1 Mathematics

1.1 Projectors

Let $\left\{\left|e_{j}\right\rangle\right\}$ be an orthonormal basis for V, and $\left\{\left|f_{j}\right\rangle\right\}$ be an orthonormal basis for V^{\perp}, then any vector $|\psi\rangle$ in $V \oplus V^{\perp}$

$$
|\psi\rangle=\sum_{j=1}^{\operatorname{dim} V}\left|e_{j}\right\rangle\left\langle e_{j} \mid \psi\right\rangle+\sum_{k=1}^{\operatorname{dim} V^{\perp}}\left|f_{k}\right\rangle\left\langle f_{k} \mid \psi\right\rangle
$$

The orthogonal projector associated to V is then

$$
\Pi_{V}=\sum_{j=1}^{\operatorname{dim} V}\left|e_{j}\right\rangle\left\langle e_{j}\right|
$$

Through the entire space $W=V \oplus V^{\perp}$, the sum of projectors on the whole basis

$$
\sum_{i=1}^{\operatorname{dim} W}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|=\mathbf{I}
$$

1.2 Normal Operators

An operator A is normal if $\left[A, A^{\dagger}\right]=0$, or if its eigenvectors from an orthonormal basis of V. It can be written

$$
A=\sum_{k} \lambda_{k} \Pi_{\lambda_{k}}
$$

Normal operators divides the vector space into eigenspaces. Also functions can be written as

$$
f(A)=\sum_{k} f\left(\lambda_{k}\right) \Pi_{\lambda_{k}}
$$

Two normal operators commute iff they have a common set of eigenvectors.

2 Physics

2.1 Misc

Born's rule:

$$
P\left(\psi_{n} \mid \psi\right)=\left|\left\langle\psi_{n} \mid \psi\right\rangle\right|^{2}=\langle\psi| \Pi_{\psi_{n}}|\psi\rangle=\left\langle\psi_{n}\right| \Pi_{\psi}\left|\psi_{n}\right\rangle=\operatorname{Tr}\left(\Pi_{\psi_{n}} \Pi_{\psi}\right)
$$

Statistics:

$$
\left\langle A^{k}\right\rangle_{\psi}=\sum_{n} a_{n}^{k} P\left(\psi_{n} \mid \psi\right)=\langle\psi| A^{k}|\psi\rangle
$$

Time evolution operator with eigenvector $|n\rangle$ of H corresponding to eigenvalue E_{n} :

$$
U(t)=e^{-i H t / \hbar}=\sum_{n} e^{-i E_{n} t / \hbar}|n\rangle\langle n|
$$

hence for a state decomposed as $|\psi\rangle=\sum_{n} C_{n}|n\rangle$,

$$
|\psi(t)\rangle=\sum_{n} C_{n} e^{-i E_{n} t / \hbar}|n\rangle
$$

2.2 Position and momentum

1D. In position repr. the operators:

$$
X|\psi\rangle=\int_{\mathbb{R}} x \psi(x)|x\rangle \mathrm{d} x \quad P|\psi\rangle=\int_{\mathbb{R}}-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} x} \psi(x)|x\rangle \mathrm{d} x
$$

$$
[X, P]=i \hbar \mathbf{I}
$$

Hamiltonian after expansion therefore reads

$$
\left(-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+V(x)\right) \phi(x)=E \phi(x)
$$

Statistics:
$\left\langle X^{n}\right\rangle_{\psi}=\int_{\mathbb{R}}|\psi(x)|^{2} x^{n} \mathrm{~d} x \quad\left\langle P^{n}\right\rangle_{\psi}=(-i h)^{n} \int_{\mathbb{R}} \psi^{*}(x) \frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}} \psi(x) \mathrm{d} x$

Changing repr., the wave function undergoes a Fourier transform:

$$
\tilde{\psi}(p)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{\mathbb{R}} \psi(x) e^{-i p x / \hbar} \mathrm{d} x
$$

In 3D, X generalises easily, while as shorthand $P=-i \hbar \nabla$. Now

$$
\left[X_{i}, X_{j}\right]=0 \quad\left[P_{i}, P_{j}\right]=0 \quad\left[X_{i}, P_{j}\right]=i \hbar \delta_{i j} \mathbf{I}
$$

