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1 Introduction

This is an introductory course in real analysis. The goal of this class is to prove the Fundamental
Theorem of Calculus. A worthy and noble cause. Let us begin.

2 Real numbers

The real numbers (R) are difficult to construct, hence we take a synthetic approach from
axioms. We say that:

Definition 2.1. R is a complete ordered field. �

We shall explore all three of those terms.

2.1 Fields

A field is a set of numbers F that possesses two binary operations (implies closure) +, ·, and
two special constants, 0, 1.

The field axioms:

• (NT) Non-triviality: 0 6= 1.

• (A1) Associativity: ∀x, y, z ∈ F, (x+ y) + z = x+ (y + z) = x+ y + x

• (A2) Commutativity: ∀x, y ∈ F, x+ y = y + x

• (A3) Additive Identity: ∀x ∈ F, x+ 0 = x

• (A4) Additive Inverse: ∀x ∈ F, ∃y ∈ F, x+ y = 0

• (M1) ∀x, y, z ∈ F, (x · y) · z = x · (y · z) = x · y · x

• (M2) ∀x, y ∈ F, x · y = y · x

• (M3) ∀x ∈ F, x · 1 = x

• (M4) ∀x ∈ F, x 6= 0 =⇒ ∃y ∈ F, x · y = 1

• (DL) ∀x, y, z ∈ F, x · (y + z) = x · y + x · z

Henceforth we also drop the dot i.e. x · y = xy for convenience’s sake.
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2.2 Ordered Fields

An ordered field is a field with an order. An order is a relation ≤.

• (O1) ∀x, y ∈ F, x ≤ y ∨ y ≤ x

• (O2) Anti-symmetry: ∀x, y ∈ F, (x ≤ y ∧ y ≤ x) =⇒ x = y

• (O3) Transitivity: ∀x, y, z ∈ F, (x ≤ y ∧ y ≤ z) =⇒ x ≤ z

• (O4) ∀x, y, z ∈ F, x ≤ y =⇒ x+ z ≤ y + z

• (O5) ∀x, y, z ∈ F, (x ≤ y ∧ 0 ≤ z) =⇒ xz ≤ yz

Afterwards we might use the symbol ≥ as well for convenience: x ≤ y =⇒ y ≥ x.

2.3 Consequences of the Field Axioms

A field has an unique additive and multiplicative identity. If x ∈ F , the additive inverse of x is
unique. If x ∈ F \ {0}, then the multiplicative inverse of x is unique.

Proposition 2.1. Suppose z ∈ F where F is a field. If it satisfies

∀x ∈ F, x+ z = x

then z = 0.

Proof.

z = z + 0 (by A3)

= 0 + z (by A2)

= 0 (by construction)

�

Similarly, let x ∈ F , suppose x+ y = x+ y′ = 0. Then,

y′ = y′ + 0

= y′ + (x+ y)

= (y′ + x) + y

= (x+ y′) + y

= 0 + y

= y

Hence now we will write the unique additive inverse for x as −x, and x−1 will serve as the
unique multiplicative inverse 1.

1The proof for the uniqueness of the multiplicative inverse is left out as homework
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Theorem 2.1. Let F be a field. Then ∀a, b, c ∈ F :

i. a+ c = b+ c =⇒ a = b

ii. a · 0 = 0

iii. (−a) · b = −(a · b)

iv. (−a) · b = −(a · b)

v. (−a) · (−b) = ab

vi. (ac = bc) ∧ c 6= 0 =⇒ a = b

vii. ab = 0 =⇒ (a = 0) ∨ (b = 0)

We will prove a few of them:

Proof.

i. Suppose a+ c = b+ c.

(a+ c) + (−c) = (b+ c) + (−c)
...

a = b

ii. Take a · 0 = a(0 + 0) = a · 0 + a · 0. Then it follows that a · 0 = 0.

iii.

ab+ (−a)b = (a+ (−a))b

= 0 · b
= 0

Hence (−a)b serves as the additive inverse for ab.

vi. Suppose a 6= 0 ∧ b 6= 0. Consider ab :

a−1(ab) = (a−1a)b = 1 · b = b 6= 0

We know a−1 is not 0. ab cannot be 0 either.

�

Theorem 2.2. Let F be a field. ∀a, b, c ∈ F :

i. a ≤ b =⇒ −b ≤ −a

ii. (a ≤ b) ∧ (c ≤ 0) =⇒ bc ≤ ac

iii. (a ≥ 0) ∧ (b ≥ 0) =⇒ ab ≥ 0
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iv. a2 ≥ 0

v. 0 < 1

Proof.

i.

a ≤ b

a+ [(−a) + (−b)] ≤ b+ [(−a) + (−b)]
...

−b ≤ −a

�

2.4 Absolute Value and Distance in R

Let x ∈ R. We say

|x| =

{
x, x ≥ 0

−x, x ≤ 0

and dist(x, y) = |x− y|.
Theorem 2.3. Let a, b, c ∈ R.

i. |a| ≥ 0

ii. |ab| = |a| · |b|

iii. Triangle inequality: |a+ b| ≤ |a|+ |b|

Proof.

iii. We know that:

−|a| ≤a ≤ |a| −|a| ≤ −a ≤ |a|
−|b| ≤b ≤ |b| −|b| ≤ −b ≤ |b|

...
...

−(|a|+ |b|) ≤ a+ b ≤ |a|+ |b| −(|a|+ |b|) ≤ −(a+ b) ≤ |a|+ |b|

Therefore |a+ b| ≤ |a|+ |b|

�

Corollary 2.3.1. ∀x, y, z ∈ R, dist(x, z) ≤ dist(x, y) + dist(y, z).

Proof.

|x− z| = |x− y + y − z|
= |x− y|+ |y − z|

�
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2.5 The Completeness Axiom

We finally get to the last term that defines R.

Let S ∈ R, S 6= ∅.

• S has a maximum if ∃M ∈ S,∀x ∈ S, x ≤ m.

• S has a minimum if ∃M ∈ S,∀x ∈ S,m ≤ x.

Let S be a non-empty subset of R.

• B ∈ R is an upper bound on S if ∀x ∈ S, x ≤ B.

• The best upper bound is the minimum of the set of all upper bounds. We call such a least
upper bound the supremum of S (supS).

Example 2.1. sup({0, 1}) = 1.

• 1 is an upper bound by inspection.

• Let x < 1. Then x cannot bound 1. Hence 1 is also the least upper bound.

�

Definition 2.2 (The Completeness Axiom). Let S be a non-empty subset of R. If S is bounded
above then S has a least upper bound. �

Remark. Q is not complete.

Take for example: S = {r ∈ Q | r2 ≤ 2} = {r ∈ Q | 0 ≤ r ≤
√

2}. supS =
√

2 6= Q.

2.6 Consequences of completeness

A brief aside to recap our construction. Let us check this fact: N ⊆ Z ⊆ Q ⊆ R.

We take Q = {a
b
| a, b,∈ Z ∧ b 6= 0}, where a

b
= c

d
⇐⇒ ad = bc. Then Z is in Q since we can

say Z = {a
1
| a ∈ Z}.

0, 1 ∈ R, and also 1 + 1 ∈ R, 1 + 1 + 1 ∈ R, and so on and 1 + 1 + . . . 6= 0 since R is ordered.
Then N ⊆ R, and −N ⊆ R as well. Then Z ⊆ R, and we can see now that Q ∈ R as well. It
is interesting to note that Q is the smallest field such that 0 6= 1 6= 1 + 1 6= . . ..

***

Any non-empty set bounded below also has a greatest lower bound. We call it the infimum of
S (inf S).
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Proof. If S is non-empty and bounded below, then −S is non-empty and bounded above. Hence
inf(S) = − sup(−S). �

Some brief notes on convention:

• If S is not bounded above then we write supS =∞.

• If S is empty then all M ∈ R are upper bounds for it, since the statement becomes
vacuously true. We say sup(∅) = −∞ and inf(∅) = +∞.

• If S is not bounded below then inf S = −∞.

***

Theorem 2.4 (Archimedean property). If a, b ∈ R+, then ∃n ∈ N, na > b.

Proof. Suppose not. Then ∃a, b > 0,∀n ∈ N, na ≤ b.

Let S = {na | n ∈ N}. S is obviously not empty. It is also bounded from above by b. Let s∗ ∈ R
be supS by completeness. s∗ is an upper bound on S, so ∀ε > 0, s∗− ε in not an upper bound.
In particular, s∗ − a is not an upper bound. Then ∃y ∈ S, y > s∗ − a. Then y + a > s∗. This
means that we have y + a ∈ S but it exceeds the upper bound of S, contradiction. �

Since Q ∈ R, Q also possesses the Archimedean property. However, the proof for AP in Q does
not require completeness.

Claim. If S ⊆ N(⊆ R) and S 6= ∅, then S has a smallest element.

Proof. Take the contrapositive: if S has no smallest element, then S 6= ∅. We know 0 6∈ S, since
∀n ∈ N, n ≥ 0, then 0 would be minS. Suppose then 0 6∈ S ∧ . . .∧ n 6∈ S, then n+ 1 6∈ S since
otherwise that would become the minimum element. Thus S is empty. �

Similarly, if S ⊆ Z and S is bounded below, then S has a smallest element.

Lemma 2.5. Suppose a, b ∈ R, a < b. If b− a > 1, then ∃m ∈ Z, a < m < b.

Proof. Let S = {k ∈ Z | k > a}. S is bounded below by a. S is not empty: if a ≤ 0 then 0 ∈ S.
If a > 0, then ∃k ∈ N, k · 1 > a by the Archimedean property, so k ∈ S. So now let m = minS.
Then,

m ≥ a

m− 1 < a

m < a+ 1 < a+ (b− a) = b

�

Theorem 2.6 (Density of Q in R). ∀a, b ∈ R, a < b =⇒ ∃r ∈ Q, a < r < b.

Proof. b− a > 0. By the Archimedean Property, ∃n ∈ N, n(b− a) > 1, or nb− ba > 1. By the
lemma above, ∃m ∈ Z, na < m < nb. Then a ≤ m

n
< b. �
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2.7 Summary

Ordered Field: Just the 15 axioms, fairly simple.

Completeness: If S ⊆ R and S 6= ∅ and ∃M ∈ R, ∀x ∈ S, x ≤M , then ∃s∗ ∈ R, (∀x ∈ S | x ≤
s∗)∧ (∀ε > 0,∃y ∈ S | y > s∗−ε). A convenient way of saying “upper bound” and “least upper
bound”. Similarly, every non-empty set bounded below also has an infimum, the greatest lower
bound ∈ R.

Archimedean property (AP): ∀a, b > 0,∃n ∈ N, na > b.

(”Really obvious”) Lemma: ∀a, b ∈ R, b− a > 1 =⇒ ∃m ∈ Z, a < m < b.

Density of Q in R: ∀a, b ∈ R, a < b =⇒ (∃r ∈ Q, a < r < b).

3 Sequences

3.1 Convergence

A sequence of real numbers is a function s : I → R where the indexing set I is an infinite
subset of the natural numbers.

Theorem 3.1 (Ross 7.1). The sequence sn converges to s ∈ R if

∀ε > 0,∃N ∈ N,∀n ∈ I : (n ≥ N) =⇒ |sn − s| < ε.

