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1 Introduction

There are generally two points of view to the world. They are the macroscopic and the
microscopic. Examples of macroscopic variables are mass and temperature, while examples of
microscopic variables are velocity and energy.

A thermodynamic system is an amount of matter confined by walls apart from its surroundings.

Definition 1.1 (Closed and isolated systems). An isolated system is one that does not interact
in any way with its surroundings. Both energy and matter is conserved.

A closed system is one that can only exchange energy with its surroundings. Only energy is
conserved.

An open system is one that can exchange both energy and matter with its surroundings. Neither
energy nor matter is conserved. �

2 Zeroth and first laws of thermodynamics

2.1 Zeroth law

The zeroth law states that thermal equilibrium is a transitive relation. Temperature, as we will
see, is then the metaphysical thing that is equal for two objects in thermal equilibrium. It is also
the measure of the tendency of an object to spontaneously give up energy to its surroundings.

2.2 Ideal gas law

The ideal gas law is given by
PV = NkBT.

Consider a piston that moves along the x-axis with some gas trapped behind it in a cylinder.
We assume that the particles have no volume, and are non-interacting. The average pressure
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felt by the piston due to a single molecule is given by

P =
F x,piston

A

= −
(
−mv2

x

L

)
/A

=
mv2

x

V

The second step comes from the fact that ∆vn = −2vx (elastic collisions) and ∆t = 2L
vx

and

using F = m∆v
∆t

.

For N molecules, we have

PV = Nmv2
x = NkBT

1

2
mv2

x =
1

2
kBT.

At room temperature, kBT ≈ 1
40

eV, which is quite small. This is the average translational
kinetic energy along x of the particles. In all 3 dimensions, the average kinetic energy is given
by

K =
1

2
m(v2

x + v2
y + v2

z) =
1

2
mv2 =

3

2
KBT

v2 =
3kBT

m

2.3 Equipartition theorem

We have previously derived
1

2
mv2

x =
1

kB
T.

In fact, we can show (later on) that the energy of every quadratic degree of freedom it is
equivalent to 1

2
kBT . In general, the internal energy of a particle is given by

U =
1

2
kBTfN

where f is the number of quadratic degrees of freedom per particle, and N is the number of
particles. Examples of quadratic degrees of freedom are like kinetic energy 1

2
mv2

x, rotational
energy 1

2
Iω2

x, and elastic potential energy 1
2
kx2.

2.4 Work

Work refers to the non-spontaneous transfer of energy into another system. Contrast this with
heat, which is spontaneously transferred. We denote dW as the differential of work done on
the system. We assume that the process is quasi-static, meaning it is so slow that thermal
equilibrium is maintained through the process.
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Example 2.1 (Piston). This is also known as the general hydrostatic system.

dW = ~F · d~r
= F dx

= PA dx

= −P dV .

The volume decreases as the piston moves. Positive work is done on the piston when it is
compressed. ♦

Example 2.2 (Wire).

dW = ~F · d~r = F dl .

♦

Example 2.3 (Surface). A wire pulls a surface (perhaps a film of soap) that is L wide and S
long. The wire is pulling along S, which is also the x axis.

dW = ~F · d~r = S · L dx = SL
dA

L
= S dA .

♦

Example 2.4 (Electrochemical cell). Consider a cell made up of two electrodes with a potential
difference V . If the external potential of the cell is greater than the emf of the cell V , then a
charge dQ flows through the circuit from the negative to positive electrode. Positive work is
done on the cell by charging it.

dW = V dQ.

♦

Example 2.5 (Dielectrics). Consider two parallel plates of area A separated from each other
by a length l. The potential difference between them is V . To increase the charge by dQ on the
capacitor plates,

dW = V dQ = E · ldQ.

Now we place a dielectric of polarisation P between the plates. The electric displacement field
D is given by D = ε0E + P

Al
. From Maxwell’s equations we know

∇ ·D = qfree.

and so (after some calculation) Q = DA, The work done by the battery is

dW = ElAdD = EV dD = ε0EV dE + E dP .

The first term is the work done to increase the electric field, and the second is the work done on
the dielectric to polarize it. ♦

Example 2.6 (Paramagnetic systems). Consider a paramagnetic toroid of cross sectional area
A And length L with a coil of wire around it. When the current changes, an emf is induced
given by

V = −NAdB

dt
.
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To maintain this current, the work done by the battery is

dW = −V dQ

= NA
dQ

dt
dB

= NAIdB.

From Maxwell’s equations we have
˛
H · dl = Ifree.

So we have HL = NI. Together with B = µ0H + µ0
M
AL

,

dW = HV dB = HV µodH +Hµ0dM.

The first term is the work done to increase the magnetic field, and the second is the work done
on the paramagnetic system itself. ♦

Actually, work is not a state function since generally it depends on the path taken. Hence
perhaps a more accurate notation would be δW and not dW . In any case it does not really
matter too much for us.

2.5 First law of thermodynamics

Conservation of energy gives us
∆U = Q+W

where ∆U is the change in internal energy, Q is the heat added to the system, and W is the work
done on the system. Internal energy is a state function, and we can write its exact differential
(even though it is the sum of two inexact differentials)

dU = δQ+ δW .

For reversible processes, intuition tells us that reversing the process is just the original but with
signs swapped:

W → −W Q→ −Q ∆U → −∆U.

2.6 Response functions

Experimentally it might be easier to measure the response of a system to some stimulus. For
example, we have expansivity α, which is the change in volume with respect to temperature:

αy =
1

V

(
∂V

∂T

)
y

A similar function is compressibility κ, the change in volume with respect to an applied force,

κy = − 1

V

(
∂V

∂P

)
y
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Another common function is heat capacity C, which is the amount of heat needed to raise
temperature,

Cy =
Q

∆T
.

Specific heat capacity is heat capacity per unit mass, c = C
m

.

We might note that we can hold different variables constant while measuring these response
functions. Take a piston filled with gas for example. In measuring the heat capacity of the
gas, we can either hold the volume constant (by fixing the piston in place), or we can hold the
pressure constant (by allowing the piston to move freely). In general we will get two different
results.

Example 2.7. Take the piston filled with gas mentioned previously. Assume it is filled with an
ideal gas. Then,

dU = δQ+ δW = δQ− P dV

=⇒ δQ = dU + P dV .

We can write

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV .

Note that since out of the variables P, T, V , only 2 of them can be independent at any time so
in write dU we have chosen to drop the dP term. Now substituting,

δQ =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV + P dV

∂Q

∂T
=

(
∂U

∂T

)
V

+

[(
∂U

∂V

)
T

+ P

]
dV

dT
.

Therefore,

CV =

(
∂Q

∂T

)
V

=

(
∂U

∂T

)
V

CP =

(
∂Q

∂T

)
P

=

(
∂U

∂T

)
V

+

[(
∂U

∂V

)
T

+ P

](
∂V

∂T

)
P

.

Note that since U depends on T and V , and P also depends on T and V ,
(
∂U
∂T

)
V,P

=
(
∂U
∂T

)
V

.

