1 Mathematics

1.1 Projectors
Let {|e;)} be an orthonormal basis for V', and {|f;)} be an orthonor-
mal basis for VL, then any vector |) in V @& V+

dimV dim v+

)= > les) (eil) + D 1) (frlw)
j=1 k=1

The orthogonal projector associated to V' is then

dim V'

My = > lej) (e
j=1

Through the entire space W = V @ V-, the sum of projectors on the

whole basis
dim W

D ) (il =1

i=1

1.2 Normal Operators

An operator A is normal if [A, AT} = 0, or if its eigenvectors from an
orthonormal basis of V. It can be written

A= NIy,
k

Normal operators divides the vector space into eigenspaces. Also func-
tions can be written as

F(A) =" FOw)Ty,
k

Two normal operators commute iff they have a common set of eigenvec-
tors.

2 Physics

2.1 Misc
Born’s rule:

P(ypn | ) = [(@nl)* = @Iy, ) = (¥n|Tly|ton) = Tr(Ily, Ty)
Statistics:

(AF), =" akP(yn | ¥) = (Y]|AF]y)

Time evolution operator with eigenvector |n) of H corresponding to
eigenvalue Ej,:

U(t) _ efth/fL _ ZefiE.,Lt/ﬁ |n> <’I’L|

hence for a state decomposed as ) =3, Cn |n),

%) =D Cne™Fnt/M |n)

2.2 Position and momentum

1D. In position repr. the operators:

X0 = [ ev@le)de Pl = [ —ingoi(o) o) da

(X, P] = ihl

Hamiltonian after expansion therefore reads

(JL;%Q V(@) o) = Bolz)

Statistics:

(X7 = /]R (@) 22 dz (P = (—ik)" /IR V(@) () de

dzn

Changing repr., the wave function undergoes a Fourier transform:

Ty L —ipa/h
) = o= /R wa)e= 7o/ dg

In 3D, X generalises easily, while as shorthand P = —ihAV. Now

[X:, X;5]1=0 [P, Pj]=0 (X5, Pj] = ihdi;1

2.3 Angular momentum

Components of J have to satisfy
[Ji, J;] = ihe;jp T
With the magnitude J? = J2 4+ JZ 4 J2,
[J%,Ji]=0

Eigenvalues of J2 are non-negative. To find common eigenvalues of J?2
and J,, define ladder operators

Jr = Js +idy

They work very much like the harmonic oscillator, see that section. Use
these properties

Jedo=J%>—J2 4R, J_Jy=J>—J2 R,

[J2,0-1=0  [J-,J]=hJ-  [J4,J:] = —hJy

to prove that —j < m < j, the raising and lowering properties, and j is
integer or half integer. The eigenvalues of J?2 are of the form h25(j + 1)
and those of J, are hm. Also

Jx |k, j,m) = b3 + 1) — m(m £ 1) |k, j, m)

2.4 Orbital angular momentum

Define L = X X P, so L; = €;j,(X; Py — X P;). This satisfies the com-
mutator above, so it is an angular momentum. Write

L;|y) = ///];)\3 lut)(r,0,9)|r, 0, p) r2sinfdr dode¢

where

COS¢£)

le =1h (sin qbg +
00  tanf O¢

0 sing 0
ly =ih( — — —
v z( COS¢69+tan08¢>)
lz:—ih%
9?2 0 9?2
2 _ 2 2
“=—h (@—FcotG% + csc W)

The explicit solutions for wave functions are too long to place here.

2.5 Continuity equation

The continuity equation where j(z) is the density of probability current:

d d .
F@P + i) =0
In 1D: " 4
@) = gt (0 @) 2o0(a) )
In 3D: "
i(@) = - (6(@) V" () ~ 67 (2) V()

3 Case studies

3.1 Free particle

2
Hamiltonian H = P—, V(z) = 0. The eigenvalues are positive, and for
2m

every E there are two solutions:

2mE h2k2
m E—

=C tikx
Y1(z) = Cte s o

k=

Decomposing the initial state onto eigenvectors and changing variables:
st =0 = [ Gt s
R

Time evolution describes a wave with dispersion relation w(k):

w(k) = e
2m

bz, t) = /}RJS(k)ei(kxw(k)t) dk



3.2 Piecewise-constant potentials

With k = \/2m|V — E|/h,

E<V = ¢(z) = Aek® 4 =
E >V = ¢(z) = C cos(kx) + Dsin(kx)

For square wells the solutions depend a little on set-up so they are not
written here. For infinite square wells we can however note the quanti-
sation of energy:

R 9
= n

2ma?
and the wave functions in infinite square wells look like sin(nﬂ'%) but
again it will be different depending on configuration of the set-up.

En

3.3 1D harmonic oscillator

2
The Hamiltonian is now H = éDTn + %mwQXQ. Annihilation a and cre-
ation AT operator and N:

o=, x4y _p
2h 2mhw

Some properties:

N =a'a

[a,aT]:I [N,a] = —a [N,aﬂ:a1L H:hW(N-Q-%I)

aln) < |n—1) al |n) o< |n+1)
From these we can show that eigenvalues of N are ZT. Hence the eigen-
values of H are

1
En:hw(n-i-i) nezt

The solution:

2
’a”n)‘ =n+l1 = any=vnFin+1) = |n)=

Where solving the ODE for n = 0 gives a Gaussian:

Po(z) = (@)i _mw 22

R 2
7h

3.4 Spin 1/2

Here write J as S, j as s, m as ms. A simple 2-level system for angular

momentum mandates s = % and ms € {f%, %} and therefore
1 1 Al 1
S:ls=—-,ms==%— =42 Zo+=
2 2 2127 2

1 0\ .
Repr. ‘ms = +%> = (0> and !ms = —%> = (1> gives S = %U.
Rotating by angle 6 about axis n:

; [4 [4
U(9,n) = e 7/2 = cos 51 — isin e

3.5 Hydrogen atom

Ordinarily:

R
+

2myp 2mo

H =

+ V(IXp — Xel)

Centre of mass and relative coordinates:

m1X1 + maX.
Xoy = — 202 Poy +Pr+ P
mi1 + mg
O — P
X, = X1 — Xo P = m2ti —mit2
mi1 + me
Hamiltonian becomes decoupled:
P2 P2
H=-EM4 " Ly(x
ong g TV XD
Solutions are skipped. Eigenvalues:
Eq Eq
En,=FE, = = ——
kl n (k T l)2 7'L2
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