
1 Mathematics

1.1 Projectors

Let {|ej〉} be an orthonormal basis for V , and {|fj〉} be an orthonor-
mal basis for V ⊥, then any vector |ψ〉 in V ⊕ V ⊥

|ψ〉 =

dimV∑
j=1

|ej〉 〈ej |ψ〉+

dimV⊥∑
k=1

|fk〉 〈fk|ψ〉

The orthogonal projector associated to V is then

ΠV =

dimV∑
j=1

|ej〉 〈ej |

Through the entire space W = V ⊕ V ⊥, the sum of projectors on the
whole basis

dimW∑
i=1

|ψi〉 〈ψi| = I

1.2 Normal Operators

An operator A is normal if [A,A†] = 0, or if its eigenvectors from an
orthonormal basis of V . It can be written

A =
∑
k

λkΠλk

Normal operators divides the vector space into eigenspaces. Also func-
tions can be written as

f(A) =
∑
k

f(λk)Πλk

Two normal operators commute iff they have a common set of eigenvec-
tors.

2 Physics

2.1 Misc

Born’s rule:

P (ψn | ψ) = |〈ψn|ψ〉|2 = 〈ψ|Πψn |ψ〉 = 〈ψn|Πψ |ψn〉 = Tr(ΠψnΠψ)

Statistics:
〈Ak〉ψ =

∑
n

aknP (ψn | ψ) = 〈ψ|Ak|ψ〉

Time evolution operator with eigenvector |n〉 of H corresponding to
eigenvalue En:

U(t) = e−iHt/~ =
∑
n

e−iEnt/~ |n〉 〈n|

hence for a state decomposed as |ψ〉 =
∑
n Cn |n〉,

|ψ(t)〉 =
∑
n

Cne
−iEnt/~ |n〉

2.2 Position and momentum

1D. In position repr. the operators:

X |ψ〉 =

∫
R

xψ(x) |x〉dx P |ψ〉 =

∫
R

−i~
d

dx
ψ(x) |x〉 dx

[X,P ] = i~I

Hamiltonian after expansion therefore reads(
−

~2

2m

d2

dx2
+ V (x)

)
φ(x) = Eφ(x)

Statistics:

〈Xn〉ψ =

∫
R

|ψ(x)|2xn dx 〈Pn〉ψ = (−ih)n
∫
R

ψ∗(x)
dn

dxn
ψ(x) dx

Changing repr., the wave function undergoes a Fourier transform:

ψ̃(p) =
1
√

2π~

∫
R

ψ(x)e−ipx/~ dx

In 3D, X generalises easily, while as shorthand P = −i~∇. Now

[Xi, Xj ] = 0 [Pi, Pj ] = 0 [Xi, Pj ] = i~δijI

2.3 Angular momentum

Components of J have to satisfy

[Ji, Jj ] = i~εijkJk.

With the magnitude J2 = J2
x + J2

y + J2
z ,

[J2, Ji] = 0

Eigenvalues of J2 are non-negative. To find common eigenvalues of J2

and Jz , define ladder operators

J± = Jx ± iJy

They work very much like the harmonic oscillator, see that section. Use
these properties

J+J− = J2 − J2
z + ~Jz J−J+ = J2 − J2

z − ~Jz

[J2, J−] = 0 [J−, Jz ] = ~J− [J+, Jz ] = −~J+

to prove that −j ≤ m ≤ j, the raising and lowering properties, and j is
integer or half integer. The eigenvalues of J2 are of the form ~2j(j + 1)
and those of Jz are ~m. Also

J± |k, j,m〉 = ~
√
j(j + 1)−m(m± 1) |k, j,m〉

2.4 Orbital angular momentum

Define L = X × P , so Li = εijk(XjPk −XkPj). This satisfies the com-
mutator above, so it is an angular momentum. Write

Li |ψ〉 =

∫∫∫
R3

luψ(r, θ, φ) |r, θ, φ〉 r2 sin θ dr dθ dφ

where

lx = i~
(

sinφ
∂

∂θ
+

cosφ

tan θ

∂

∂φ

)
ly = i~

(
− cosφ

∂

∂θ
+

sinφ

tan θ

∂

∂φ

)
lz = −i~

∂

∂φ

l2 = −~2
(
∂2

∂θ2
+ cot θ

∂

∂θ
+ csc2

∂2

∂φ2

)
The explicit solutions for wave functions are too long to place here.