We write s = lim(sn)n∈I
2

Example 3.1. lim( 1
n
)∞n=1 = 0 �

Proof. Let ε > 0. By the Archimedean property, ∃N ∈ N \ {0} such that 0 < 1
N
< ε. Let

n ≥ N . Then 0 < 1
n

1
N

. Thus ∀n ≥ N , 0 < 1
n
≤ 1

N
≤ ε =⇒

∣∣ 1
n
− 0
∣∣ < ε. �

Theorem 3.2 (Ross 9.1). Every convergent sequence is bounded.

A bounded sequence is one such that ∃M ≥ 0,∀n ∈ I : |sn| ≤M .

A convergent sequence is one such that ∃s ∈ R, ∀ε > 0,∃N,∀n ≥ N : |sn − s| < ε.

Proof. Let ε = 1. Then ∃N, ∀n : (n ≥ N) =⇒ |sn − s| < 1. This implies that ∀n ≥ N : |sn| <
|s|+ 1 (because |sn| = |sn − s+ s| ≤ |sn − s|+ |s| < 1 + |s|).

Let M −max(|s0|, |s1|, . . . |sN−1|, |s+ 1|). M is an upper bound on the sequence, since

|sk| ≤

{
max(|s0|, . . . , |sN−1|), k < N

|s|+ 1, k ≥ N

�
2Sometimes we may drop the index and just write sn instead of (sn)n for simplicity’s sake.
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Theorem 3.3 (Ross 9.2). If k ∈ R and (sn)n converges to s, then (ksn)n converges to ks.

Proof.
Case 1: If k = 0, then 0 = 0.

Case 2: If k 6= 0, then ∀ε > 0, ∃N,∀n ≥ N : |sn − s| < ε
|k| . This means that ∀ε > 0, ∃N, ∀n ≥

N : |k||sn−s| < ε �

Theorem 3.4 (Ross 9.3). If sn converges to s and tn converges to t, then (sn + tn)n converges
to s+ t.

Proof. Let there be an ε > 0. We can find N ′ such that ∀n ≥ N ′ : |sn − s| < ε
2
. We can also

find N ′′ such that ∀n ≥ N ′′ : |tn − t| < ε
2
. Take N = max(N ′, N ′′). Then ∀n ≥ N,

|(sn + tn)− (s+ t)| = |(sn − s) + (tn − t)|
≤ |sn − s|+ |tn − t|
< ε

�

Theorem 3.5 (Ross 9.4). If sn converges to s and tn converges to t, then (sn · tn)n converges
to s · t.

Proof. Let there be ε > 0. By Theorem 3.2, we can find some M > 0,M ≥ |sn| for all n > N .
Choose N such that |tn − t| < ε

2M
∧ |sn − s| < ε

2(|t|+1)
3.

|sntn − st| = |sntn − snt− st+ snt|
≤ |sn||tn − t|+ |t||sn − s|

< M · ε

2M
+ |t| · ε

2(|t|+ 1)

<
ε

2
+
ε

2
= ε

�

Theorem 3.6 (Ross 9.5). lim 1
sn

= 1
lim sn

, s 6= 0. Proof omitted.

Theorem 3.7 (Ross 9.6). lim sn
tn

= lim sn
lim tn

, s 6= 0. Proof omitted.

3.2 Monotone and Cauchy sequences

A sequence is called monotone if ∀n, sn+1 ≤ sn, or ∀nsn+1 ≤ sn.

Theorem 3.8 (Ross 10.2). If sn is bounded and monotone, then it converges.

Proof. Assume that sn is increasing. There is M ∈ R,∀n, sn ≤M . So {sn | n ∈ I} is not empty
and is bounded above. ∃L ∈ R, L = sup({sn | n ∈ I}).

3The choice of |t + 1| is for the case when t = 0.
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Claim. lim sn = L.

Let ε > 0. Then there exists N,L − ε < sN ≤ L. Since sn is monotonously increasing, ∀n ≥
N,L− ε < sn ≤ L. Then,

L− ε < sn ≤ L < L+ ε

−ε < sn − L < ε

|sn − L| < ε

�

3.3 Limits superior and inferior

Let (sn)n be a sequence of real numbers. Then

lim sup(sn)n = lim
N→∞

[sup{sn | n ≥ N}]

lim inf(sn)n = lim
N→∞

[inf{sn | n ≥ N}]

For convenience just let sup . . . be vN and inf . . . be uN in the future.

Example 3.2. Consider sn = (−1)n(n+1)
n

=
(
−2

1
,+3

2
,−4

3
,+5

4
, . . .

)

v1 = sup{sn | n ≥ 1} =
3

2

v2 = sup{sn | n ≥ 2} =
3

2

v3 = sup{sn | n ≥ 3} =
5

4
...

(vN)N is always decreasing, so it has a limit. (uN)N is also always decreasing, so it too has a
limit. We might gather that lim sup sn = 1, and lim inf sn = −1. �

Example 3.3. Consider sn =
(

(−1)nn
n+1

)∞
n=0

.

lim sup sn = lim(1, 1, 1, . . .) = 1. lim inf sn = −1 �

Example 3.4. Consider the sequence
(
1
2
, 1
3
, 2
3
, 1
4
, 2
4
, 3
4
.1
5
, 2
5
, . . .

)
lim sup = 1, lim inf = 0. �

Theorem 3.9 (Ross 10.7). lim(sn)n = L ∈ R ∪ {±∞} ⇐⇒ lim sup(sn)n = lim inf(sn)n =
lim(sn)n.
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Proof.
( =⇒ ) We only handle the case where L is real. Let ε > 0. We know that (sn)n converges to
L. This means that ∃N,∀n : n ≥ N =⇒ |sn − L| < ε =⇒ L− ε < sn < L+ ε.

It follows that vN = sup{sn : n ≥ N} ≤ L + ε. Also, uN ≥ L − ε. Since vN is decreasing and
uN is increasing, L− ε ≤ un ≤ vn ≤ L− ε. Taking ε→ 0, we get that lim sup = lim inf.

(⇐=) Again, we only handle the case where L is real. Suppose lim sup sn = lim inf sn = L ∈ R.

Then ε > 0,∃N ′,∀N : N ≥ N ′ =⇒ |vN − L| < ε =⇒ sup{sn : n ≥ N} < L+ ε.

This means that:

∃N ′,∀N ≥ N ′, ∀n ≥ N : sn < L+ ε

=⇒ ∃N ′,∀n ≥ N ′ : sn < L+ ε

Doing the same for uN we gather that

∃N ′′,∀n ≥ N ′ : sn > L− ε

Take N∗ = max(N ′, N ′′). Then ∀n ≥ N∗, L− ε < sn < L+ ε =⇒ |sn − L| < ε. �

Definition 3.1. A sequence (sn)n is called Cauchy if

∀ε > 0,∃N,∀n,m : (n,m ≥ N) =⇒ |sn − sm| < ε

�

Theorem 3.10 (Ross 10.10). Cauchy sequences are bounded.

Proof. Let ε = 1. Then ∃N, ∀n,m : n,m ≥ N =⇒ |sn − sm| < 1. In particular, ∀n : n ≥
N =⇒ |sn − sN | < 1.

Let M = max{|s0|, |s1|, . . . , |sN |+ 1}. Then M bounds sn from above. �

Corollary 3.10.1. If (sn)n is Cauchy then lim sup, lim inf ∈ R

Theorem 3.11 (Ross 10.11). A sequence in R is convergent iff it is Cauchy.

Proof.
( =⇒ ) Suppose we have a convergent sequence with lim(sn)n = s ∈ R. Let ε > 0. ∃N, ∀m,n ≥
N : |sn − s| < ε

2
, |sm − s| < ε

2
.

|sn − sm| ≤ |sn − s|+ |sm − s|

<
ε

2
+
ε

2
= ε

(⇐=) Suppose (sn)n is Cauchy. Let ε > 0 and choose N large enough so ∀n,m : n,m ≥ N =⇒
|sn − sm| < ε.
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This means:

∀n,m : n,m ≥ N =⇒ sn < sm + ε

∀m : m ≥ N =⇒ sup{sn : n ≥ N} ≤ sm + ε

=⇒ vN − ε ≤ sm

=⇒ vN − ε ≤ inf{sm : m ≥ N}
=⇒ vN − ε ≤ uN

This means that

∀ε > 0,∃N : lim sup sn ≤ vN ≤ uN + ε ≤ lim inf sn + ε

Since this holds for all ε > 0, this means that lim sup sn ≤ lim inf sn. However the opposite
inequality is also true, hence we conclude that lim sup sn = lim inf sn = lim sn. �

A quick look back at our journey so far: completeness axiom ⇐⇒ bounded monotone sequences
converge ⇐⇒ all Cauchy sequences converge.

A metric space in which all Cauchy sequences converge is called complete. We shall cover more
about this later.

3.4 Subsequences

A sequence is (sn)n∈I , where I is an infinite subset of N. We can do this: for any infinite J ⊆ I,
we consider a new (sn)n∈J .

Even if the sequence does not converge, a subsequence might be able to.

Practically, a subsequence is any sequence formed by reading some of the terms from left to
right. A subsequence of (sn)∞n=0 is any (snk

)∞k=0 with n0 < n1 < n2 < . . .

Example 3.5.
(

(−1)nn
n+1

)∞
n=0

. The even-indexed subsequence:
(

(−1)2n2n
2n+1

)∞
n=0

�

Example 3.6.
(
1
2
, 1
3
, 2
3
, 1
4
, 2
4
, 3
4
.1
5
, 2
5
, . . .

)
. �

Remark. If r ∈ [0, 1], then there exists a subsequence that converges to r.

If r is rational, this is possible since (r, r, r, . . .) is a subsequence that converges to r.

The general case follows from the density of Q in R.

Definition 3.2. Let λ ∈ R ∪ {±∞}. λ is a subsequential limit of (sn)n if there exists a
subsequence (snk

)k such that λ = limk→∞(snk
). If λ ∈ R, then λ is called a limit point. �

Definition 3.3. Let SSL(sn)n = {all subsequential limits of (sn)n}(⊆ R ∪ {±∞}).

Let LP (sn)n = {all limit points}. LP = SSL ∩R. �

Example 3.7. For the example directly above, SSL = LP = [0, 1] �
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Theorem 3.12 (Ross 11.2i). Let (sn)n be a sequence and let λ ∈ R. λ is a limit point of (sn)n
⇐⇒ ∀ε > 0,∃∞n ∈ I : |sn − λ| < ε.

Proof.
( =⇒ ) Let λ ∈ LP (sn)n. Then ∃(nk)k such that limk→∞(snk

)k = λ.

∀ε > 0,∃K, ∀k : k ≥ K =⇒ |snk
− λ| < ε. So the set of all {nk | k ≥ K} is infinite.

(⇐=) Suppose ∃ε > 0 such that {n ∈ I | |sn − λ| < ε} is finite. Then ∃N,∀n ≥ N : |sn − λ| ≥ ε.
But then ∀n ≥ N : (sn ≥ λ+ ε) ∨ (sn ≤ λ− ε). �

Definition 3.4. Let S be a subset of R, possibly empty. Let p ∈ R. We say that p is adherent
to S if dist(p, S) = inf{dist(p, x) | x ∈ S} = 0. A set that contains all of its adherent points is
called closed. �

For non-empty S the infimum always exists and is bounded below. If S is empty then it has no
adherent points. It is clear that any p ∈ S is always adherent to S. But for example 0 6= (0, 1)
but 0 is adherent.