♦

2.7 Quasi static processes

We hold many things constant, below is a table of vocabulary and what they refer to

Held constant Name
P Isobaric
V Isochoric
T Isothermal

Q = 0 Adiabatic

5



Example 2.8. Say we compress an ideal gas adiabatically. So from the first law of thermody-
namics,

∆U = W dU = δW

From the equipartition theorem we understand that W = NKBT
f
2

where f is the number of
quadratic degrees of freedom. So

dU = NKB
f

2
dT .

Using the fact that δW = −P dV ,

NkB
f

2
dT = −P dV = −NkBT

V
dV

f

2T
dT = − 1

V
dV

f

2

ˆ Tf

Ti

1

T
dT = −

ˆ Vf

Vi

1

V
dV

f

2
ln
Tf
Ti

= − ln
Vf
Vi

=⇒ VfT
f
2
f = ViT

f
2
i .

♦

3 The Microcanonical ensemble and the second law

The fundamental principle of statistical physics is that all possible states will occur with equal
probability.

There are two manifestations of this principle. The first comes if we have many configurations
of the same system at a given point in time, and this forms an ensemble. The second comes
from having copies of the same system (at equilibrium) over different points of time, and this
forms an ensemble as well.

The first and second manifestations are not equal to each other. They are only the same if the
system is able to visit all possible states over a long enough period of time (ergodic). If the
system is not ergodic, statistical physics only applies to the first case. For us we will concern
ourselves with ergodic systems only so we do not have to worry about this.

3.1 Microcanonical ensemble

A microcanonical ensemble is an ensemble formed by isolated systems. Recall that an isolated
system does not exchange energy or particle number with its environment. We also have
E = U = 〈E〉.

In the microcanonical ensemble the entropy is important, and this depends on the number of
microstates Ω. From the entropy we can then relate to other variables like temperature. But
first we have to know how to count microstates.

6



3.1.1 Counting discrete microstates

For a discrete system, say a collection of three coins, the configuration heads-heads-tail is
a microstate. The configuration tail-tail-tail is another microstate. On the other hand, a
macrostate is for example “three heads”. We denote Ω as the number of microstates in a
macrostate. So Ω(three heads) = 1.

In general, coin flips and other two-level systems follows the binomial distribution with probability
h of getting heads and t of getting tails:

Pr[H heads in N flips] =
Ω(H heads)

Ω(all)
= hHtN−H

N !

H!(N −H)!

An useful fact is that if N is large enough, we may apply the central limit theorem and
approximate the distribution with a Gaussian. From the above, we can apply a few tricks:

Pr[H heads in N flips] = exp[ln(Pr(H heads in N flips))]

ln(Pr(H heads in N flips)) = ln

(
hHtN−H

N !

H!(N −H)!

)
= H lnh+ (N −H) ln t+ lnN !− lnH!− ln(N −H)!

Using Stirling’s approximation, which states ln(N !) ≈ N lnN −N +O(lnN), we have

Pr[H heads in N flips]

≈ exp[H lnh+ (N −H) ln t+N lnN −N −H lnH +H − (N −H) ln(N −H) +N −H]

= exp[H lnh+ (N −H) ln t+N lnN −H lnH − (N −H) ln(N −H)].

Let the term in the exponential be f(H). We may perform a Taylor expansion of f(H) about
its mean, which is at hN ,

f(H) = f(H) + f ′(H)(H −H) +
1

2!
f ′′(H)(H −H)2 · · ·

The derivatives are found through ordinary means,

f ′(H) = lnh− ln t− lnH + ln(N −H)

f ′′(H) = − 1

H
− 1

N −H
.

Substituting in H = hN , we find that actually f ′(H) = 0 and that f ′′(H) = − 1
Nth

. Substituting
this back into the exponential,

Pr[H heads in N flips] ≈ exp

(
f(H)− 1

2

1

Nth
(H −H)2

)
= A exp

[
−(H −H)2

2Nth

]
.

This is a Gaussian with mean H and standard deviation σ =
√
Nth. Now normalization tells

us that A = 1√
2πσ2

.

7



3.1.2 Counting microstates for classical systems

Generally for classical systems we will be working with variables of momentum p and position x.
The probability density function associated with these variables is simply given by

Pr({p, r} =
1

Ω

as long as the energy of the system (given by the Hamiltonian Ĥ) lies within the energy range
of the microcanonical emsemble, E < Ĥ({p, r}) < E + dE.

In this case Ω also has a special name, the phase space. It is what we get when we consider all
configurations, which is also a function of energy E, volume V and particle number N :

ˆ

E<Ĥ<E+dE

{dp, dr} = Ω(E, V,N)

There are a few quantities related to Ω. The first is the cumulative volume in phase space,

Φ(E, V,N) =

ˆ

Ĥ<E

{dp, dr}

If we think of the phase space as a 3D space, then Ω would be a shell of constant E, and Φ
would be the space enclosed by the shell.

Next we also have the density of state

ω(E, V,N) =
∂Φ

∂E
,

and is related to Ω through
Ω(E, V,N) = ω ·∆E.

To obtain the probability density for one variable, we have to integrate out all the other variables:

Pr(r1) =

ˆ

r 6=r1

Pr({px, r}) dp dr =
1

Ω

ˆ

r 6=r1

dp dr

For example, for a single particle that can move in a single dimension,

Pr(x) =

ˆ ∞
−∞

Pr(x, px) dpx ,

or for a single particle that can move in three dimensions,

Pr(x) =

ˆ ∞
−∞

Pr(x, px, y, py, z, pz) dpx dy dpy dz dpz .
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3.2 Maxwell-Boltzmann distribution

Suppose we have a box of volume V with dimensions Lx × Ly × Lz. Furthermore for the i-th
molecule we have variables position ri and momentum pi associated with it. The Hamiltonian
for a single particle is given by

Ĥ({p, r}) =
∑
i=x,y,z

p2
i

2m
.

The aim is to find Pr(x) and Pr(px). Finding p(x) is straightforward, it is simply 1
Lx

. Finding
Pr(px) is slightly more work. We have to start from the basics and find Φ(E).

If we consider the energy of N particles, we have

E =
3N∑
i

p2
i

2m

If we only have one particle then the p-phase space would be a sphere of radius
√

2mE. With
N particles, then this would be a sphere in 3N -dimensions but still with radius

√
2mE. The

volume of an α-dimensional sphere is given by V = π
α
2

(α2 )!
Rα. Thus,

Φ =

ˆ

H<E

{dp, dr}

= V N
box

π
3N
2(

3N
2

)
!
R3N

...

=

[
V N

(
4πemE

3N

3N
2

)]
∝ E

3N
2

where we have used Stirlings approximation to get
(

3N
2

)
! ≈ exp

[
3N
2

ln
(

3N
2

)
− 3N

2

]
=
(

3N
2e

) 3N
2 .

Next, we need to determine ω = ∂Φ
∂E

. We use the trick that if Φ ∝ E3N/2, then ω = ∂Φ
∂E

= 3N
2

Φ
E

.