2.5 Continuity equation

The continuity equation where j(x) is the density of probability current:

d

dt
|ψ(x)|2 +

d

dx
j(x) = 0

In 1D:

j(x) =
i~
2m

Im

(
ψ∗(x)

d

dx
ψ(x)

)
In 3D:

j(x) =
i~
2m

(φ(x)∇φ∗(x)− φ∗(x)∇φ(x))

3 Case studies

3.1 Free particle

Hamiltonian H = P2

2m
, V (x) = 0. The eigenvalues are positive, and for

every E there are two solutions:

ψ±(x) = C±e
±ikx k =

√
2mE

~
E =

~2k2

2m

Decomposing the initial state onto eigenvectors and changing variables:

φ(x, t = 0) =

∫
R

φ̃(k)eikx dx

Time evolution describes a wave with dispersion relation ω(k):

φ(x, t) =

∫
R

φ̃(k)ei(kx−ω(k)t) dk ω(k) =
~

2m
k2

1



3.2 Piecewise-constant potentials

With k =
√

2m|V − E|/~,

E < V =⇒ φ(x) = Aekx +B−kx

E > V =⇒ φ(x) = C cos(kx) +D sin(kx)

For square wells the solutions depend a little on set-up so they are not
written here. For infinite square wells we can however note the quanti-
sation of energy:

En =
~2π2

2ma2
n2

and the wave functions in infinite square wells look like sin
(
nπ x

a

)
but

again it will be different depending on configuration of the set-up.

3.3 1D harmonic oscillator

The Hamiltonian is now H = P2

2m
+ 1

2
mω2X2. Annihilation a and cre-

ation A† operator and N :

a =

√
mω

2~
X +

i
√

2m~ω
P N = a†a

Some properties:

[a, a†] = I [N, a] = −a [N, a†] = a† H = ~ω(N +
1

2
I)

a |n〉 ∝ |n− 1〉 a† |n〉 ∝ |n+ 1〉
From these we can show that eigenvalues of N are Z+. Hence the eigen-
values of H are

En = ~ω(n+
1

2
) n ∈ Z+

The solution:∣∣∣a† |n〉∣∣∣2 = n+ 1 =⇒ a† |n〉 =
√
n+ 1 |n+ 1〉 =⇒ |n〉 =

(a†)n
√
n!
|0〉

Where solving the ODE for n = 0 gives a Gaussian:

ψ0(x) =
(mn
π~

) 1
4
e−

mω
~

x2

2

3.4 Spin 1/2

Here write J as S, j as s, m as ms. A simple 2-level system for angular
momentum mandates s = 1

2
and ms ∈ {− 1

2
, 1
2
} and therefore

Sz

∣∣∣∣s =
1

2
,ms = ±

1

2

〉
= ±

~
2

∣∣∣∣12 ,±1

2

〉

Repr.
∣∣ms = + 1

2

〉
=

(
1
0

)
and

∣∣ms = − 1
2

〉
=

(
0
1

)
gives S = ~

2
σ.

Rotating by angle θ about axis n:

U(θ, n) = e−iθn·σ/2 = cos
θ

2
I− i sin

θ

2
n · σ

3.5 Hydrogen atom

Ordinarily:

H =
P 2
p

2mp
+

P 2
e

2m2
+ V (|Xp −Xe|)

Centre of mass and relative coordinates:

XCM =
m1X1 +m2X2

m1 +m2
PCM + P1 + P2

Xr = X1 −X2 Pr =
m2O1 −m1P2

m1 +m2

Hamiltonian becomes decoupled:

H =
P 2
CM

2M
+
P 2
r

2m
+ V (|Xr|)

Solutions are skipped. Eigenvalues:

Ekl = En =
E1

(k + l)2
=
E1

n2

2
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