Theorem 3.13. Let S ∈ R. The following are equivalent:

i. For all convergent sequences with terms in S, its limit is also in S.

ii. S is closed.

Proof.
(i =⇒ ii) Let p be adherent to S. We will build a sequence of terms in S that converges to p.

∀n ≥ 1, we can choose sn ∈ S such that |sn − p| < 1
n
, by adherence. Then p− 1

n
< sn < p+ 1

n
.

By the squeeze lemma, lim sn = p. We know p ∈ S from point i. Therefore S is closed.

(ii =⇒ i) Suppose S is closed. Let (sn)n be a convergent sequence in S. Suppose p = lim sn.
∀ε > 0,∃N, ∀n ≥ N : |sn − p| < ε. So ∀ε > 0,∃s ∈ S : |s− p| < ε. Therefore inf{|s− p|, s ∈
S} < ε, and since S is closed, p is also in S. �

Theorem 3.14 (Title). LP (sn)s is closed.

Proof. We have to show that if (λ1, λ2, λ3, . . .)→ λ where all λn are limit points of (sn)n, then
λ must also be a limit point of (sn)n.

Without loss of generality, we may assume that ∀n : |λn − λ| < 1
2n

.

Pick (tn,k)k subsequences of (sn) where ∀k, |tn,k − λn| < 1
2k

.

t11 t12 t13 . . .→ λ1
t21 t22 t23 . . .→ λ2

...

Claim. lim(tn,n) = λ.
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Let ε > 0. Choose n such that 1
n
≤ ε. Then,

|tn,n − λ| ≤ |tn,n − λn|+ |λn − λ| <
1

2n
+

1

2n
≤ ε

�

Theorem 3.15 (Ross 11.3). lim(sn)n = λ ⇐⇒ SSL(sn)n = {λ}.

Proof. Let us say s = lim(sn)n, and let (snk
)k be a subsequence of (sn)n. By the way in which

we simply read off the terms from left to right, nk ≥ k.

Take ε > 0. Then ∃N : n > N =⇒ |sn − s| < ε. However this also means nk > N , and
therefore also |snk

− s| < ε.

The proof for the other direction is omitted. �

Lemma 3.16. Every sequence has a monotone subsequence (for R).

Proof. Without loss of generality, we assume that the sequence is indexed by N. We will call
N ∈ N dominant if ∀m ≥ N : sm ≤ sN . Then let D be the set of all dominant indices.

Case 1: If D is infinite, then we are done. D = {N0 < N1 < . . .}, and (snk
)k∈D is decreasing,

since snk+1
≤ snk

.

Case 2: If D is finite, then ∃M such that ∀N ≥ M , N is not dominant: ∀N ≥ M, ∃m ≥ N :
sm > sN . Then we construct a subsequence as follows:

Take N = N0. ∃M1 ≥M0, sM1 > sM0 . Then we can keep going, with sM0 < sM1 < sM2 < . . . �

Lemma 3.17. Every sequence has a subsequential limit.

Proof. Let (snk
)k be a monotonous subsequence. All monotonous sequences have limits. �

Theorem 3.18 (Bolzano-Weierstrass theorem). If (sn)n is bounded then LP (sn)n is non-empty
(i.e. every bounded sequence has a convergent subsequence).

Proof. Let (snk
)k be a monotonous subsequence. It also happens to be bounded. Hence, by

Lemma 3.4, it converges. �

3.5 Summary

A sequence (sn)n is convergent if

∃s ∈ R,∀ε > 0,∃N,∀n : n ≥ N =⇒ |sn − s| ≤ ε︸ ︷︷ ︸
lim(sn)n=s

A sequence is bounded if ∃M ≥ 0, ∀n : |sn| ≤M .

A sequence is monotone if (∀n : sn+1 ≥ sn) ∨ (∀n : sn+1 ≤ sn).
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Convergent =⇒ bounded; bounded ∧ monotone =⇒ convergent.

Regarding sequences that do not converge:

∀M,∃N,∀n : n ≥ N =⇒ sn ≥M ≡ “ lim(sn)n = +∞”

It is similar with a limit of −∞. We could also say that lim(−sn)n = +∞.

Corollary 3.18.1 (Ross 10.5). All monotone sequence have a limit ∈ R ∪ {±∞}

4 Topological concepts

5 Closed and open sets

We briefly touched on closed sets in Def. 3.4. Perhaps we should expand on this a little more.
Previously we have defined the distance between two points x, y ∈ R with dist(x, y) = |x− y|.
Similarly we can also define the distance between a point x ∈ R and a non-empty set S ⊆ R as

dist(x, S) = inf{dist(x, s) | s ∈ S}.

We say x is adherent to S if dist(x, S) = 0. If s ∈ S then s is adherent to S automatically, but
the converse is not necessarily true. For example 0 is adherent to (0, 1] even though it is not in
the interval.

Then as per Def. 3.4, a set is called closed if it contains all of its adherent points.

Definition 5.1. Let S ⊆ R. The closure of S, denoted as S, is given by

S = {x ∈ R | dist(x, S) = 0}.

That is, S contains all of the points that are adherent to S. �

Theorem 5.1. Let S ⊆ R. S is closed.

Proof. We want to show that ∀x ∈ R,∀s ∈ S,∀s ∈ S : dist(x, S = 0) =⇒ dist(x, S) = 0 4.
In other words, this states that every adherent point of S is also an adherent point of S and
hence is in S.

dist(x, S) = inf{dist(x, s)}
0 = inf{|x− s|}
≤ inf{|x− s|+ |s− s|}
= inf{dist(x, s)}+ inf{dist(s, s)}
= dist(x, S)

4We suppress the predicates for the rest of the proof, it is understood that we take the infimum over all
s ∈ S.
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The last line is because S contains all the points adherent to S, hence its distance from any
s ∈ S is 0. Now

dist(x, S) = inf{dist(x, s)}
= inf{|x− s|}
≤ inf{|x− s|+ |s− s|}
= inf{dist(x, s)}+ inf{dist(s, s)}
= 0

Hence dist(x, S) = 0, which completes the proof. �

Theorem 5.2. Q = R.

Proof. Q ⊆ R simply because it contains elements selected from R by definition.

Now we want to show that Q ⊇ R. To do this, we can show that ∀x ∈ R : inf{dist(x, q) | q ∈
Q} = 0, then which would then suggest that x ∈ Q.

Take any x ∈ R, and let D = {dist(x, q) | ∀q ∈ Q}. Let there be an ε > 0, and take the
smallest n ∈ N such that 10−n < ε. Then let x′ be x but truncated to the n-th digit after
the decimal point (if it has less decimals then we do nothing). x′ ∈ Q since it has a finite
number of decimal points, and is easily expressible as a fraction. Then |x− x′| < 10−n < ε.
Since ∀ε > 0,∃d ∈ D : d < 0 + ε, we conclude that inf D = 0. �

It would be too easy if we said that a set that is not closed is open, since there are odd edge
cases that we are ignoring (such as the empty set) this way.

Definition 5.2. Let ⊆ R. A point x ∈ S is interior to S if there is an ε > 0 such that
(x − ε, x + ε) ⊆ S. This also means there is some open neighbourhood around x that is
contained entirely within S. �

Definition 5.3. A set is called open if all of its elements are interior points. �

Theorem 5.3. Let U ⊆ R. U is open iff U c is closed.

Proof.

( =⇒ ) We need to check if there are any adherent points of U c outside of U c, i.e. inside U . Say
there was some u ∈ U that is adherent to U c. Then dist(u, U c) = 0 and by the property of the
infimum ∀ε > 0,∃u′ ∈ U c : |u− u′| < ε, which also mean that u′ ∈ (u− ε, u+ ε) 6⊆ S. Thus all
adherent points of U c is contained within itself.

( ⇐= ) Since U c is closed, it contains all of its adherent points, so none of them exist in U .
Thus for any u ∈ U , we can let ε = dist(u, U c) > 0. Then necessarily (u− ε, u+ ε) ⊆ U . �

So far we have been constantly using open intervals (a, b) = {x ∈ R|a < x < b} even before we
have talked about the openness of a set, and it may be disturbing. However this is not circular
as open intervals were not defined with any notion of the openness that we have just discussed.
Nevertheless, it is easy to show that the name “open” interval is valid.

Theorem 5.4. Every open interval (a, b) ⊂ R is open.
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Proof. For any x ∈ (a, b), let ε = min(x− a, b− x). Then (x− ε, x+ ε) ⊆ (a, b). �

Ordered field →︸︷︷︸
Discard

everything
but norm

Normed space →︸︷︷︸
Discard

everything but
metric function

Metric space →︸︷︷︸
Discard

everything except
closed or open

Topological space− · · · → Set

A topological space is a set X(= R) together with τ , a set of subsets of X, called a topology,
consisting of sets that are closed. They satisfy these properties:

i. ∅, X ∈ τ : they are closed.

ii. v1, v2 ∈ τ =⇒ v1 ∪ v2 ∈ τ

iii. {vi : i ∈ I} ⊆ τ =⇒
(⋂
i∈I
vi

)
∈ τ

Note that we only specify finite unions but intersections can potentially be infinite.

Definition 5.4. A point p ∈ R is adherent to S ⊆ R if ∀ε > 0,∃x ∈ S : |x− p| < ε. �

Definition 5.5. A set S is closed if p adherent to S implies p ∈ S. �

Proof. i. ∅ has no adherent points, so it is vacuously true. Otherwise, if p is adherent to R
then p ∈ R.

ii. Suppose v1 and v2 are closed subsets of R. Suppose there is a p adherent to (v1 ∪ v2).
Then ∀ε > 0,∃x ∈ v1 ∪ v2 : |x− p| < ε.

Pick xn ∈ v1∪ v2 such that |xn − p| < 1
n
. Then there exists a subsequence where all terms

are in v1 or in v2. So p is in either v1 or v2.

iii. If p is adherent to
⋂
i∈I vi then ∀ε > 0,∃x ∈

⋂
i vi, such that |x− p| < ε. Then ∀i ∈ I,∃x ∈

vi : |x− p| < ε, so ∀i ∈ I : (p adh vi). It follows that ∀i ∈ I : p ∈ vi =⇒ p ∈
⋂
i vi.

�

Example 5.1. Z is closed. �

Example 5.2. In R there are infinite families of closed sets whose union is not closed. Consider⋃∞
n=2

[
1
n
, 1
]

=
[
1
2
, 1
]
∪
[
1
3
, 1
]
∪ . . . = (0, 1]) �

Example 5.3. Let us define the set Cn+1 to be Cn but without all the middle thirds of Cn. In
other words:

C0 = [0, 1]

C1 =

[
0,

1

3

]
∪
[

2

3
, 1

]
= C0 \

(
1

3
,
2

3

)
C2 =

[
0,

1

9

]
∪
[

2

9
,
1

3

]
∪
[

2

3
,
7

9

]
∪
[

8

9
, 1

]
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Since Cn is an union of 2n closed intervals, it is also closed.

Consider the Cantor set C∞ =
∞⋂
n=0

Cn.

C∞ is also closed. It is non-empty. However C∞ contains no open intervals, and it has no interior
points.

C∞ consists of all r ∈ [0, 1] such that r = (0.d1d2d3 . . . di)3, with di ∈ {0, 1}. So (0.2020 . . .)3 =(
3
4

)
10
∈ C∞. �

5.1 Cardinality

Intuitively, the cardinality of a set represents how many items are in it. So |{1, 2, 4}| =
|{2, 1, 1, 4}| = 3.

