧) = (𝑧 − 𝑧0)𝑚𝑔(𝑧)

where 𝑔 is analytic at 𝑧0 and 𝑔(𝑧0) ≠ 0. Then

𝑓 (𝑧) =
𝑝(𝑧)

(𝑧 − 𝑧0)𝑚𝑔(𝑧)

where 𝑝(𝑧)/𝑔(𝑧) is analytic and non-zero at 𝑧 = 𝑧0. Thus 𝑓 has a pole of order 𝑚 at 𝑧 = 𝑧0. �

Example 6.8. Consider the function 𝑓 (𝑧) = 𝑒𝑧
𝑧(𝑒𝑧−1) . From example 6.7, we know that 𝑧(𝑒𝑧 − 1) has

a zero of order 2 at 𝑧 = 0 and zeroes of order 1 at 𝑧 = 2𝑛𝜋𝑖 for 𝑛 ∈ ℤ ∖ {0}. Furthermore 𝑒𝑧 ≠ 0 at
these values. Thus 𝑓 has a double pole at 𝑧 = 0 and simple poles at 𝑧 = 2𝑛𝜋𝑖 for 𝑛 ∈ ℤ ∖ {0}. ♦

Corollary 6.0.2. If 𝑝 and 𝑞 are analytic at 𝑧0 and 𝑝(𝑧0) ≠ 0 and 𝑞 has a simple zero at 𝑧0, then
𝑓 (𝑧) = 𝑝(𝑧)/𝑞(𝑧) has a simple pole at 𝑧0, and furthermore

Res𝑧=𝑧0
𝑓 (𝑧) =

𝑝(𝑧0)
𝑞′(𝑧0)

.

Proof. Since 𝑓 has a simple pole at 𝑧0 and 𝑞(𝑧0) = 0,

Res𝑧=𝑧0
𝑓 (𝑧) = lim𝑧→𝑧0

(𝑧 − 𝑧0)𝑓 (𝑧)

= lim𝑧→𝑧0

𝑝(𝑧)
𝑞(𝑧)−𝑞(𝑧0)

𝑧−𝑧0

=
𝑝(𝑧0)
𝑞′(𝑧0)

.

�

We now consider the general case for 𝑓 (𝑧) = 𝑝(𝑧)/𝑞(𝑧). By the quotient rule,

𝑓 ′(𝑧) =
𝑞(𝑧)𝑝′(𝑧) − 𝑝(𝑧)𝑞′(𝑧)

𝑞2(𝑧)

exists provided 𝑞(𝑧) ≠ 0. Suppose 𝑞 has a zero of order 𝑛 at 𝑧 = 𝑧0. If 𝑝(𝑧0) ≠ 0, then 𝑓 has a pole of
order 𝑛 at 𝑧 = 𝑧0.

What if instead 𝑝(𝑧0) = 0? Suppose 𝑝 has a zero of order 𝑚 at 𝑧 = 𝑧0. Then there exists analytic
functions 𝑝1 and 𝑞1, with 𝑝1(𝑧0) ≠ 0 and 𝑞1(𝑧0) ≠ 0, such that

𝑓 (𝑧) =
(𝑧 − 𝑧0)𝑚𝑝1(𝑧)
(𝑧 − 𝑧0)𝑛𝑞1(𝑧)

= (𝑧 − 𝑧0)𝑚−𝑛𝜙(𝑧)

where 𝜙(𝑧) = 𝑝1(𝑧)/𝑞1(𝑧) and 𝜙(𝑧0) ≠ 0. If 𝑚 ≥ 𝑛, then

lim𝑧→𝑧0
𝑓 (𝑧) = {

0, if 𝑚 > 𝑛
𝜙(𝑧0), otherwise

.

In particular, 𝑓 is bounded. Consequently, 𝑓 has a removable singularity at 𝑧 = 𝑧0. To be precise,
𝑓 (𝑧) has a zero of order 𝑚 − 𝑛. If instead 𝑚 < 𝑛, then

𝑓 (𝑧) =
𝜙(𝑧)

(𝑧 − 𝑧0)𝑛−𝑚

so 𝑓 has a pole of order 𝑛 − 𝑚.