Finally, we can find Ω = ω∆ = 3N
2

Φ
E

∆. Since Pr(px) = Ωpx
Ω

, we want to find Ωpx as well. But Ωpx

is precisely Ω but when the total energy is instead E − p2x
2m

, and when the number of dimensions

go from 3N to 3N − 1. Hence, with δ = p2x
2m

, we have

Ωpx =

(
3N

2E

)
V N

(
4πemE)

3N

) 3N
2

∆

Ωpx =

(
3N − 1

2(E − ε)

)
V N

(
4πem(E − ε)

3N − 1

) 3N−1
2

∆
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Now, putting it all together,

Pr(px) =
Ω(E − p2x

2m
, V,N − 1)

Ω(E, V,N)

=
3N − 1

3N

E

E − ε

(
4πem

3

)−1
2

(
(N − 1/3)−

3N+1
2

N−
3N
2

)
︸ ︷︷ ︸

A

(
(E − ε) 3N−1

2

E
3N
2

)
︸ ︷︷ ︸

B

TODO.

We get at last

Pr(px) =
1√

4πm〈ε〉
exp

(
− ε

2〈ε〉

)
=

1√
2π〈p2

x〉
exp

(
− p2

x

2〈p2
x〉

)
.

This is a Gaussian with mean 0 and variance 〈p2
x〉. Now according to the equipartition theorem,

〈p2x〉
2m

= 1
2
kBT , so re-expressing, we have

Pr(px) =
1√

2πmkBT
exp

(
− p2

x

2mkBT

)
.

The probability of finding a particle with momentum px is Pr(px) dpx = Pr(vx) dvx. Hence, we
also have

Pr(vx) = Pr(px)
dpx
dvx

=

√
m

2πmkBT
exp

(
− mv2

x

2kBT

)
.

We can also express it in terms of speed, which perhaps looks more familiar:

Pr(v) dv =

ˆ
dΩ v2 dv p3(v = vx)

= 4πv2

(
m

2πkBT

) 3
2

exp

(
− mv2

2kBT

)
.

3.3 Entropy and temperature

Entropy S is defined as
S = kB ln Ω

It has units J/K. S is also a state function. It is an extensive variable since in general it depends
on the particle number.

Consider now two systems. The two systems are closed, so particles and energy cannot leave, but
they can still interact with each other. We also assume that there is no work done between them,
and that the microstates in both systems are independent of each other. Then temperature,

10



intuitively, is what we get when the two systems achieve equilibrium. When the system achieves
equilibrium, then this is represented by the maximum of the probability density function p(E).
So we want to find when dp

dE
= 0, when p(E) is maximum.

p(E1) =
Ωtotal(E1)

Ωtotal(all)
=

Ω1(E1)Ω2(E2)

Ω(E)
=

Ω1(E1)Ω2(E − E1)

Ω(E)

Since the function ln is monotone, if we can find the maximum for ln p then we would have
found the maximum for p. So

ln p(E1) = ln
Ω1(E1)Ω2(E − E1)

Ω(E)

=
1

kB
[S1(E1) + S2(E − E1)− S(E)]

∂

∂E1

(ln p(E1)) =
1

kB

[
∂

∂E1

S1(E1)− ∂

∂E2

S2(E2)− 0

]

Hence at equilibrium the maximum is achieved when

∂

∂E1

S1(E1) =
∂

∂E2

S2(E2)

Hence this expression gives us the temperature for each system. To maintain the consistency of
units, this expression is actually equal to 1

T
, so

1

T
=

(
∂S

∂E

)
δW=0

3.4 Second law of thermodynamics

Consider the same two isolated systems. Let the equilibrium energy of the first system be E ′1.
So in equilibrium we have E1 = E ′1. What happens if we are not in equilibrium? Then first of
all p(E1) ≤ p(E ′1). This means that

Ω1(E1)Ω2(E − E1)

Ω(E)
≤ Ω1(E ′1)Ω2(E − E ′1)

Ω(E)

1 ≤ Ω1(E ′1)Ω2(E − E ′1)

Ω1(E1)Ω2(E − E1)

kB ln 1 ≤ kB ln Ω1(E ′1) + kB ln Ω2(E − E ′1)− kB ln Ω1(E1)− kB ln Ω2(E − E1)

0 = S1(E ′1)− S1(E1) + S2(E ′2)− S2(E2)

= ∆S1 + ∆S2.

Therefore, we get the first statement of the second law,

∆S ≥ 0.
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Next, consider another system where the first system is immersed in a bath, but they are both
still microcanonical. Being a bath means that T2 does not change, though they can still exchange
heat. Exchanging heat means that δQ2 = δQ1. Thus,

1

T
=

∂S

∂Q2

dS2 =
δQ2

T2

=
− δQ1

T2

.

We have previously shown that dS ≥ 0, so

dS = dS1 + dS2 = dS1 −
δQ1

T2

≥ 0

so we get

dS1 ≥
δQ1

T2

.

Equality holds when the process is reversible.

From the first law, we know that

dU

∣∣∣∣
δW=0

= δQ.

From the second law, we also know that

dU

∣∣∣∣
δW=0

≤ T dS .

With the addition of work,
dU ≤ T dS + δW.

Quasi-static processes are reversible. If the process is reversible then the equality holds.

Example 3.1. Suppose we have some system where the work is expressed as δW = −P dV +
µ0H dM + E dP . Then,

dS =
1

T
dU +

1

T
P dV − 1

T
µ0H dM − 1

T
E dP

=

(
∂S

∂U

)
V,M,P

dU +

(
∂S

∂V

)
U,M,P

dV +

(
∂S

∂M

)
U,V,P

dM +

(
∂S

∂P

)
U,V,M

dP

Note that we only hold the independent variables constant, which are those variables in the
differentials. For example there is no

(
∂S
∂U

)
P,H,E

dU term. These partial derivatives give us an

idea of how fast the entropy is changing with respect to the other variables. ♦

Example 3.2. Back to our ideal gas. The Maxwell-Boltzmann distribution gives

Ωpx =

(
3N∆

2U

)
V N

(
4πemE)

3N

) 3N
2

From this we can find

S = kB ln Ω

= kB

[
ln

3N∆

2U
+ lnV N + ln

(
4πemU

3N

) 3N
2

]
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Now S depends on U, V,N . Therefore,

dS =

(
∂S

∂U

)
V,N

dU +

(
∂S

∂V

)
U,N

dV +

(
∂S

∂N

)
U,V

dN

First of all we have

1

T
=

(
∂S

∂U

)
V,N

= kB

[
− 1

U
+

3N

2U

]
U =

(
3N

2
− 1

)
kBT.

This agrees with the equipartition theorem in the limit of large N . We also have

P

T
=

(
∂S

∂V

)
U,N

= kB

(
N

V

)
PV = NkBT.

♦

Example 3.3. Consider an ensemble of N two-state systems. There are N0 of them in state
|0〉 and N1 of them in |1〉. So N = N0 +N1, and U = 0N0 + EN1 = EN1.

Ω =
N !

N1!N0!

Taking the limit N1 → 0, we have Ω→ 1. The same occurs if we take the limit N1 → N . Also
note that the maximum Ω occurs when N1 = N

2
. This then tells us that S is maximized at

N1 = N
2

, and S = 0 at N1 = 0 or N1 = N .