Let A and B be sets.

• |A| = |B| if there is a bijection f : A→ B.

• |A| ≤ |B| if there is an injection f : A→ B.

• |A| < |B| if |A| ≤ |B| but |A| 6= |B|

Definition 5.6. S is countable infinite if S is finite, or if |S| = |N|. We also define |N| = ℵ0 as
the smallest infinite cardinal. �

In other words, S is countable iff there exists a sequence of real numbers (sn)∞n=0 such that
S = {sn | n ∈ N}

Example 5.4. N is countably infinite. Z is also countably infinite since we can enumerate
them as (1,−1, 2,−2, . . .).

We claim that Q is also countably infinite. We first show that Q+ (all positive rationals) are
countably infinite, the extension to all rationals follow easily afterwards. We can enumerate Q+

in this manner:

�

Example 5.5. The set of all infinite binary sequences 2N is uncountable.

Suppose instead that there exists a surjection from N→ 2N, and we can list the elements with
f(n) = (sn,i)

∞
i=0. Consider (1− sn,n)∞n=0. We have found a sequence that was not present in the

original. This is precisely Cantor’s diagonal argument – we take the diagonal entries and flip
the bits to create a totally new sequence. �

Example 5.6. C∞ is uncountable. Recall that C∞ is also the set that contains all r ∈ [0, 1]
that can be represented in base 3 without using the digit 1. Then we can defines an injective
function f : 2N → C∞ as simply (d1d2d3 . . .)→ 0.(2d1)(2d2)(2d3) . . ..

f is also injective, because (d1d2 . . .) 6= (d′1d
′
2 . . .) =⇒ f(d1d2 . . .) 6= f(d′1d

′
2 . . .)
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Figure 1: Enumerating the rationals.

This also means that |C∞| =
∣∣2N∣∣.

Obviously, |C∞| ≤ |R|. But there also exists injections R → [0, 1] → 2N. Hence |R| ≤ 2ℵ0 .
Therefore we conclude that |R| = 2ℵ0

Here we perhaps encounter a paradox. We know that Q is dense in R. In other words, every
non-empty subset of R meets Q: Q is topologically big. Yet |Q| < |R|.

C∞ on the other hand is “nowhere dense”. If x, y ∈ C∞, then there exists an open set U : x <
U < y 5 and U ∩ C∞ = ∅. It is topologically small, and yet |C∞| = |R|. �

6 Infinite series

An infinite series is an expression of the form
∑∞

n=N an
6.

We call (sM)∞M=N =
∑M

n=N an a partial sum.

The series converges iff the sequence of partial sums is a convergent sequence.

Example 6.1.

•
∑∞

n=1
1
n

diverges.

•
∑∞

n=1
1
n2 converges to π2

6

•
∑∞

n=1
1
n3 converges to ???

�
5Here we use the inequality x < U as shorthand to mean x is smaller than every element in U .
6We occasionally drop the bounds for simplicity.
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Definition 6.1 (Cauchy Criterion).
∑∞

n=0an converges iff the partial sums are Cauchy.

∀ε > 0,∃N, ∀m,n ≥ N :

∣∣∣∣∣
n∑
k=0

ak −
m∑
k=0

ak

∣∣∣∣∣ < ε

In other words,

∀ε > 0,∃N,∀m,n ≥ N :

∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ < ε

�

This means that if
∑
an converges, then also ∀ε > 0,∃N,∀n ≥ N : |

∑n
k=n ak| < ε. Therefore

lim an = 0. The converse is clearly not true.

Example 6.2 (Geometric Series).

∑
rk =

{
1

1−r , if |r| < 1

diverges otherwise

�

Theorem 6.1 (Comparison Test). If (an)n is a sequence of non-negative numbers, and
∑
an

converges and |bn| ≤ an, then
∑
bn converges.

Proof.
m∑
k=n

bk ≤
m∑
k=n

|bk| ≤
m∑
k=n

ak < ε

Then we just choose N such that ∀n,m ≥ N, |
∑m

k=n ak| < ε. �

Theorem 6.2 (Absolute Convergence). If
∑
|an| converges, then

∑
an does so as well.

Theorem 6.3 (Ratio Test). Consider
∑
an.

• If lim sup
∣∣∣an+1

an

∣∣∣ < 1, the series converges absolutely,

• If lim inf
∣∣∣an+1

an

∣∣∣ > 1, the series diverges,

• Otherwise no information.

Theorem 6.4 (Root Test). Consider
∑
an. Let α = lim sup |an|

1
n .

• If α < 1, the series converges absolutely,

• If α > 1, the series diverges,

• If α = 1, no information.
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Proof. Choose ε such that α + ε < 1. Then there exists N such that α − ε < sup{|an|
1
n : n ≥

N} < α + ε

Then ∀n ≥ N ,

|an|
1
n < α + ε

|an| < (α + ε)n

∞∑
n=N

|an| ≤
∞∑
n=N

(α + ε)n

Hence the LHS converges. �

7 Continuity

7.1 Continuous Functions

Intuitively, a discontinuity in a function might be caused by a jump, vertical asymptotes, or
removable discontinuities (e.g. sinx

x

∣∣
0
).

From Calculus we might recall the fact that a function f is said to be continuous at a point α
if f is defined at α and limx→α f(x) = f(α).

We will be concerned with function f : D → R. We say f is real-valued on D(⊆ R).

Definition 7.1. Let f : D → R be a real valued function with domain D. Let α be in D.

i. We say that f is continuous at the point α if:
((xn)n is a sequence in D and lim(xn)n = α) =⇒ lim(f(xn))n = f(α).

ii. We say that if f is continuous on the set S ⊆ D if:
∀α ∈ S, f is continuous at α.

iii. We say that f is continuous if it is continuous on its domain. This is called sequential
continuity.

�

Definition 7.2. f is called ε-δ continuous at α if:

∀ε > 0,∃δ > 0,∀x ∈ D : |x− α| < δ =⇒ |f(x)− f(α)| < ε

�

Theorem 7.1 (Ross 17.2). f is sequentially continuous at α iff f is ε-δ continuous at α.
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Proof.

( =⇒ ) Assume f is not ε-δ continuous.

∃ε > 0,∀δ > 0,∃x ∈ D : (|x− α| < δ) ∧ (|f(x)− f(α)| ≥ ε)

∃ε > 0,∀n ≥ 1,∃xn ∈ D :

(
|xn − α| <

1

n

)
∧ (|f(xn)− f(α)| ≥ ε)

Notice that lim(xn)n = α. lim(f(xn))n 6= f(α). So f is not sequentially continuous at α.

(⇐=) Suppose that f is ε-δ continuous, and let (xn)n → α, xn ∈ D.

∀ε > 0,∃N,∀n : (n ≥ N) =⇒ |xn − α| < ε

∀δ > 0,∃N,∀n : (n ≥ N) =⇒ |xn − α| < δ

Then we have

∃N, ∀n : (n ≥ N) =⇒ (|xn − α| < δ =⇒ |f(xn)− f(α)| < ε)

from ε-δ continuity of f . So lim f(xn)n = lim f(α). �

Theorem 7.2. Suppose that f, g : D → R are continuous at α ∈ D. Then:

i. |f | is continuous at α.

ii. kf is continuous at α.

iii. f + g is continuous at α.

iv. f · g is continuous at α.

v. f/g is continuous at α provided g(α) 6= 0.

Proof. We will quickly prove a few of them.

i. |f(xn)− f(α)| ≤ |f(xn)− f(α)|

ii. Suppose (xn)n → α, xn ∈ D.

lim((kf)(xn))n = lim(kf(xn)))n = k lim f(xn)n = kf(α)

iii.
lim((f + g)(xn))n = lim(f(xn) + g(xn))n = . . . = (f + g)(α)

v. Suppose (xn)n → α, xn ∈ D. By continuity of f, g, f(xn) → f(α), g(xn) → g(α) 6= 0.
∃N ′, ∀n ≥ N ′, g(xn) > 0.

lim
n≥N ′

f(xn)n
g(xn)n

=
lim f(xn)n
lim g(xn)n

=
f(α)

g(α)
=

(
f

g

)
(α)

�
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Theorem 7.3 (Ross 17.5). If f is continuous at α and g is continuous at f(α), then g ◦ f is
continuous.

Example 7.1.

• Constants are continuous.

• x is continuous: ∀ε > 0,∃δ > 0,∀x ∈ R : |x− α| < δ =⇒ |x− α| < ε

• xn, n ∈ Z+ is continuous.

• Polynomials are continuous.

• 1
x

is continuous on its domain R \ {0}.

• Rational functions are continuous on their domain.

• If f : X → Y is continuous and invertible, then so is its inverse.

• x
|x| is continuous on its domain.

�

7.2 Properties of continuous functions

Theorem 7.4 (Extreme Value Theorem). Suppose D is closed and bounded (compact), and
suppose f : D → R is continuous.

i. f is bounded.

ii. f has its minimum or maximum points in D. i.e. ∃α, β ∈ D, ∀x ∈ D : f(α) ≤ f(x) ≤
f(β).

Proof. i. Assume f is not bounded. For simplicity we assume it is not bounded above.
Then ∀n ≥ 1, ∃xn ∈ D : f(xn) ≥ n. Consider (xn)n. It is bounded as well. Then there is
a convergent subsequence (xnk

)k → λ ∈ R, by the B-W theorem (3.18). λ ∈ D since D is
closed. But lim f(xnk

)k =∞ because f(xnk
) ≥ nk. So f is not continuous.

ii. Let M = sup{f(x) | x ∈ D}. M exists since the set is bounded and non-empty. We want
to show that ∃β ∈ D, f(β) = M .

∀n ≥ 1,∃yn ∈ D : M − 1

n
< f(yn) ≤M

Since yn is bounded, there is a subsequence that converges to β. Then lim(ynk
)k =

lim(yn) = M . So by continuity, f(β) = M .

�

Theorem 7.5 (Intermediate Value Theorem). Let f : I → R be continuous, where I is an
interval. Suppose a, b ∈ I and a < b. Then ∀y between f(a) and f(b), ∃x∗ ∈ [a, b] : f(x∗) = y.
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Proof. Assume f(a) < y < f(b). Let S = {x ∈ [a, b] | f(x) < y}. Since a ∈ S, S 6= ∅ and
since S ≤ b, S is bounded. Let x∗ = supS. Since [a, b] is closed, x∗ ∈ [a, b]. We can then build
a sequence (sn)n such that sn → s∗, x∗ − 1

n
< sn ≤ x∗. Then lim f(sn) = f(x∗) ≤ y. Now let

tn = min{b, x∗ + 1
n
}. Then (tn)n is a sequence in ([a, b] \ S) ⊆ I and → x∗ so f(x∗) ≥ y. Then

it follows that f(x∗) = y. �

Corollary 7.5.1. If f : I → R is continuous and I is an interval, then so is f(I).

7.3 Uniform Continuity

We say f : D → R is continuous if

∀y ∈ D, ∀ε > 0, ∃δ > 0,∀x ∈ D : |x− y| < δ =⇒ |f(x)− f(y)| < ε.

We can say δ = δ(f, ε, y).

Definition 7.3 (Uniform Continuity). We say that f is uniformly continuous on D if

∀ε > 0, ∃δ > 0,∀x ∈ D, ∀y ∈ D : |x− y| < δ =⇒ |f(x)− f(y)| < ε

�

Here δ depends only on f and ε.