2.3 Angular momentum

Components of J have to satisfy

$$
\left[J_{i}, J_{j}\right]=i \hbar \epsilon_{i j k} J_{k}
$$

With the magnitude $J^{2}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}$,

$$
\left[J^{2}, J_{i}\right]=0
$$

Eigenvalues of J^{2} are non-negative. To find common eigenvalues of J^{2} and J_{z}, define ladder operators

$$
J_{ \pm}=J_{x} \pm i J_{y}
$$

They work very much like the harmonic oscillator, see that section. Use these properties

$$
\begin{gathered}
J_{+} J_{-}=J^{2}-J_{z}^{2}+\hbar J_{z} \quad J_{-} J_{+}=J^{2}-J_{z}^{2}-\hbar J_{z} \\
{\left[J^{2}, J_{-}\right]=0 \quad\left[J_{-}, J_{z}\right]=\hbar J_{-} \quad\left[J_{+}, J_{z}\right]=-\hbar J_{+}}
\end{gathered}
$$

to prove that $-j \leq m \leq j$, the raising and lowering properties, and j is integer or half integer. The eigenvalues of J^{2} are of the form $\hbar^{2} j(j+1)$ and those of J_{z} are $\hbar m$. Also

$$
J_{ \pm}|k, j, m\rangle=\hbar \sqrt{j(j+1)-m(m \pm 1)}|k, j, m\rangle
$$

2.4 Orbital angular momentum

Define $L=X \times P$, so $L_{i}=\epsilon_{i j k}\left(X_{j} P_{k}-X_{k} P_{j}\right)$. This satisfies the commutator above, so it is an angular momentum. Write

$$
L_{i}|\psi\rangle=\iiint_{\mathbb{R}^{3}} l_{u} \psi(r, \theta, \phi)|r, \theta, \phi\rangle r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi
$$

where

$$
\begin{aligned}
& l_{x}=i \hbar\left(\sin \phi \frac{\partial}{\partial \theta}+\frac{\cos \phi}{\tan \theta} \frac{\partial}{\partial \phi}\right) \\
& l_{y}=i \hbar\left(-\cos \phi \frac{\partial}{\partial \theta}+\frac{\sin \phi}{\tan \theta} \frac{\partial}{\partial \phi}\right) \\
& l_{z}=-i \hbar \frac{\partial}{\partial \phi} \\
& l^{2}=-\hbar^{2}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\csc ^{2} \frac{\partial^{2}}{\partial \phi^{2}}\right)
\end{aligned}
$$

The explicit solutions for wave functions are too long to place here.

2.5 Continuity equation

The continuity equation where $j(x)$ is the density of probability current:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}|\psi(x)|^{2}+\frac{\mathrm{d}}{\mathrm{~d} x} j(x)=0
$$

In 1D:

$$
j(x)=\frac{i \hbar}{2 m} \operatorname{Im}\left(\psi^{*}(x) \frac{\mathrm{d}}{\mathrm{~d} x} \psi(x)\right)
$$

In 3D:

$$
j(x)=\frac{i \hbar}{2 m}\left(\phi(x) \boldsymbol{\nabla} \phi^{*}(x)-\phi^{*}(x) \boldsymbol{\nabla} \phi(x)\right)
$$

3 Case studies

3.1 Free particle

Hamiltonian $H=\frac{P^{2}}{2 m}, V(x)=0$. The eigenvalues are positive, and for every E there are two solutions:

$$
\psi_{ \pm}(x)=C_{ \pm} e^{ \pm i k x} \quad k=\frac{\sqrt{2 m E}}{\hbar} \quad E=\frac{\hbar^{2} k^{2}}{2 m}
$$

Decomposing the initial state onto eigenvectors and changing variables:

$$
\phi(x, t=0)=\int_{\mathbb{R}} \tilde{\phi}(k) e^{i k x} \mathrm{~d} x
$$

Time evolution describes a wave with dispersion relation $\omega(k)$:

$$
\phi(x, t)=\int_{\mathbb{R}} \tilde{\phi}(k) e^{i(k x-\omega(k) t)} \mathrm{d} k \quad \omega(k)=\frac{\hbar}{2 m} k^{2}
$$

3.2 Piecewise-constant potentials

With $k=\sqrt{2 m|V-E|} / \hbar$,

$$
\begin{aligned}
& E<V \Longrightarrow \phi(x)=A e^{k x}+B^{-k x} \\
& E>V \Longrightarrow \phi(x)=C \cos (k x)+D \sin (k x)
\end{aligned}
$$

For square wells the solutions depend a little on set-up so they are not written here. For infinite square wells we can however note the quantisation of energy:

$$
E_{n}=\frac{\hbar^{2} \pi^{2}}{2 m a^{2}} n^{2}
$$

and the wave functions in infinite square wells look like $\sin \left(n \pi \frac{x}{a}\right)$ but again it will be different depending on configuration of the set-up.