Using Stirling’s approximation,

S = kB ln
N !

N1!N0!

≈ kB[N lnN −N −N1 lnN1 +N1 −N0 lnN0 +N0]

S(N1) = kB[N lnN −N1 lnN1 − (N −N1) ln(N −N1)]

S(U) = kB

[
N lnN − U

E
ln
U

E
−
(
N − U

E

)
ln

(
N − U

E

)]

What is odd about this system is that the entropy starts to decrease with increasing energy
after a certain point. This means

1

T
=
∂S

∂U
< 0
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and so we end up with negative temperature. Let us evaluate it completely.

1

T
=

∂S

∂N1

∂N1

∂U

= kB[− lnN1 + ln(N −N1)]
1

E
E

kBT
= ln

(
N

N1

− 1

)
N1 =

N

1 + exp
(

E
kBT

)
U =

EN

1 + exp
(

E
kBT

)

Using this we can also find heat capacity,

CN =

(
∂U

∂T

)
N

= NkB

(
E2

k2
BT

2

) exp
(

E
kBT

)
[
1 + exp

(
E
kBT

)]2

As T → 0, the exponential decay dominates, and we have CN → 0. When T →∞, we find that
the exponential goes to 0, and so CN ∼ 1

T 2 . This illustrates the energy gap behaviour. The
excited states are only going to be populated if the thermal energy starts to exceed the energy
gap, or kBT > E.

To find the probability of occupying an excited or ground state can be given by

p(n) =
Ωn

Ω
,

where n = 0, 1, representing the ground state or excited state. We can find Ωn by finding Ω but
when N → N − 1 and N1 → N1 − n. Therefore, we have

p(n) =
Ω(N − 1, N1 − n)

Ω(N,N1)

♦

4 Maxwell relations and energies

4.1 Maxwell relations

The Maxwell relations relate quantities that are hard to measure (such as entropy) to quantities
that are easier to measure (such as temperature and volume). In this section we will derive
these relations.
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First consider the internal energy. Later on we will meet more types of energies and the way we
know what to use is through the independent variables. For instance we have

dU = TdS − PdV + µ0HdM + . . .

The independent variables are the variables in the differentials. Furthermore, we usually see T
and S go together in this way, and they are known as canonical conjugate variables. Similarly
for the other pairs. We can also write

dU =

(
∂U

∂S

)
V,M

dS +

(
∂U

∂V

)
S,M

dV +

(
∂U

∂M

)
S,V

dM ,

which gives us

T =
∂U

∂S
P = −∂U

∂V
µ0H =

∂U

∂M

and so on. We can actually relate any two of them with each other:(
∂T

∂V

)
S

=

[
∂

∂V

(
∂U

∂S

)
V

]
S

=

[
∂

∂S

(
∂U

∂V

)
S

]
V

= −
(
∂P

∂S

)
V

This is one of the Maxwell relations.

Example 4.1. Consider a one-dimensional wire of length l under some tension F . We have

dU = TdS + Fdl.

Therefore (
∂T

∂l

)
S

=

[
∂

∂l

(
∂U

∂S

)
l

]
S

=

[
∂

∂S

(
∂U

∂l

)
S

]
l

=

(
∂F

∂S

)
l

♦

Example 4.2. Let us apply the Maxwell relations to heat capacities. We have

CV =

(
∂Q

∂T

)
V

CP =

(
∂Q

∂T

)
P

.

Using the second law we know δQ = TdS so we can write

CV = T

(
∂S

∂T

)
V

CP = T

(
∂S

∂T

)
P

.

Now applying a partial derivative identity,

CP = T

[(
∂S

∂T

)
V

+

(
∂S

∂V

)
T

(
∂V

∂T

)
P

]
= CV + T

(
∂P

∂T

)
V

(
∂V

∂T

)
P

♦
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4.1.1 Helmholtz free energy

The previous examples were micro canonical ensembles. Now let us consider a system immersed in
a heat bath and δQ 6= 0. We can control all the other usual independent variables. Furthermore,
we have traded over entropy for temperature since now entropy is no longer the independent
variable but temperature is. Hence we will be considering another type of energy, the Helmholtz
free energy F . It is defined as

F = U − TS

The second term is where the substitution of S for T occurs1. Let us evaluate the differential:

dF = dU − TdS − SdT

= TdS + δW − TdS − SdT

= −SdT + δW

= −SdT − PdV + µ0HdM + . . .

Of course then we can relate this to

dF =

(
∂F

∂T

)
V,M

dT +

(
∂F

∂V

)
T,M

dV +

(
∂F

∂M

)
T,V

dM

giving us

S = −
(
∂F

∂T

)
V,M

P = −
(
∂F

∂V

)
T,M

µ0H = −
(
∂F

∂M

)
T,V

Then one of the Maxwell relations is(
∂S

∂V

)
T

=

[
∂

∂V

(
−∂F
∂T

)
V

]
T

=

[
∂

∂T

(
−∂F
∂V

)
T

]
V

=

(
∂P

∂T

)
V

.

4.1.2 Enthalpy

We still have a system similar to a micro canonical ensemble but we control S, P (instead of
V ), and N . From the previous section we know we should use the Helmholtz free energy

H = U − (−PV ) = U + PV.

so
dH = V dP + TdS.

1This is kind of similar to the transformation from the Lagrangian to the Hamiltonian, where we have
H = pq̇ − L.
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4.1.3 Gibbs free energy

Here we have U(S, V,N,M, . . . ) as a function of the usual extensive variables. We get the
Gibb’s free energy of the system if we trade all of them for their canonical conjugates and leave
only N to be controlled. So

G(T, P,N,H, . . . ) = U − TS + PV − µ0HM + . . .

and the differential is
dG = −SdT + V dP − µ0MdH + . . . µdN.

4.2 Observations

Deriving every single Maxwell relation can be tedious work. Let us look at a previously derived
relation for the one dimensional wire.(

∂T

∂l

)
S

=

(
∂F

∂S

)
l

.

Note that (T, S) and (F, l) are conjugate variables and they appear at the same locations on
both sides of the equation. The sign is determined by the form of energy we use in the derivation
of the relation.

Example 4.3. Say we wish to relate ∂S
∂M

to another variable. The canonical conjugate of S is
T . So it would be something like (

∂S

∂M

)
T

= ±
(
∂?

∂T

)
M

The canonical conjugate of M is µ0H, so we have(
∂S

∂M

)
T

= ±µ0

(
∂H

∂T

)
M

We need to find an energy with term ±SdT ± µ0HdM . The only one that satisfies this is the
Helmholtz free energy dF = −SdT + µ0HdM . So in fact there is a need for a negative sign:(

∂S

∂M

)
T

= −µ0

(
∂H

∂T

)
M

♦

Example 4.4 (Application). Given an elastic rod under tension F = (a+ bT )(l − l0) and of
heat capacity Cl = αT 3, we wish to find the entropy S(T, L).