Example 7.2. Consider y = 1
x

on (0,∞). It is not uniformly continuous although it is contin-
uous. If you pick some δ that works for ε and y, it will stop working as y → 0+. �

Example 7.3. Consider f(x) = sin( 1
x
) on (0,∞). If is also continuous but not uniformly

continuous. �

Theorem 7.6 (Ross 19.2). If f : D → R is continuous and D is compact, then f is uniformly
continuous.

Proof. Suppose not. Then

∃ε > 0,∀δ > 0,∃x, y ∈ D : (|x− y| < δ) ∧ (|f(x)− f(y)| ≥ ε)

∃ε > 0,∀n ≥ 1,∃xn, yn ∈ D :

(
|xn − yn| <

1

n

)
∧ (|f(xn)− f(yn)| ≥ ε)

(xn)n is a bounded sequence, so it has a convergent subsequence, (xnk
)k → α. α ∈ D, D is

closed. Since |xn − yn| → 0, (ynk
)k → α

So f(α) = lim f(xnk
) = lim f(ynk

). This is a contradiction since |f(xn)− f(yn)| ≥ ε. �

Theorem 7.7. If (sn)n is a Cauchy sequence in D, and f : D → R, is uniformly continuous,
then (f(sn))n is Cauchy.

Theorem 7.8. Let f : D → R. The following are equivalent:

i. f is uniformly continuous.
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ii. There exists and unique continuous function f̃ : D → R7 so that ∀x ∈ D, f(x) = f̃(x).

Definition 7.4 (Lipschitz Continuity). A function f : D → R is Lipschitz continuous if

∃k ≥ 0,∀x, y ∈ D : |f(x)− f(y)| ≤ k|x− y|

In other words, secants are never steeper than k. �

All Lipschitz continuous functions are uniformly continuous (pick δ = ε
k
)

8 Integration

The definite, proper integral of a function f is written as such:

ˆ b

a

f(x) dx ,

where f is a function f : [a, b]→ R. f is bounded.

If we let S be the set of all closed subintervals of [a, b], and F be the set of all ”integrable”
functions on [a, b], then

´
: S ×F → R

We want
´

to satisfy the following properties:

• Linearity. If f, g are integrable, and λ ∈ R, then

–
´
I
λf = λ

´
I
f .

– (f + g) =
´
I
f +
´
I
g

• Additivity over almost disjoint domains.

–
´
I∪J f =

´
I
f +
´
J
f if |I ∩ J | ≤ 1

• Monotonicity.

– If f ≤ g on I, then
´
I
f ≤
´
I
g.

• It should compute areas.

– ∀c ∈ R and all I (closed subintervals of [a, b]),
´
I
c = c|I|.

7Here D denotes the closure of D.
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8.1 Riemann-Darboux Integration

Let S be a subset of the real numbers. The indicator function of S is 1 : R→ {0, 1}:

1S(x) =

{
1, if x ∈ S
0, otherwise

A step function on [a, b] is a finite linear combination of indicator functions of subintervals of
[a, b] (not necessarily closed):

ϕ(x) =
n∑
k=1

ck · 1Ik(x)

A step function always has a finite range. So φ([a, b]) is a finite set.

Definition 8.1 (Integration).

ˆ b

a

ϕ =
∑

y∈ϕ([a,b])

y ·
∣∣ϕ−1(y)

∣∣
�

This is very cumbersome to use. We can also say that:

Theorem 8.1. ˆ b

a

ϕ =
n∑
k=1

ck|Ik|

We can check that any way of writing ϕ gives the same integral.

Corollary 8.1.1. The integral is linear for step functions.

Corollary 8.1.2. The integral is monotonic for step functions.

An interval partition of [a, b] is {Ik}nk=1, such that

[a, b] = Ii ∪ . . . ∪ In and i 6= j =⇒ Ii ∩ Ij = ∅

An interval partition of [a, b] is compatible with ϕ if ∀k, ϕ is constant on Ik.

8.1.1 Integrating Step functions

There are a few ways we can go about integrating a step function.

i. Graphical methods

ii. Definition 8.1:
´ b
a
ϕ =

∑
y∈ϕ([a,b]) y · |ϕ−1(y)|
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iii. Theorem 8.1:
´ b
a

∑n
k=1ck1Ik =

∑n
k=1

´ b
a
ck1Ik =

∑n
k=1ck|Ik|

Theorem 8.2.
´ b
a
ϕ =

∑
ck|Ik| and does not depend on how we write ϕ8.

Theorem 8.3.
´ b
a

: Step([a, b])→ R9 is linear, monotonic, additive, and non-trivial.

Proof. Let ϕ =
∑n

i=1ci1Ii , φ =
∑m

j=1dj1Jj . Let λ ∈ R.

• λϕ =
∑n

i=1λci1Ii . Therefore
´ b
a
λϕ =

∑n
i=1λci|Ii| = λ

∑n
i=1ci|Ii| = λ

´ b
a
ϕ.

•
´ b
a
ϕ+ ψ =

´ b
a

(∑n
i=1ci1Ii +

∑m
j=1dj1Jj

)
=
´ b
a
ϕ+
´ b
a
ψ.

• Let ϕ and ψ be step functions in Step([a, b]), with ∀x ∈ [a, b] : ϕ(x) ≤ ψ(x) (or we just
write ϕ ≤ ψ). Assume that I1, I2, . . . , In are pairwise disjoint, i.e. i 6= j =⇒ Ii ∩ Ij = ∅.
Also assume that J1, J2, . . . , Jm are also pairwise disjoint.

ψ − ϕ =
m∑
j=1

n∑
i=1

(dj − ci)1Ii∩Jj .

If x ∈ Ii ∩ Jj, then ψ(x)− ϕ(x) = dj − cj ≥ 0. Thus

ˆ b

a

(ψ − ϕ) =
m∑
j=1

n∑
i=1

(dj − ci)|Ii ∩ Jj| ≥ 0.

Therefore, by linearity,
´ b
a
ψ ≤

´ b
a
ϕ.

�

8.1.2 Integrating non-step functions

Now we try to integrate non=step functions. Let f : [a, b]→ R be a bounded function. Let us
define two sets

L (f [a, b]) =

{ˆ b

a

ϕ | ϕ is a step function ≤ f

}

U (f [a, b]) =

{ˆ b

a

ϕ | ϕ is a step function ≥ f

}
Definition 8.2. The lower integral of f on [a, b] is defined as

ˆ b

a

f = sup L (f [a, b])

The upper integral of f on [a, b] is defined as
ˆ b

a

f = inf U (f [a, b])

�
8This proof is actually non-trivial but is quite long winded and tedious so we skip it for now.
9Here Step([a, b]) gives the set of all step functions on [a, b]
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Theorem 8.4. The integrals exist.

Proof. Because f is bounded, ∃M ≥ 0, ∀x ∈ [a, b], |f(x)| ≤ M . The constant function M is a

step function (similarly for −M). M · 1[a,b] is a step function ≥ f . Since
´ b
a
M = M(b − a) ∈

U (f [a, b]), so U (f [a, b]) is non-empty, and it is bounded from below by −M(b− a).

Similarly, L ([a, b]) is non-empty because it contains −M(b− a), and it is bounded from above
by M(b− a). Therefore both the upper and lower integrals exist. �

Definition 8.3. A function is said to be integrable if

ˆ b

a

f =

ˆ b

a

f and

ˆ b

a

=

ˆ b

a

=

ˆ b

a

�

Claim. If f : [a, b]→ R is bounded, then
´ b
a
f ≤

´ b
a
f .

Proof. Suppose that ϕ ≤ f ≤ ψ. Then
´ b
a
ϕ ≤

´ b
a
ψ. So L (f [a, b]) ≤ U (f [a, b]), and thus

sup L ≤ inf U �

Theorem 8.5. Let f, g : [a, b]→ R be bounded and λ ∈ R. The following are true:

i. Scaling:

• If λ ≥ 0, then
´ b
a
λf = λ

´ b
a
f and

´ b
a
λf = λ

´ b
a
f .

• If λ ≤ 0, then
´ b
a
λf = λ

´ b
a
f and

´ b
a
λf = λ

´ b
a
f .

ii. Addition:

•
´ b
a
(f + g) ≥

´ b
a
f +
´ b
a
g.

•
´ b
a
(f + g) ≤

´ b
a
f +
´ b
a
g.

iii. Monotonicity: If f ≤ g on [a, b] then
´ b
a
f ≤

´ b
a
g, and

´ b
a
f ≤

´ b
a
g.

iv.
´ b
a

=
´ c
a

+
´ b
c

and
´ b
a

=
´ c
a

+
´ b
c

Proof. We will prove the properties of the lower integrals since it is fairly straightforward to
derive those for the upper integrals from there.

i. Let λ > 0. We want to show
´ b
a
λf = λ

´ b
a
f .

´ b
a
λf = sup

{´ b
a
ϕ | ϕ ≤ λf

}
. However notice that {ϕ | ϕ ≤ λf} = {λϕ0 | ϕ0 ≤ f}.

Therefore
{´ b

a
ϕ | ϕ ≤ λf

}
=
{
λ
´ b
a
ϕ0 | ϕ0 ≤ f

}
= λ

{´ b
a
ϕ0 | ϕ0 ≤ f

}
.

Then
´ b
a
λf = λ sup(L (f)) = λ

´ b
a
f .
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ii. We want to show that
´ b
a
(f + g) ≥

´ b
a
f +
´ b
a
g.

Notice {ϕf + ϕg | ϕf ≤ f, ϕg ≤ g} ⊆ {ϕ | ϕ ≤ f + g}. Then{ˆ b

a

ϕ | ϕ ≤ f + g

}
⊇
{ˆ b

a

(ϕf + ϕg) | ϕf ≤ f, ϕg ≤ g

}
=

{ˆ b

a

ϕf +

ˆ b

a

ϕg | ϕf ≤ f, ϕg ≤ g

}
=

{ˆ b

a

ϕf | ϕf ≤ f

}
+

{ˆ b

a

ϕg | ϕg ≤ g

}
Taking the supremum on both sides, we can see that sup(L (f + g)) ≥ sup(L (f) +

L (g)) = sup(L (f)) + sup(L (g)). So
´ b
a
(f + g) ≥

´ b
a
f +
´ b
a
g.

iii. We want to show that f ≤ g =⇒
´ b
a
f ≤

´ b
a
g.

{ϕ ≤ f} ⊆ {φ ≤ g}. Taking supremum,
´ b
a
f ≤

´ b
a
g.

�

Theorem 8.6. Let f : [a, b]→ R be a bounded function. Consider the following functions:

F : [a, b]→ R : x 7→
ˆ x

a

f F : [a, b]→ R : x 7→
ˆ x

a

f

Claim. F and F are Lipschitz continuous.

Proof. Let x, y ∈ [a, b], x ≤ y. Let M satisfy |f | ≤M . Then F (y)−F (x) =
´ y
a
f−
´ x
a
f =

´ y
x
f .

By monotonicity, −
´ y
x
M ≤

´ y
x
f ≤

´ y
x
M . So −M(y − x) ≤ F (y) − F (x) ≤ M(y − x).

So |F (x) = F (y)| ≤ M(x − y). Hence F is Lipschitz continuous. The proof for F follows
similarly. �

8.1.3 Integrability

Integrability was defined in Definition 8.3.