37



Theorem 6.8 (Cauchy’s residue theorem). If Γ is a positively oriented simple closed contour and 𝑓 is
analytic inside and on Γ except for a finite number of singular points 𝑧1, … , 𝑧𝑘, then

∫
Γ
𝑓 (𝑧) d𝑧 = 2𝜋𝑖

𝑘
∑
𝑛=1

Res𝑧=𝑧𝑛
𝑓 (𝑧).

Proof. Let the points 𝑧1, … , 𝑧𝑘 be the centres of positively oriented circles 𝛾1, … , 𝛾𝑘 which are interior
to Γ and are small enough such that they do not overlap one another. The circles, together with
the contour Γ, form a closed region whose interior is a multiply connected domain consisting of the
points inside Γ but outside all 𝛾𝑘. 𝑓 is analytic inside this region. Using the Cauchy-Goursat theorem
for multiply connected domains,

∫
Γ
𝑓 (𝑧) d𝑧 −

𝑘
∑
𝑛=1

∫
𝛾𝑛
𝑓 (𝑧) d𝑧 = 0

which leads directly to the desired result since

∫
𝛾𝑛
𝑓 (𝑧) d𝑧 = 2𝜋𝑖 Res𝑧=𝑧𝑛

𝑓 (𝑧).

�

6.3 Applications

Definition 6.7 (Improper integrals). Let 𝑓 ∶ [0,∞) → ℝ. The improper integral of 𝑓 over [0, ∞) is
defined by

∫
∞

0
𝑓 (𝑥) d𝑥 = lim

𝑅→∞∫
𝑅

0
𝑓 (𝑥) d𝑥

and we say that the integral converges provided the limit exists. �

The same definition can be made for integrals over (−∞, 0]. Integrals over (−∞,∞) are the sum of
these two types of integrals, i.e. ∫∞

−∞ = ∫0
−∞ + ∫∞

0 .

Definition 6.8 (Cauchy principal value). The Cauchy principal value of ∫∞
−∞𝑓 (𝑥) d𝑥 is defined as

p.v.∫
∞

−∞
𝑓 (𝑥) d𝑥 = lim

𝑅→∞∫
𝑅

−𝑅
𝑓 (𝑥) d𝑥

and we say that it converges provided the limit exists. �

It should be noted that the principal value is different from our original definition of the indefinite
integral. If ∫∞

−∞ exists, then p.v.∫∞
−∞ = ∫∞

−∞. However the converse is not necessarily true.

Example 6.9. Consider

p.v.∫
∞

−∞
𝑥 d𝑥 = lim

𝑅→∞∫
𝑅

−𝑅
𝑥 d𝑥

= 0.
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On the other hand,

lim
𝑅→∞∫

𝑅

0
𝑥 d𝑥 = ∞.

So clearly ∫∞
−∞𝑥 d𝑥 does not converge. ♦

Theorem 6.9. Let 𝑓 be an even function, i.e. 𝑓 (−𝑥) = 𝑓 (𝑥). If p.v.∫∞
−∞𝑓 (𝑥) d𝑥 converges, then so does

∫∞
−∞𝑓 (𝑥) d𝑥.

Proof. We have

∫
0

−𝑅
𝑓 (𝑥) d𝑥 = ∫

0

𝑅
𝑓 (−𝑥) d(−𝑥) = ∫

𝑅

0
𝑓 (𝑥) d𝑥 .

Therefore, if p.v.∫∞
−∞𝑓 (𝑥) d𝑥 = lim𝑅→∞∫𝑅

−𝑅 𝑓 (𝑥) d𝑥 converges, then both lim𝑅→∞∫0
−𝑅 𝑓 (𝑥) d𝑥 and

lim𝑅→∞∫𝑅
0 𝑓 (𝑥) d𝑥 must exist. �

Example 6.10. Let us try and evaluate ∫∞
−∞

𝑥2
𝑥6+1 d𝑥. Note that the singular points of 𝑓 are at 𝑐𝑛 =

exp( (2𝑛+1)𝜋𝑖6 ) and they are all simple poles. Let Γ𝑅 be the positively oriented semicircle of radius 𝑅
containing 𝑐0, 𝑐1, and 𝑐0. Denote the arc as 𝛾𝑅.