3.3 1D harmonic oscillator

The Hamiltonian is now $H=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} X^{2}$. Annihilation a and creation A^{\dagger} operator and N :

$$
a=\sqrt{\frac{m \omega}{2 \hbar}} X+\frac{i}{\sqrt{2 m \hbar \omega}} P \quad N=a^{\dagger} a
$$

Some properties:

$$
\begin{aligned}
{\left[a, a^{\dagger}\right]=\mathbf{I} } & {[N, a]=-a \quad\left[N, a^{\dagger}\right]=a^{\dagger} \quad H=\hbar \omega\left(N+\frac{1}{2} \mathbf{I}\right) } \\
& a|n\rangle \propto|n-1\rangle \quad a^{\dagger}|n\rangle \propto|n+1\rangle
\end{aligned}
$$

From these we can show that eigenvalues of N are \mathbb{Z}^{+}. Hence the eigenvalues of H are

$$
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right) \quad n \in \mathbb{Z}^{+}
$$

The solution:

$$
\left.\left|a^{\dagger}\right| n\right\rangle\left.\right|^{2}=n+1 \Longrightarrow a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle \Longrightarrow|n\rangle=\frac{\left(a^{\dagger}\right)^{n}}{\sqrt{n!}}|0\rangle
$$

Where solving the ODE for $n=0$ gives a Gaussian:

$$
\psi_{0}(x)=\left(\frac{m n}{\pi \hbar}\right)^{\frac{1}{4}} e^{-\frac{m \omega}{\hbar} \frac{x^{2}}{2}}
$$

3.4 Spin $1 / 2$

Here write J as S, j as s, m as m_{s}. A simple 2-level system for angular momentum mandates $s=\frac{1}{2}$ and $m_{s} \in\left\{-\frac{1}{2}, \frac{1}{2}\right\}$ and therefore

$$
S_{z}\left|s=\frac{1}{2}, m_{s}= \pm \frac{1}{2}\right\rangle= \pm \frac{\hbar}{2}\left|\frac{1}{2}, \pm \frac{1}{2}\right\rangle
$$

Repr. $\left|m_{s}=+\frac{1}{2}\right\rangle=\binom{1}{0}$ and $\left|m_{s}=-\frac{1}{2}\right\rangle=\binom{0}{1}$ gives $S=\frac{\hbar}{2} \sigma$.
Rotating by angle θ about axis n :

$$
U(\theta, n)=e^{-i \theta n \cdot \sigma / 2}=\cos \frac{\theta}{2} \mathbf{I}-i \sin \frac{\theta}{2} n \cdot \sigma
$$

3.5 Hydrogen atom

Ordinarily:

$$
H=\frac{P_{p}^{2}}{2 m_{p}}+\frac{P_{e}^{2}}{2 m_{2}}+V\left(\left|X_{p}-X_{e}\right|\right)
$$

Centre of mass and relative coordinates:

$$
\begin{gathered}
X_{C M}=\frac{m_{1} X_{1}+m_{2} X_{2}}{m_{1}+m_{2}} \quad P_{C M}+P_{1}+P_{2} \\
X_{r}=X_{1}-X_{2} \quad P_{r}=\frac{m_{2} O_{1}-m_{1} P_{2}}{m_{1}+m_{2}}
\end{gathered}
$$

Hamiltonian becomes decoupled:

$$
H=\frac{P_{C M}^{2}}{2 M}+\frac{P_{r}^{2}}{2 m}+V\left(\left|X_{r}\right|\right)
$$

Solutions are skipped. Eigenvalues:

$$
E_{k l}=E_{n}=\frac{E_{1}}{(k+l)^{2}}=\frac{E_{1}}{n^{2}}
$$