Theorem 8.7 (Cauchy Criterion for integrability). f is integrable iff ∀ε > 0,∃ϕ ≤ f, ∃ψ ≥
f,
´ b
a
(ψ − ϕ) ≤ ε.

Proof. Suppose ∃ε > 0,∀ϕ ≤ f, ∀φ ≥ f :
´ b
a
φ−
´ b
a
ϕ ≥ ε. Then

ˆ b

a

ϕ ≤
ˆ b

a

φ+ ε

ˆ b

a

f ≤
ˆ b

a

f + ε

ˆ b

a

f =

ˆ b

a

f

�
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Theorem 8.8. We have
´ b
a
f = L iff ∃ϕ1, ϕ2, . . . , ψ1, ψ2, . . . ∈ Step([a, b]), such that ϕ1 ≤ ϕ2 ≤

. . . ≤ f ≤ . . . ≤ φ2 ≤ φ1, and limn→∞
´ b
a
ϕn = L = limn→∞

´ b
a
φn.

Proof. By the Cauchy Criterion. �

Theorem 8.9. Let f, g : [a, b]→ R be bounded and integrable, and λ ∈ R.

i. λf is integrable and
´ b
a
λf = λ

´ b
a
f .

ii. f + g is integrable and
´ b
a
(f + g) =

´ b
a
f +
´ b
a
g.

iii. If f ≤ g on [a, b], then
´ b
a
f ≤
´ b
a
g.

iv. If c ∈ [a, b], then f is integrable on [a, c] and [c, b], and
´ b
a
f =
´ c
a
f +
´ b
c
f .

Proof. Most of them follow from Theorem 8.5.

i. If λ ≥ 0, then
´ b
a
λf = λ

´ b
a
f = λ

´ b
a
f =

´ b
a
λf .

If λ < 0, then
´ b
a
λf = λ

´ b
a
f = λ

´ b
a
f =

´ b
a
λf .

ii.
´ b
a
(f + g) ≤

´ b
a
f +
´ b
a
g =
´ b
a
f +
´ b
a
g ≤

´ b
a
(f + g).

´ b
a
(f + g) =

´ b
a
(f + g) =

´ b
a
(f + g) =

´ b
a
f +
´ b
a
g.

iii.
´ b
a

and
´ b
a

are both monotone.

iv.
´ b
a
f =

´ b
a
f =

´ c
a
f +
´ b
c
f , and

´ b
a
f =

´ b
a
f =

´ c
a
f +
´ c
a
f .

ˆ c

a

f +

ˆ b

c

f =

ˆ c

a

f +

ˆ b

c

f

ˆ c

a

f −
ˆ b

c

f︸ ︷︷ ︸
≥0

=

ˆ c

a

f −
ˆ b

c

f︸ ︷︷ ︸
≤0

So both sides are equal to 0. This shows integrability. The other part follows.

�

We have spoken at length about integrable functions.

Example 8.1. A non-integrable function:

1Q on [0, 1]

�
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Proof. Suppose ψ ∈ Step([0, 1]) and ψ ≥ 1Q. We can write ψ(x) =
∑n

k=1ck1Ik(x), where
c1, . . . , cn ∈ R and I1, . . . , In are non-overlapping subintervals of [0, 1], and

⋃n
k=1 Ik = [0, 1].

ψ(x) = ck on Ik. We claim that ck ≥ 1. ∀x ∈ [0, 1], ψ(x) ≥ f(x). If Ik is not degenerate,
there are always rational numbers in it. Then ∃q ∈ Q ∩ Ik. Then ψ(q) = c ≥ 1Q(q) = 1. So´ 1
0
ψ =

∑n
k=1ck|Ik| ≥

∑n
k=11 · |Ik| = 1

By a similar argument, if ϕ ≤ 1Q(x), then
´ b
a
ϕ ≤ 0. �

Remark. It is possible to have the sum of two non-integrable functions to be integrable. Take
1Q and 1R\Q for example.

8.1.4 Sufficient conditions for integrability

Here we want to show:

• Piecewise monotone functions are integrable.

• Piecewise continuous functions are integrable.

Theorem 8.10. If f : [a, b]→ R is bounded and monotone, then f is integrable.

Proof. We will show this for the case where f is increasing, and f(a) < f(b).

Let ε > 0. Choose an interval partition of [a, b] = I1,∪ . . . ∪ In where I1, . . . , In are non-
overlapping, such that |Ik| < ε

f(b)−f(a) . Let t0, . . . , tn be the endpoints of the intervals, i.e.

I1 = [t0, t1), I2 = [t1, t2), etc.

infx∈Ik f(x) = f(tk−1) and supx∈Ik f(x) = f(tk). Now let ϕ =
∑n

k=1f(tk−1)1Ik and ψ =∑n
k=1f(tk)1Ik . Then

´ b
a
(ψ − ϕ) =

∑n
k=1[f(tk) − f(tk−1)]|Ik| < ε

f(b)−f(a) [f(t1) − f(t0) + f(t2) −
f(t1) + . . .+ f(tn)− f(tn−1)] = ε

Thus f is integrable by the Cauchy Criterion. �

Theorem 8.11. All continuous f : [a, b]→ R are integrable.

Proof. Let ε > 0. We may choose δ > 0 such that ∀x, y ∈ [a, b], |x− y| < δ =⇒ |f(x)− f(y)| <
ε
b−a (assume a < b). Partition [a, b] into intervals I1, I2, . . . In so that each |Ik| < δ. Let Ik be

the closure of Ik. f : Ik → R is a continuous function on a closed bounded interval. Then
∃pk, qk ∈ Ik,∀x ∈ Ik : f(pk) ≤ f(x) ≤ f(qk). But also ∀x ∈ Ik : f(pk) ≤ f(x) ≤ f(qk).

Let ϕ =
∑n

k=1f(pk)1Ik , ψ =
∑n

k=1f(qk)1Ik . So ϕ ≤ f ≤ ψ.

´ b
a
(ψ − ϕ) =

∑
[f(qk) − f(pk)]|Ik|. Since |Ik| < δ,

∣∣Ik∣∣ < δ. Therefore, |pk − qk| < δ. Then

|f(pk)− f(qk)| < ε
b−a .
´ b
a
(ψ − ϕ) < ε. �
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9 Derivatives

Definition 9.1. Let f : (a, b)→ R 10. We say that f is differentiable at y ∈ (a, b) if

lim
x→y

f(x)− f(y)

x− y

exists and is real, and we call the limit the derivative. �

Example 9.1. Show the derivative of x3 + 2x is 3x2 + 2. �

Proof.

lim
x→y

f(x)− f(y)

x− y
= lim

h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)3 + 2(x+ h)− x3 − 2x

h
= 3x2 + 2

�

Definition 9.2 (Limit Definition of continuity). A function f : [a, b] → R is continuous at
y ∈ [a, b] if limx→y f(x) = f(y). �

Theorem 9.1 (Ross 28.2). Let f : [a, b]→ R be differentiable at y ∈ (a, b). Then f is contin-
uous at y.

Proof.

lim
x→y

[
(x− y)

f(x)− f(y)

x− y

]
= lim

x→y
(x− y) lim

x→y

f(x)− f(y)

x− y
lim
x→y

[f(x)− f(y)] = 0 · f ′(y)

= lim
x→y

f(x)− lim
x→y

f(y)

= lim
x→y

f(x)− f(y)

lim
x→y

f(x) = f(y)

�

Theorem 9.2 (Derivative Rules). Let f, g : (a, b) → R, let λ ∈ R, let yin(a, b). Suppose f, g
are differentiable at y.

i. (λf)′(y) = λf ′(y).

ii. (f + g)′(y) = f ′(y) + g′(y).

iii. Product rule: (fg)′(y) = f(y)g′(y) + f ′(y)g(y).

10Notice how integration deals with functions on closed intervals while differentiation deals with functions on
open intervals.
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iv. Quotient rule: (f
g
)′(y) = g′(y)f(y)−f ′(y)g(y)

g(y)2
.

v. Chain rule: (g ◦ f)′(y) = g′(f(y))f ′(y)

Proof. We will prove a few of them.

i.

lim
x→y

(λf)(x)− (λf)(y)

x− y
= λ lim

x→y

f(x)− f(y)

x− y
= λf ′(y)

ii.

lim
x→y

(f + g)(x)− (f + g)(y)

x− y
= lim

x→y

f(x) + g(x)− f(y)− g(y)

x− y
= f ′(x) + g′(x)

iii.

lim
x→y

(fg)(x)− (fg)(y)

x− y
= lim

x→y

f(x)g(x)− f(y)g(y)

x− y

= lim
x→y

f(x)g(x)− f(y)g(y)− f(y)g(y) + f(x)g(y)

d

= lim
x→y

f(x)[g(x) + g(y)]

x− y
− lim

x→y

g(y)[f(x)− f(y)]

x− y
= f(y)g′(y)− f ′(y)g(y)

�

Theorem 9.3 (Ross 29.1). Suppose f : [a, b] → R is continuous. Let p, q ∈ [a, b] satisfy
∀x ∈ [a, b] : f(p) ≤ f(x) ≤ f(q). Suppose also that f is differentiable in [a, b]. Then f ′(p) = 0
and f ′(q) = 0.

Proof. Take the local maximum q. We know that the derivative at q exists.

Suppose f ′(q) > 0. Then ∃δ > 0, |x− q| < δ =⇒ f(x)−f(q)
x−q > 0. Then if x ∈ (q, q + δ),

f(x)−f(q)
x−q > 0 and x− q > 0. Then f(x)− f(q) > 0. Contradiction.

Suppose f ′(q) < 0. Then ∃δ > 0, |x− q| < δ =⇒ f(x)−f(q)
x−q < 0. Then if x ∈ (q − δ, q),

f(x)−f(q)
x−q < 0 and x− q < 0. Then f(x)− f(q) > 0. Contradiction.

Therefore f ′(q) = 0. �

Theorem 9.4 (Rolle’s Theorem). If f : [a, b] → R is continuous, and f is differentiable on
(a, b), and f(a) = f(b), then ∃y ∈ (a, b) : f ′(y) = 0.

Proof. By the extreme value theorem (Theorem 7.4), ∃p, q,∀x ∈ [a, b] : f(p) ≤ f(x) ≤ f(q).

Suppose p, q are at both endpoints {p, q} ⊆ {a, b}, then f(a) = f(b) =⇒ f is constant.

If p, q ∈ (a, b), then the derivative at p or q is 0. �
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Theorem 9.5 (Mean Value Theorem). Suppose f : [a, b] → R is continuous, and f is differ-
entiable on (a, b). Then

∃y ∈ (a, b) : f ′(y) =
f(b)− f(a)

b− a

Proof. Take L(x) = f(b)−f(a)
b−a . Consider f(x) − L(x). This is 0 at a and b. Then by Rolle’s

theorem (Theorem 9.4), ∃y, f ′(y) = L′(y) = f(b)−f(a)
b−a . �

Theorem 9.6 (Ross 29.4). If f ′ = 0 on (a, b) then f is constant.

Proof. Assume f is not constant. Then ∃y1, y2 ∈ (a, b) : f(y1) 6= f(y2). Then by the mean value

theorem (Theorem 9.5), ∃z ∈ (y1, y2), f
′(z) = f(y2)−f(y1)

y2−y1 6= 0. �

Corollary 9.6.1. If f ′ = g′ on (a, b), then f = g + C.