𝛾𝑅

ℑ

ℜ

𝑐1

𝑐0𝑐2

By Cauchy’s residue theorem,

2𝜋𝑖
2
∑
𝑛=0

Res𝑧=𝑐𝑛
𝑓 (𝑧) = ∫

Γ
𝑓 (𝑧) d𝑧

= ∫
𝛾𝑅
𝑓 (𝑧) d𝑧 +∫

𝑅

−𝑅
𝑓 (𝑥) d𝑥 .

Recall we have a formula for this specific kind of poles (corollary 6.0.2):

Res𝑧=𝑐𝑛
𝑓 (𝑧) =

𝑐2𝑘
6𝑐5𝑘

so

∫
𝑅

−𝑅
𝑓 (𝑥) d𝑥 =

𝜋
3
−∫

𝛾𝑅
𝑓 (𝑧) d𝑧 .
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Now for all 𝑧 ∈ {𝛾𝑅}, we have |𝑧| = 𝑅, such that

|𝑓 (𝑧)| ≤
|𝑧|2

||𝑧|6 − 1|

=
𝑅2

𝑅6 − 1
.

Thus by the ML-inequality

|∫
𝛾𝑅
𝑓 (𝑧) d𝑧| ≤

𝑅2

𝑅6 − 1
𝜋𝑅.

Now when we make 𝑅 → ∞, this integral goes to 0. Therefore we conclude that in fact

∫
∞

−∞

𝑥2

𝑥6 + 1
d𝑥 =

𝜋
3
.

♦

Example 6.11. Let us try and evaluate ∫∞
−∞

cos 3𝑥
(𝑥2+1)2 d𝑥. Instead consider 𝑓 (𝑧) = exp(𝑖3𝑧)

(𝑧2+1)2 first. It has
double poles at 𝑧 = ±𝑖. Let Γ𝑅 be the positively oriented semicircle of radius 𝑅 containing 𝑧 = 𝑖, and
let 𝛾𝑅 be its arc. Firstly

Res
𝑧=𝑖

𝑓 (𝑧) = lim
𝑧→𝑖

d
d𝑧(

𝑧 − 𝑖)2
𝑒𝑖3𝑧

(𝑧2 + 1)2

= lim
𝑧→𝑖

d
d𝑧

𝑒𝑖3𝑧

(𝑧 + 𝑖)2

=
1
𝑒3𝑖

.

Next apply Cauchy’s residue theorem

∫
𝑅

−𝑅

𝑒𝑖3𝑥

(𝑥2 + 1)2
d𝑥 =

2𝜋
𝑒3

−∫
𝛾𝑅
𝑓 (𝑧) d𝑧

∫
𝑅

−𝑅

cos 3𝑥
(𝑥2 + 1)2

d𝑥 = ℜ{
2𝜋
𝑒3

−∫
𝛾𝑅
𝑓 (𝑧) d𝑧}.

Now for 𝑧 ∈ {𝛾𝑅}, we have |𝑧| = 𝑅.

|𝑓 (𝑧)| =
𝑒3𝑦

(𝑧2 + 1)2

≤
𝑒𝑖3𝑦

(|𝑧|2 + 1)2

≤
1

(𝑅2 + 1)2
.

The last step arises from noting that 𝑦 ≥ 0 along the arc. Now by the ML-inequality

|ℜ∫
𝛾𝑅
𝑓 (𝑧) d𝑧| ≤ |∫

𝛾𝑅
𝑓 (𝑧) d𝑧|

≤
1

(𝑅2 − 1)2
𝜋𝑅

40



which goes to 0 as 𝑅 → ∞. Thus we conclude that in fact

∫
∞

−∞

cos 3𝑥
(𝑥2 + 1)2

d𝑥 =
2𝜋
𝑒3
.

♦
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