First, since both F and S depends on T and l only, we can write

F =

(
∂F

∂T

)
l

dT +

(
∂F

∂l

)
T

dl

dS =

(
∂S

∂T

)
l

dT +

(
∂S

∂l

)
T

dl.
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We know that Cl = T
(
∂S
∂T

)
l
. So we wish to find

(
∂S
∂l

)
T

. We can derive a Maxwell relation(
∂S

∂l

)
T

= −
(
∂F

∂T

)
l

= b(l − l0).

The negative sign again comes from the use of the Helmholtz free energy. Now we solve for the
equation of state. First from

(
∂S
∂T

)
l
= αT 2 we get

S =
1

3
αT 3 + f(l).

this means (
∂S

∂l

)
T

=
∂f

∂l
= −b(l − l0)

Thus

f = − b
2

(l − l0)2 + C

and so

S =
1

3
αT 3 − b

2
(l − l0)2 + C.

♦

5 Heat engines

Heat engines are devices that can absorb heat from a hot reservoir and convert some of that
thermal energy to work.

Hot reservoir

Cold reservoir

engine Work

TH

QH

TC

There are two large classes of heat engines, the external combustion engine (e.g. steam engine)
and the internal combustion engine (e.g. gasoline engine). However in both cases they usually
take both substances around a closed loop in the PV diagram. Since U is a state function, it
does not depend on the path taken and so in a closed loop ∆U = 0. This means

˛
dU = 0 =

˛
δQ−

˛
PdV.

If
¸
PdV > 0, the engine does work on its surroundings. Then to maintain

¸
dU = 0, we have¸

TdS > 0, i.e. heat is added to the system.
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One of our goals will be to find the efficiency η of a heat engine. Efficiency is defined as

η =
Wout

|QH |
.

From the above we find Wout =
¸
PdV =

¸
TdS = |QH |−|QC |. Therefore generally η = 1− |QC ||QH |

.

5.1 Carnot cycle

The Carnot cycle is carried out by any substance that undergoes only isothermal and adiabatic
changes.

P

V

TH
TC

∆Q = 0
1

1′

2′
2

T

S

1 1′

2′ 2

TH

TC

SA SB
Figure 1: 1 → 1′ Isothermal expansion. 1′ → 2 Adiabatic expansion. 2 → 2′ Isothermal
compression. 2′ → 1 Adiabatic compression.

Let us figure out its efficiency.

Wout =

˛
PdV

=

˛
TdS

= (TH − TC)(SB − SA)

The heat was added between 1 and 1′ so

QH =

ˆ 1′

1

TdS

= TH(SB − SA)

Therefore

η = 1− TC
TH

.

This looks like the general formula for η we derived above. However due to the second law of
thermodynamics δQ ≤ TdS this is actually more efficient and is known as Carnot’s bound on
the efficiency of heat engines.
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5.2 Stirling cycle

Below we illustrate a Stirling engine. The crankshaft keeps the cylinder and piston at a 90◦

phase angle.

small air gap

hot surface

ideal gas

displacer

piston

flywheel
crankshaft

V

P

TH

TC

1

2

3
4

Figure 2: 1→ 2 isothermal expansion. 2→ 3 isochoric cooling. 3→ 4 isothermal contraction.
4→ 1 isochoric heating.

Let us calculate the heat transferred. For 1→ 2, we have δQ = −δW and so

Q12 = −W12 =

ˆ 2

1

NkBTH
V

dV = NkBTH ln
V2

V1

.

For 2→ 3, we can express it in terms of the heat capacity,

Q23 = CV (TC − TH).

For 3→ 4 is the reverse of 1→ 2,

Q34 = NkBTC ln
V4

V3

= NkBTC ln
V1

V2

.

Similarly for 4→ 1

Q41 = CV (TH − TC) = −Q23

The work done by the engine is thus

Wout = Q12 +Q34

= NkB(TH − TC) ln
V2

V1

and so the efficiency is

η =
NkB(TH − TC) ln V2

V1

NkBTH ln V2
V1

+ CV (TH − TC)

The displacer also acts as a regenerator. It stores heat to be used in the next cycle. Thus in the
limit of a perfect regenerator, we have

η =
NkB(TH − TC) ln V2

V1

NkBTH ln V2
V1

= 1− TC
TH

which is the same as Carnot’s bound.
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5.3 Refrigerator

A refrigerator it is the reverse of a heat engine. We put in work to move heat from a cold
reservoir to a hot reservoir instead.

5.4 Third law of thermodynamics

The third law states that at T = 0 the entropy of a substance is independent of other variables
(becomes a constant). It is a result of quantum mechanics, the idea behind it being that at
T = 0, the number of states Ω is just the number of ground state the system has.

Example 5.1. Consider a hydrostatic system with thermal expansion

αP =
1

V

(
∂V

∂T

)
P

.

We wish to find the behaviour of α as T → 0. We want to relate
(
∂V
∂T

)
Q

with something else. It

can only be
(
∂S
∂P

)
T

. Therefore since we have the Gibb’s free energy as

dG = −SdT + V dP,

this gives us (
∂V

∂T

)
P

= −
(
∂S

∂P

)
T

and so we see that α→ 0 due to the third law. ♦

6 Canonical ensemble

6.1 Derivation of the canonical ensemble

In a microcanonical ensemble, we consider an isolated system where energy E and number
of particles N were fixed. Most of the thermodynamic variables were found through relation
to entropy S. For large systems, the canonical ensemble is an easier way of calculating these
variables.

In a canonical ensemble, we consider a closed system where instead of controlling E, we control
temperature T instead. N is still held fixed. So we can exchange energy with a thermal bath,
but not particle numbers.

Let the system we are interested in be called A and the bath be called B. Heat can be exchanged
between them. The probability for the system to be in a given state x from the microcanonical
ensemble is given by

Pr(x) =
Ω(x)

Ωall

If A is described by continuous variables, say momentum p and position q,

Pr({pA, qA}) =
ΩA({pA, qA})ΩB(consistent with {pa, qA})

Ωall
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In terms of energies, since the total energy E is fixed,

Pr({pA, qA}) =
ΩA({pA, qA})ΩB(EB)

Ω(E)

In terms of entropies,

kB ln Pr({pA, qA}) = kb ln ΩA({pA, qA}) + kB ln ΩB(EB)− kB ln Ω(E)

= SA + SB(E − EA)− S(E)

Since A is in a given state, there is only one single configuration for A, and so ΩA = 1 and
SA = 0. For the second term, we do a Taylor expansion about E (since most of the energy
comes from the bath)

SB(E − EA) ≈ SB(E)− ∂SB(E)

∂E
EA

Substituting,

kB ln Pr({pn, qn}) = SB(E)− ∂SB(E)

∂E
EA − S(E)

= − 1

T
HA({pA, qA}) + SB(E)− S(E)

where H is the Hamiltonian. Inverting the expressions,

Pr({pn, qn}) = exp

[
− 1

kBT
HA({pA, qA})

]
exp

[
sB(E)− S(E)

kB

]
We note that the second exponential is constant with respect to system A. Therefore,