Proof. Apply Theorem 9.6 on f − g. �

10 The Fundamental Theorem of Calculus

Definition 10.1. Suppose {Ik}nk=1 is an interval partition of [a, b], i.e. Iks do not overlap and⋃
Ik = [a, b]. Let this be P

Let f : [a, b]→ R.

• The upper Darboux step function for P is ψ =
∑n

k=1 supx∈Ik f(x)1Ik

• The lower Darboux step function for P is ϕ =
∑n

k=1 infx∈Ik f(x)1Ik

�

It may be helpful to remember that if f is continuous then sup = max and inf = min.

We say f is integrable on (a, b) if every extension of f to [a, b] is integrable.

The Fundamental Theorem of Calculus comes in two parts.

Theorem 10.1 (Fundamental Theorem of Calculus Part 1). Suppose g : [a, b]→ R is contin-
uous and differentiable on (a, b). If g′ : (a, b)→ R is integrable, then

ˆ b

a

g′ = g(b)− g(a)

Proof. Let ε > 0. By integrability of g′, ∃ψ, ϕ ∈ Step([a, b]), ϕ ≤ g′ ≤ ψ and
´ b
a
(ψ − ϕ) ≤ ε.

We can replace ψ and ϕ with the Darboux step functions. Then
´ b
a
(ψ − ϕ) < ε still. ψ =∑n

k=1 maxx∈Ik g
′(x)1Ik and ϕ =

∑n
k=1 minx∈Ik g

′(x)1Ik
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Let Ik = [tk−1, tk]. For each k = 1, . . . , n, choose xk ∈ (tk−1, tk) such that g′(xk) = g(tk)−g(tk−1)

tk−tk−1
.

g(b)− g(a) =
n∑
k=1

[g′(tk)− g′(tk−1)]

=
n∑
k=1

g′(xk)(tktk−1)

=
n∑
k=1

g′(xk)|Ik|

Then

n∑
k=1

min g′(xk)|Ik| ≤ g(b)− g(a) ≤
n∑
k=1

max g′(xk)|Ik|

ˆ b

a

ϕ ≤ g(b)− g(a) ≤
ˆ b

a

ψ

Also
´ b
a
ϕ ≤
´ b
a
g′ ≤

´ b
a
ψ. Then

∣∣∣g(b)− g(a)−
´ b
a
g′
∣∣∣ < ε. So

´ b
a
g′ = g(b)− g(a). �

Theorem 10.2 (Fundamental Theorem of Calculus Part 2). Let f be bounded and integrable
on [a, b]. Then f is integrable on [a, x] for any x ∈ [a, b]. Let F =

´ x
a
f(t) dt. F : [a, b] → R.

Then:

• F is Lipschitz (and thus uniformly) continuous on [a, b].

• If f is continuous at x, then F is differentiable at x and F ′(x) = f(x).

Proof. F (x) =
´ x
a
f is Lipschitz continuous and F (x) =

´ x
a
f is also Lipschitz continuous. If

f is integrable on [a, b], it is integrable on [a, x] for all x ∈ [a, b]. So
´ x
a
f =

´ x
a
f =

´ x
a
f and

therefore F (x) is also Lipschitz continuous.

Next we want to show that L = limh→0
F (x+h)−F (x)

h
= f(x). First, suppose h is positive. Then

consider L− f(x):

L− f(x) = lim
h→0

´ x+h
x

f(t) dt

h
− f(x)

=
1

h

ˆ x+h

x

f(t) dt− 1

h
(hf(x))

=
1

h

ˆ x+h

x

f(t)− f(x) dt

f is continuous at x. Let ε > 0. Then ∃δ > 0, such that |t− x| < δ =⇒ |f(t)− f(x)| < ε
2
. If

0 < h < δ,
∣∣∣ 1h ´ x+hx

f(t)− f(x) dt
∣∣∣ ≤ 1

h

´ x+h
x
|f(t)− f(x)| dt < ε.
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Next, suppose h < 0. Then

L− f(x) = lim
h→0

´ x
x+h

f(t) dt

h
− f(x)

=
1

|h|

ˆ x

x+h

f(t) dt− 1

|h|
(|h|f(x))

=
1

|h|

ˆ x

x+h

f(t)− f(x) dt

By the same property on continuity, let ε > 0, then ∃δ > 0, such that |t− x| < δ =⇒
|f(t)− f(x)| < ε

2
. 1
|h|

´ x
x+h

f(t)− f(x) dt ≤ 1
|h|

´ x
x+h
|f(t)− f(x)| dt < ε.

�

11 Aside

Some interesting things that may not be directly of relevance to the rest of the material.

11.1 Transcendentals

Let us define a function ln(x) =
´ x
1

1
t

dt. Since 1
t

is continuous on (0,∞), 1
t

is integrable on
every [1, x] (x ≥ 1), and every [x, 1] (0 < x ≤ 1).

Then ln : (0,∞) → R. Also we know that ln is Lipschitz continuous on every [a, b] ⊂ (0,∞).
This implies that it is continuous on (0,∞). ln is also differentiable and (lnx)′ = 1

x
.

Proposition 11.1. ∀x, y ∈ (0,∞)

i. ln(xy) = ln x+ ln y.

Proof. Let h(x) = ln(xy)− lnx− ln y. We want to show that h(x) = 0.

h′(x) = 1
xy
· y − 1

x
− 0 = 0. Thus h is a constant. But h(1) = 0. So h = 0. �

ii. ln(xq) = q lnx, where q ∈ Q.

Proof.
Case 1: q ∈ N. Proof by induction: ln(xq+1) = ln(x1) + ln(x).

Case 2: q = −1. ln 1
x

+ lnx = ln(1) = 0. Then ln 1
x

= lnx.

Case 3: q = −n, n ∈ N. Then ln 1
xn

+ lnxn = 0 . . .

Case 4: q = 1
n
, n ∈ N, n 6= 0. Then ln x = ln

(
(x1/n)n

)
= n lnx1/n. So lnx1/n = 1

n
lnx.

Case 5: q = m
n

, m,n ∈ N, n 6= 0. It follows from the above few cases. �

Let limn→∞(1 + 1
n
)n = e. We claim that ln e = 1.
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Proof.

ln e = ln

(
lim
n→∞

(
1 +

1

n

)n)
= lim

n→∞
ln

(
1 +

1

n

)n
= lim

n→∞
n ln

(
n+ 1

n

)
= lim

n→∞
n(ln(n+ 1)− lnn)

= lim
n→∞

n

(ˆ n+1

n

1

t
dt

)

n
n+1
≤ n ln(n+ 1)− n ln(n) ≤ 1. As n→∞, ln e = 1. �

ln : (0,∞)→ R is strictly increasing since 1
x

is a positive function. It follows that ln is injective.
Then there exists a function exp : R→ (0,∞) which is the inverse of ln.

Theorem 11.1 (Inverse function theorem). Let f be an injective function on an open interval
I, then let J = f(I). If f is differentiable at x ∈ I, and f ′(x) 6= 0, then f−1 is also differentiable
at y = f(x) and (f−1)′(y) = 1

f ′(x)
.

exp : R → (0,∞) is differentiable on its domain because its inverse has derivative 1
x

and 1
x

is
never 0 on (0,∞). Then exp′(y) = 1

ln′(x)
= 1

1/x
= exp y.

Suppose b > 0 and x ∈ R. We want to define bx. We define bx := exp(x ln b). x 7→ bx is
continuous, and is also unique.

11.2 Takagi’s function

Consider the following:

σ(x) = dist(x,Z)

σ1(x) = dist(x, 2−1Z) =
1

2
σ(2x)

σk(x) = dist(x, 2−kZ) = 2−kσ(2kx)

Definition 11.1. T (x) =
∑∞

k=0σk(x) is Takagi’s function11 �

Firstly, this is continuous. |σk(x)| ≤ 2−(k+1). Since
∑∞

k=02
−(k+1) converges, T (x) converges uni-

formly on R. Since each of the terms are continuous, by uniform continuity, T is continuous. An
interesting and perhaps surprising fact is that despite it being continuous, it is not differentiable!

11It is also called the Blancmange curve due to its resemblance to the dessert.
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Figure 2: A sketch of a few σ’s

Theorem 11.2. ∀x ∈ R, T (x) is not differentiable at x.

Proof. Take any x ∈ R. For every n ≥ 0, we can find a
2n
≤ x < n+1

2n
. Let un = a

2n
and vn = a+1

2n
.

As n → ∞, un → x ← vn. If T was differentiable at x, then T (vn)−T (un)
vn−un will have to tend to

some limit as n→∞. But

T (vn)− T (un)

vn − un
=
∞∑
k=0

σk(vn)− σk(un)

vn − un
=

n−1∑
k=0

σk(vn)− σk(un)

vn − un

because un, vn ∈ 2−nZ. But the terms are always ±1, so the series cannot converge. �

Intuitively it may be explained as such: though the curve is continuous, yet it is infinitely
“spiky”. You will never be able to find the gradient at a certain point because the spikiness
throws off your secant line as you keep trying to make it shorter and shorter.

12 Sequence of functions

Fix a domain D ⊆ R. A sequence of functions on D is (f0, f1, f2, . . .)
∞
n=0 where ∀n : fn : D → R.

For all points p ∈ D we can consider (fn(p))∞n=0.

Definition 12.1. Let (fn)n be a sequence of functions D → R. Let f : D → R. We say that
(fn)n converges pointwise to f if ∀p ∈ D : limn→∞ fn(p) = f(p). i.e.

∀p ∈ D, ∀ε > 0,∃N,∀n : (n ≥ N) =⇒ |fn(p)− f(p)| < ε

�
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Example 12.1. (x, x2, x3, . . .) on [0, 1]. If 0 ≤ p < 1 then pn → 0 as n → ∞. If p = 1 then
pn → 1 as n→∞. Then the pointwise limit of this sequence of functions on [0, 1] is

f(x) =

{
1, x = 1

0, x < 1

Here, every term is continuous, but the pointwise limit is not. �

Example 12.2. Let fn : [0, 1] → R be the function whose graph makes a triangle with base
[0, 2−n] and height 2n+1. See Figure 3.

y

x

f1

f2

f3

1
2

1
4

1
8

2

4

8

Figure 3: A sketch of a few successive elements of the series.

Then lim fn(p) = 0 for all p, because of p > 0 then eventually 2−n < p so fn(p) = 0 after that

point. Here
´ 1
0
fn = 1 but

´ 1
0
f = 0 �

Example 12.3. Let (qn)∞n=0 be an enumeration of Q ∩ [0, 1]: (0, 1, 1
2
, 1
3
, 2
3
, 1
4
, 3
4
, . . .), similar to

that shown in Figure 1.

Let fn(x) =

{
1, if x = qk, k ≤ n

0, otherwise
.

Here
´ 1
0
fn = 0, but the limit is not integrable. �
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This perhaps suggests that we need a stronger form of convergence.

Definition 12.2 (Uniform convergence).

∀ε > 0,∃N,∀p ∈ D, ∀n : (n ≥ N) =⇒ |fn(p)− f(p)| < ε

�

Theorem 12.1. If (fn)→ f uniformly and all fn’s are continuous, then f is also continuous.
The uniform limits of continuous functions are continuous.

Proof. First we make the observation that |f(x)− f(p)| ≤ |f(x)− fn(x)| + |fn(x)− fn(p)| +
|fn(p)− f(p)|.