Pr({p, q}) ∝ exp

[
− 1

kBT
H({p, q})

]
Probabilities have to be normalised,

ˆ
Pr({p, q})dp1 · · · dpndq1 · · · dqm = 1

where n is N times the number of degrees of freedom per particle. Actually, for the units to
match, since [p× q] = [h], or J s, so we should write(

1

h

)n ˆ
Pr({p, q})dp1 · · · dpndq1 · · · dqn = 1

The reciprocal of this gives us the normalisation constant. To write it out in full we have

Pr({p, q}) =
exp
(
− 1
kBT

H({p, q})
)

1
hn

´
exp
(
− 1
kBT

H({p, q})
)

d{p, q}

Now, assume that although A is small relative to B, it is still large enough for thermodynamics
to apply. Then,

S(E) = S(U) = SA(EA) + SB(EB) = SA(〈EA〉) + SB(〈EB〉).
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We can expand SB(E) about 〈EB〉,

SB(E) ≈ SB(〈EB〉) +
∂SB(E)

∂E

= SB(〈EB〉) +
1

T
(EA)

This gives us

SB(E)− S(E) = SB(E)− SA(〈EA〉)− SB(〈EB〉)

=
〈EA〉
T
− SA(〈EA〉)

kB ln Pr({pA, qA}) = −H({pA, qA})
T

+
〈EA〉
T
− SA(〈EA〉)

and inverting, we have

Pr({pA, qA}) =
exp
(
−H({pA,qA})

kBT

)
exp
(
− 〈EA〉−TSA

kBT

)
So we get a nicer normalisation constant without the huge integral.

6.2 Partition functions

Another name for the normalisation is also called the partition function. For convenience, let
β = 1

kBT
. For continuous classical systems, as we have just seen,

ZN =

ˆ
1

hf
e−βHd{p, q} Pr({p, q}) =

1

ZN
e−βH

For quantum or discrete systems, it is similar,

ZN =
∑
states

e−βEstate Pr(state) =
1

ZN
e−βEstate

We will see that as entropy connected to the different thermodynamic variables for the micro-
canonical ensemble, it is the partition function that serves this role for the canonical ensemble.

For instance, we have

〈E〉 =

ˆ
1

hn
H({p, q}) Pr({p, q})d{p, q}

Here is a little trick. First consider

∂ZN
∂β

=

ˆ
1

hf
∂

∂β
e−βHd{p, q}

=

ˆ
1

hf
(−H)e−βHd{p, q}
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Now,

− 1

ZN

∂ZN
∂β

=

ˆ
1

hn
H
e−βH

ZN
d{p, q}

=

ˆ
1

hn
H Pr({p, q})d{p, q}

= 〈E〉

It might be more convenient to write

〈E〉 = −∂ lnZN
∂β

6.3 Energies

In the microcanonical ensemble we only had one fixed energy, the internal energy. In the
canonical ensemble the energy is not fixed, and it depends on what 〈E〉 is equal to.

First we have to determine what variables we are controlling in our system.

Example 6.1. If we control the volume, then 〈E〉 = U . More notable, in our derivations above,

if the system was large enough for thermodynamics to apply, then we can ZN = exp
(
− 〈E〉−TS

kBT

)
.

This was derived without any additional assumptions regarding the system, so we can write the
Helmholtz free energy F = U − TS = 〈E〉 − TS = −kBT lnZN . ♦

Example 6.2. If we control the pressure, then 〈E〉 = H, and the Gibbs free energy is
G = H − TS = 〈E〉 − TS = −kBT lnZN . ♦

6.4 Applications

There are a few benefits to using the canonical ensemble versus the microcanonical ensemble. For
one, in the canonical ensemble the main variable of interest ZN is obtained through integrating
all of phase space d{p, q}, whereas in the microcanonical ensemble we have integrate over a
shell in the phase space.

The second benefit comes when we have a separable system, i.e. H = Ha + Hb. In this case,

exp(−βH) = exp

(
− Ha

kBT

)
exp

(
− Hb

kBT

)
Pr({p, q}) = Pr({p, q}a) Pr({p, q}b)

ZN = ZaZb

and so on. This is useful when we have a system made up of a number of similar but distin-
guishable non-interacting systems, where we simply have ZN = (Z1)

N . For indistinguishable

systems, to account for double counting, we have ZN = (Z1)N

N !
.

Example 6.3 (Ideal gas). We will consider an ideal gas in a container of length Lx. Bohr
Sommerfield theory tells us that the momentum of the atoms p = nh

λ
so 2pxLx = nh. Then the

kinetic energy of a particle is

Ex =
p2
x

2m
=

n2h2

8mL2
x

.
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In all 3 dimensions,

E =
h2

8m

(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)
.

Then the partition function is given by

Z1 =
∞∑

nz=1

∞∑
ny=1

∞∑
nx=1

e−βE

=
∞∑

nz=1

exp

(
β
h2

8m

n2
z

L2
z

) ∞∑
ny=1

exp

(
β
h2

8m

n2
y

L2
y

) ∞∑
nx=1

exp

(
β
h2

8m

n2
x

L2
x

)
Typically, nx, ny, nz � 1, so we can replace the summations with integrals. We also approxi-
mately use an integral starting from 0 instead of 1. Hence,

Z1 ≈
ˆ ∞

0

exp

(
β
h2

8m

n2
z

L2
z

)
dnz

ˆ ∞
0

exp

(
β
h2

8m

n2
y

L2
y

)
dny

ˆ ∞
0

exp

(
β
h2

8m

n2
x

L2
x

)
dnx

The integrand is a Gaussian function, using the fact that
´∞
−∞

1
2πσ2 exp

(
− x2

2σ2

)
dx = 1, we have

Z1 ≈
(√

2πm

βh2

)3

LxLyLz

For a particle at a given temperature T and of mass m, the de-Broglie wavelength of the particle
is given by

λ =
h√

2πmkBT

So Z1 = V
λ3

where V is the volume of the box. Now, consider N identical particles, so we have

ZN =
ZN

1

N !

= V N

(
2πmkBT

h2

) 3N
2 1

N !
.

At a certain volume the Helmholtz free energy is given by

F = −kBT ln

[
V N

(
2πmkBT

h2

) 3N
2 1

N !

]

≈ −kBT

[
N ln

(
V

(
2πmkBT

h2

) 3
2

)
−N lnN +N

]

= NkBT

[
ln

(
N

V

(
2πmkBT

h2

) 3
2

)
− 1

]

Recall that S = −
(
∂F
∂T

)
V

. So

S = −NkB

[
ln

(
N

V

(
2πmkBT

h2

) 3
2

)
− 1

]
−NkBT

∂

∂T

(
−3

2
lnT

)
= −F

T
+

3

2
NkB
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Therefore from U − TS = F we get

U =
3

2
NkBT

as we expect. Next, recall P = −
(
∂F
∂V

)
T

. So

P = −NkBT
∂

∂V
(− lnV )

=
NkBT

V

♦

Example 6.4 (Two-level system). We have a ground state of degeneracy 1 and an excited state
at energy E with degeneracy g. For a single two-level system,

Z1 =
∑
states

e−βEstate

= e0 + ge−βE

Therefore the probability of being in a state is

Pr(state) =
e−βEstate

Z1

=


1

1 + ge−βE
, for |0〉

1

gβE + g
, for any excited states

Now consider N distinguishable two-level systems, so ZN = ZN
1 . The Helmholtz free energy is

F = −kBT lnZN

= −NkBT lnZ1

We have S = −
(
∂F
∂T

)
V

so

S = NkB lnZ1 +NkBT
−Ege−βE

1 + ge−βE

(
− 1

kBT 2

)
= NkB lnZ1 +

Ege−βE

1 + geβE
N

T

Using U − TS = F we have

U =
NEge−βE

1 + ge−βE

= NE Pr(excited state).

♦

Example 6.5 (Polyatomic gases). For a linear polyatomic gas molecule, we have

H = HKE + Hvib + Hrot.
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Though there are three possible axes of rotation, we do not really consider the z-axis, and
we consider that as quantum mechanical spin instead of actual rotation. Recall the following
properties of the angular momentum operator L:

L2Ψl,m = l(l − 1)~2Ψl,m

LzΨl,m = m~Ψl,m.

Furthermore we also have Hrot =
L2
1

2I1
+

L2
2

2I2
+

L2
3

2I3
. For a linear molecule L3 is effectively zero. With

a bond length of r, we have I1 = I2 = µr2 where µ is the reduced mass. Thus Hrot =
L2
1+L2

2

2I1
= L2

2I1
.

The eigenenergies are thus l(l+1)~2
2I1

. The fact that the energy does not depend on m means that
there is some degeneracy. Since −l ≤ m ≤ l, the degeneracy is 2l + 1.

Let θR = ~2
2I1

. The partition function is given by

Z =
∑
l,m

exp

(
−l(l + 1)θR

T

)
=
∑
l

(2l + 1) exp

(
−l(l + 1)θR

T

)
♦

7 Grand canonical ensemble

In the grand canonical ensemble, we not only allow for the exchange of energy, but also the
exchange of particles. The system is in contact with a particle reservoir characterised by chemical
potential µ (and the heat bath has temperature T ). In many ways µ is the direct analogue of T ,
it is a quantity that we get when two systems achieve equilibrium.

The energy of the combined system is composed of the energy of the system and the energy of
the reservoir. From dU = TdS + µdN we have µ =

(
∂U
∂N

)
S
. Total energy is hence

E = Ei,N + µNres

where Ei,N is the energy of the system in state i with N particles, and Nres is the number of
particles in the reservoir. We express Nres in terms of the number of particles in the system
N and the total number of particles Ntot as Nres = Ntot −N . Now µNtot is a constant energy
offset so we can just ignore it. This leaves us with

E = Ei,N − µN.

7.1 Grand partition function

In the grand canonical ensemble, the probability for finding the system in state i and number of
particles N is similar to the canonical ensemble

Pr(i, N) =
1

Ξ
e−β(Ei,N−µN)
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where Ξ is the grand partition function.

Ξ is also the normalisation constant. So

Ξ =
∑
i,N

e−β(Ei,N−µN)

Ξ does not depend on i or N since we have already summed across them. It will be a function
of thermodynamic variables, usually µ and T .

Further simplification yields

Ξ(µ, T, V ) =
∑
N

eβµN
∑
i

e−βEi,N

=
∑
N

zNZ(T,N, V )

where Z is the canonical partition function and z = eβµ is a quantity known as the fugacity.

As an example, the probability of finding the system with a certain quantity of particles is

Pr(N) =
∑
i

Pr(i, N) =
1

Ξ
zNZ(T,N, V ).

7.2 Particle numbers

We perform a similar derivation as we did for the canonical ensemble and energy. Using the
definition of mean,

〈N〉 =
∑
N

N Pr(N) =

∑
N Ne

βµNZ∑
N e

βµNZ

Using a familiar partial derivative,

∂

∂µ
ln Ξ =

1

Ξ

∂Ξ

∂µ
=

1

Ξ

∑
N

βNeβµNZ.

Hence

〈N〉 =
1

β

(
∂ ln Ξ

∂µ

)
T,V

7.3 Thermodynamic variables

In the canonical ensemble the thermodynamic variables were related to the partition function
Z directly through various energies. For the grand canonical ensemble, we will use an energy
called the grand potential

Φ(T, µ, V ) = −kBT ln Ξ(T, µ, V ).

In the thermodynamic limit, the N we have is close to 〈N〉. Thus

ln Ξ = ln
∑
N

eβµNZ ≈ ln
(
eβµ〈N〉Z

)
= ln eβµ〈N〉 + lnZ
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Therefore, suppose we control V and thus had F = U − TS,

Φ = −kBT ln eβµ〈N〉 − kBT lnZ

= −µ〈N〉+ 〈E〉 − TS
= F − µ〈N〉

The interpretation of this is as follows. From the microcanonical to the canonical ensemble, we
exchange control of temperature for control of entropy and obtain the Helmholtz free energy.
Now we are exchanging control of particle number for control of chemical potential.

dΦ = −SdT − PdV + µdN − µdN −Ndµ

= −SdT − PdV −Ndµ

7.4 Applications

Example 7.1. Imagine two classical gases separated by a partition, call them gas 1 and gas 2.
They are at the same temperature, but can exchange particle number. Gas 1 has a potential
energy per particle of 0 and gas 2 has a potential energy per particle of V0. (This is a simple
model of different gases in the atmosphere.)

Particles will be exchanged until they reach the same chemical potential µ. For gas 1,

Φ1 = F1 − µN1

where F1 = −kBT lnZN where ZN =
ZN1
N !

where Z1 = V
λ3

where λ is the de Broglie wavelength.
This was derived for an ideal gas using the canonical ensemble so we will skip the derivation.
All together,

Φ1 = N1kBT

(
ln
N1

V
λ3 − 1

)
− µN1

where n1 = N1

V
is related to the density. We have

µ1 =

(
∂F1

∂N1

)
V,T

= kBT
(
lnn1λ

3
1 − 1

)
+
N1kBT

N1

= kBT lnn1λ
3
1

In general for an ideal gas µ = kBT lnnλ3. We can also get a relation for n1

n1 =
1

λ3
eβµ.

For gas 2, we need to account for the extra potential:

Φ2 = N2kBT
(
lnn2λ

3 − 1
)

+N2V0 − µN2.

Again,

µ1 =

(
∂F2

∂N2

)
V,T

= kBT
(
lnn2λ

3
2 − 1

)
+ V0 +

N2kBT

N2

= kBT lnn2λ
3
2 + V0.
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The expression for n2 is given by
1

λ3
eβ(µ2−V0)

Thus in equilibrium, the densities of the gases are related by

n1

n2

=
λ3

2

λ3
1

eV0β

♦

8 Quantum statistics

Bosons Fermions
Ψ(r1, r2) = Ψ(r2, r1) Ψ(r1, r2) = −Ψ(r2, r1)

Symmetric states Anti-symmetric states
Bose-Einstein statistics Fermi-Dirac statistics

Integer spin Half-integer spin
photons, phonons, etc electrons, protons, etc

There are also composite particles that can be bosons or fermions. For example the sodium
atom with 23 nucleons and 11 electrons is a boson. The lithium atom with 6 nucleons and 3
electrons is a fermion.