Let ε > 0. Choose N large enough such that ∀y ∈ D,n ≥ N =⇒ |fn(y)− f(y)| < ε
3
.

By continuity of fn at p, ∃δ > 0 such that |x− p| < δ =⇒ |fn(x)− fn(p)| < ε
3
. Then

|f(x)− f(p)| < ε. �

Theorem 12.2. If (fn)n is a sequence of integrable functions on [a, b] and (fn)n → f uniformly

on [a, b], then f is integrable and
´ b
a
f = limn→∞

´ b
a
fn.

Proof. Let ε > 0. Uniform convergence means:

∃N,∀n ≥ N,∀x ∈ [a, b] : |fn(x)− f(x)| ≤ ε

2(b− a)

∀x ∈ [a, b] : fn(x)− ε

2(b− a)
≤ f(x) ≤ fn(x) +

ε

2(b− a)ˆ b

a

fn(x)− ε

2
=

ˆ b

a

fn(x)− ε

2(b− a)
≤
ˆ b

a

f(x) ≤
ˆ b

a

fn(x) ≤
ˆ b

a

fn +
ε

2(b− a)
=

ˆ b

a

fn +
ε

2

Therefore, ∀ε > 0,
´ b
a
f −
´ b
a
f ≤ ε. Therefore

´ b
a
f =

´ b
a
f .

Integrating,

f(x)− ε

2(b− a)
≤ fn(x) ≤ f(x) +

ε

2(b− a)ˆ b

a

f − ε

2
≤
ˆ b

a

fn ≤
ˆ b

a

f +
ε

2

Therefore
∣∣∣´ ba fn − ´ ba f ∣∣∣ ≤ ε

2
< ε, and limn→∞

´ b
a
fn =

´ b
a
f . �

Theorem 12.3. Suppose (fn)n on (a, b) with the properties:

i. All differentiable on (a, b)

ii. (fn)n → f uniformly.

iii. (f ′n)n → g uniformly.

Then f is differentiable and f ′ = g.

39



13 Series of functions

Example 13.1.
∑∞

n=0
(−1)nx2n+1

(2n+1)!
= sin(x) for all x because the series converges to sin(x) point-

wise on R. �

Definition 13.1. We say that
∑∞

k=0tk(x) converges pointwise/uniformly to F (x) if(
∞∑
k=0

tk(x)

)∞
n=0

converges pointwise/uniformly to F (x) on D. �

Theorem 13.1 (Weierstrass M-test). If ∃(Mk)
∞
k=0 of non-negative real numbers such that∑∞

k=0Mk converges absolutely, and ∀k, |tk(x)| ≤ Mk when x ∈ D, then
∑∞

k=0tk(x) converges
uniformly to some function.

Proof. An extension of Definition 6.1 follows.

Suppose (fn)n is a sequence of functions. It converges uniformly to some function if ∀ε >
0,∃N,∀x ∈ D, ∀m,n : (m,n ≥ N) =⇒ |fn(x)− fm(x)| < ε.

For a series of functions:

∀ε > 0,∃N,∀x ∈ D, ∀m,n : (N ≤ m ≤ n) =⇒

∣∣∣∣∣
n∑

k=m

tk(x)

∣∣∣∣∣ < ε

Let ε > 0, by the Cauchy criterion for convergence of
∑∞

k=0Mk, ∃N : ∀m,n, (N ≤ m ≤ n) =⇒
|
∑n

k=mMk| < ε =⇒
∑n

k=mMk < ε. Let N ≤ m ≤ n. Then∣∣∣∣∣
n∑

k=m

tk(x)

∣∣∣∣∣ ≤
n∑

k=m

|tk(x)| ≤
n∑

k=m

Mk < ε

�

Example 13.2. Power series F (x) =
∑∞

n=0
xn

3n(n+1)2
.

We can perform the ratio test to find out where this is defined.

R(x) = lim
n→∞

∣∣∣∣tn+1(x)

tn

∣∣∣∣ = . . . =
|x|
3

The series converges absolutely if |x|
3
< 1 or |x| < 3. �

Proposition 13.1. Let
∑∞

c=0k(x− γ)k centred at γ. Let R be the radius of convergence ( 1
R

=

lim supk→∞ |ck|
1
k ).

i. The series converges absolutely in γ −R, γ +R.

ii. The series diverges outside the interval.
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iii. It could have any behaviour at γ ±R.

iv. By the Weierstrass M-test, if [a, b] ⊂ (γ − R, γ + R), the series converges uniformly on
[a, b].

v. It is differentiable and integrable within the radius.

Example 13.3. Consider the previous example by on the interval [−2, 2].∣∣∣∣ xn

3n(n+ 1)2

∣∣∣∣ ≤ xn

3n(n+ 1)2
<

(
2

3

)n
= Mn

By the Weierstrass M-test, the series converges uniformly on [−2, 2]. �

14 Measure Theory and Lebesgue Integration

What is wrong with the Riemann integral?

• The integral is only possible defined if the domain of the function is bounded.

• If f is bounded then upper and lower integrals exist.

• f is only integrable when the upper and lower integrals match.

• (fn)→ f , lim
´ b
a
fn =

´ b
a
f only when convergence is uniform.

14.1 Measure Theory

A measure space is a set X equipped with a notion of how big subsets of X are.

A measure space (X,Σ, µ):

• X is a set

• Σ is a set of subsets of X called measurable sets, closed under countable unions, countable
intersections, and complements. ∅ ∈ Σ, X ∈ Σ. This is also called a σ-algebra.

• µ, the measure, µ : Σ→ [0,∞], satisfying

– µ(∅) = 0.

– If (E1, E2, . . .), with En ∈ Σ for all n, is a sequence of pairwise disjoint sets, then
µ(
⋃∞
k=1Ek) =

∑∞
k=1µ(Ek).

Proposition 14.1. If A,B ∈ Σ, and A ⊆ B, then µ(A) = µ(B).

Proof.

B = A ∪ (B \ A) = A ∪ (B ∩ Ac)
µ(B) = µ(A) + µ(B ∩ Ac) ≥ µ(A)

�
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Example 14.1 (Counting measure). (X,Σ, µ) = (N,P(N), number of elements) 12. �

Example 14.2 (Lebesgue measure). (X,Σ, µ) = (R, σ, λ)

• λ is the best possible measure that agrees with a naive notion of length (sup(I)− inf(I)).
λ(x+E) = λ(E) for x ∈ R and E ∈ Σ. This is also what is called “translation invariant”.

�

Example 14.3 (Dirac measure). Let p ∈ R, then δp(E) =

{
0, if p 6∈ E
1 if p ∈ E

�

Example 14.4. The following subsets of R are measurable:

• All intervals, finite or countable unions or intersections.

• The Cantor Set (Ex 5.3). It is made up of countable intersections and finite unions of
intervals.

– If C0 ⊃ C1 ⊃ C2 ⊃ . . . and C∞ =
⋂
n=0Cn then λ(C∞) = limn→∞ λ(Cn) =

limn→∞
(
2
3

)n
= 0.

– In fact, if E is countable, then λ(E) = 0. This is because you could enumerate
E with say (ek)

∞
k=0, and since E is a disjoint countable union of ek’s, λ(E) =∑∞

k=0λ([ek, ek]) = 0.

�

14.2 Integration with measures

Consider a function, with X as a measure space, f : X → R. f is called measurable if

∀c ∈ R, f−1((c,∞)) = {x ∈ X | f(x) > c}

is a measurable subset of X ∈ Σ.

Consider a simple function s : X → R such that s is a non-negative linear combination of
indicators of measurable sets:

s(x) =
n∑
k=1

ck1Ek
(x)

where ck > 0, Ek ∈ Σ. Then, if D is measurable, we define
´
D
s dµ =

∑n
k=1 ckµ(Ek ∩D).

If f is measurable and f ≥ 0 on D, we define
ˆ
D

f dµ = sup

{ˆ
D

s dµ | s is simple and 0 ≤ s ≤ f

}

If f : D → R is any measurable function, f = f+ − f−13, with f+, f− both being measurable.
We attempt to define

´
D
f dµ =

´
D
f+ dµ

´
D
f− dµ.

12Here P refers to the power set, or the set of all subsets.
13Here f+ = |f |+ f and f− = |f | − f , the positive and negative components of f respectively.
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• If
´
f+ and

´
f− ∈ R, then f is µ-integrable.

• If
´
f = ±∞, then f is not integrable.

• If
´
f =“∞−∞”, then the integral is not defined.

Example 14.5 (Integrating the Dirichlet function). Previously we could not integrate 1Q(x)

since
´ 1
0
1Q 6=

´ 1
0
1Q. However,

´
[0,1]
1Q dλ = λ(Q ∩ [0, 1]) = 0. �

Some remarks about Lebesgue integration.

• It satisfies the desired properties of an integral (linearity, additivity, monotonicity, trivi-
ality).

• If f : [a, b] → R is Riemann integrable, then it is Lebesgue integrable and
´ b
a
f(x) dx =´

[a,b]
f dλ.

• lim
´
fn =

´
lim fn.

Theorem 14.1 (Monotone/dominated convergence theorem). Suppose (fn)n → f pointwise,
and all fn are Lebesgue integrable. Then f is Lebesgue integrable and

´
D
f dλ = limn→∞

´
D
fn dλ

if

• Monotonic: 0 ≤ f1 ≤ f2 ≤ . . . ≤ f on D, or

• Dominated: If there exists a Lebesgue integrable g and |fn| ≤ g.

Example 14.6 (Vitali’s construction). Equip R with a relation ∼. We say x ∼ y if x− y ∈ Q.
It is reflexive, symmetric, and transitive. We claim R = the union of ∼ equivalence classes.
The equivalence class of x, denoted by [x]∼ = {y ∈ R | x ∼ y}. If x 6∼ t, then [x]∼ ∩ [t]∼ and
R =

⋃
x∈R[x]∼. Note that each [x]n is countable.

It follows that there are uncountably many ∼ equivalence classes. Let V0 be a choice of repre-
sentatives from each equivalence class with 0 ∈ V0 and V0 ∈ [0, 1]. ∀x ∈ R,∃!y ∈ V0 : x ∼ y.
Also we note that V0 can only be defined, not constructed, but it requires the Axiom of Choice.

Let (qk)
∞
k=0 be an enumeration of Q ∩ [−1, 1], q0 = 0. Let Vk = qk + V0.

i. [0, 1] ⊆
⋃∞
k=0 Vk ⊆ [−1, 2].

If x ∈
⋃
Vk then x = qk + v for qk ∈ Q ∩ [−1, 1] and v ∈ V0 and v ∈ [0, 1]. Let t ∈ [0, 1].

Because V0 is a set of representatives for the ∼ equivalence classes, ∃!v ∈ V0 : t ∼ v. Then
t− v ∈ Q ∩ [−1, 1]. Thus t− v = qk for some k. Then t = v + qk ∈ qk + V0 = Vk.

ii. All Vk are disjoint. If they overlapped at x then x = qj + v ∈ V0 = qk + w ∈ V0,
contradiction.

iii. λ(
⋃∞
k=0 Vk) =

∑∞
k=0λ(Vk).

1 ≤
∞∑
k=0

λ(qk + V0) ≤ 3

1 ≤
∞∑
k=0

λ(V0) ≤ 3
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This shows that λ(V0) does not exist since the sum will have to either be 0 or infinite.
Hence V0 is not measurable.

�
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