8.1 Quantum statistics of two particles

If we have two particles in a box, using classical statistics we have

Z2 =
Z2

1

2

=
1

2

(∑
i

e−βEi

)2

=
∑
i 6=j

e−β(Ei+Ej) +
1

2

∑
i

e−2βEi

Assume the particles are fermions of the same spin, so they have anti-symmetric wave functions,
which means that two fermions with the same spin cannot occupy the same position (set r1 = r2).
Therefore the partition function is not correct.

Z2 =
∑
states

e−βEstate

=
∑
i 6=j

e−β(Ei+Ej)
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Now assume that the particles are bosons of the same spin, so they have symmetric wave
functions. There are no restrictions on the position that the particles are allowed to take.
Therefore in this case

Z2 =
∑
states

e−βEstate

=
∑
i 6=j

e−β(Ei+Ej) +
∑
i

e−2βEi

In general at a high temperature limit the first terms dominate, since it is more likely for
particles to occupy different states.

8.2 Quantum statistics of N particles

The occupation number ni refers to the number of particles that are occupying the i-th state.
We can try first using the canonical ensemble.

Z =
∑
states

e−βEstate

=
∑
{ni}∑
i ni=N

e−β
∑
i niEi

=
∑
{ni}∑
i ni=N

(∏
i

e−βniEi

)

This is an impossible sum to calculate.

We can try to remove the constraint on N and use the grand canonical ensemble instead.

Ξ =
∑
N

e−βµNZ

=
∑
N

e−βµN
∑
{ni}∑
i ni=N

e−β
∑
i niEi

=
∑
n1

∑
n2

. . . eβn1(µ−E1)eβn2(µ−E2) . . .

=
∏
i

(∑
ni

eβni(µ−Ei)

)
.

8.3 Fermions

For fermions ni = 0, 1. Therefore

Ξ =
∏
i

( ∑
ni=0,1

eβni(µ−Ei)

)
=
∏
i

(
1 + eβ(µ−Ei)

)
.
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We also have

〈N〉 =
1

β

∂ ln Ξ

∂µ

=
1

β

∂

∂µ

∑
i

ln
(
1 + eβ(µ−Ei)

)
=

1

β

∑
i

βeβ(µ−Ei)

1 + eβ(µ−Ei)

=
∑
i

1

eβ(Ei−µ) + 1

Since
∑

i ni = N , we also have
∑

i〈ni〉 = 〈N〉, which gives us the Fermi-Dirac distribution

〈ni〉 =
1

eβ(Ei−µ) + 1

The Fermi energy EF is µ at T = 0. At T = 0 we can see that µ is the point where the
probability of occupying a given state is 1

2
. We will dive in deeper to the case of T = 0.

We can describe metals as a free electron gas. We will assume an isolated system with N free
fermions. It turns out that the wavefunction is given by

Ψ(~r, ~s) =
1√
V
e−ik~rψspin(~s)

Periodicity in our lattice means that

Ψ(~r + nxLxx̂ + nyLyŷ + nzLzẑ) = Ψ(~r)

so the wavevector is
~k = nx

2π

Lx
x̂ + ny

2π

Ly
ŷ + nz

2π

Lz
ẑ

We want to find the density of k-states. Density is the number of states per unit volume. So

D =
1

2π
Lx

2π
Ly

2π
Lz

=
V

(2π)3

Fermions will fill up the lower energy states from 0 up to EF =
~2k2F
2m

with a radius in k-space of
kF . Thus the total number of fermions in this sphere is

N = D × 4

3
πk3

F × 2

The factor of 2 here is accounting for both spin up and spin down states. Altogether we obtain
the following expression.

N =
V

3π2
k3
F

The Fermi wavefactor is therefore kF =
(
3π2N

V

) 1
3 , from there we also have the Fermi energy

EF =
~2k2F
2m

.
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For a more general case, the number of states up to some arbitrary energy E is

NE = D × 4

3
πk3 × 2

=
V

3π2

(
2m

~2
E

) 3
2

The density of states is thus

D(E) =
dNE

dE

=
V

2π2

(
2m

~2

) 3
2

E
1
2

The area under the curve D(E)〈n〉 gives us N which is easier to calculate for T 6= 0 (we assumed
a sphere for the Fermi surface which may not hold for higher temperatures). A few interesting
quantities. Total energy:

E =

ˆ EF

0

ED(E)dE =
3

5
NEF

Degeneracy pressure:

P = −
(
∂U

∂V

)
N,S

= −
(
∂E

∂V

)
N,S

=
2

5

N

V
EF

8.4 Bosons

Let us consider photons. In a box, light exists as a combination of standing waves. These
standing waves are also called normal modes. Each normal mode’s energy has two quadratic
degrees of freedom, associated with the electric and magnetic fields. So for k normal modes, we
have

U = 2
∑
k

kBT.

If we assume that the modes are very close together, then we can approximate the sum as an
integral,

U = 2
∑
k

kBT

= 2D(k)

ˆ
kBTd3k

=
V

4π3
kBT

˚
k2 sin θdkdθdφ

=
V

π2
kBT

ˆ ∞
0

k2dk

=
V

π2c3
kBT

ˆ ∞
0

ω2dω

Since we have U
V

=
´∞

0
u(w)dω where u(w) is the energy density,

u(ω) =
kBT

π2c3
ω2
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This is what is known as the ultraviolet catastrophe. Planck “solved” this problem by supposing
that harmonic oscillator modes do not form a continuous spectrum of energy, but rather each
node has an energy of n~ω. We have

Z1 =
∞∑
n=0

e−βn~ω

=
1

1− e−β~ω

So the average energy of a single harmonic oscillator is given by

〈E〉 = − 1

Z1

∂Z1

∂β

=
~ωe−β~ω

e−β~ω − 1

=
~ω

e−β~ω − 1

= ~ω〈n〉

where here we call 〈n〉 the Planck distribution. Notice how we got away with using just the
canonical ensemble. This is not a mistake, indeed, if we set µ = 0 in the Bose-Einstein distribution
〈n〉BE = 1

eβ(E−µ)−1
we get exactly the Planck distribution. This means that µ =

(
∂U
∂N

)
S

= 0,
which in turn means that it does not cost any energy to create or destroy a photon.

Let us continue. First we are interested in the photon density N
V

. Again we apply the same trick

N = 2
∑
k

nk

= 2
V

(2π)3

ˆ
1

eβEk − 1
d3k

N

V
=

1

π2

ˆ ∞
0

k2

eβ~ck − 1
dk

=
1

π2c3

ˆ ∞
0

ω2

eβ~ω − 1
dω

=
1

π2c3

(
1

β~

)3ˆ ∞
0

x2

ex − 1
dx

≈ 0.24

(
kBT

~c

)3

.

Where we have made the substitution x = β~ω and dω = dx
β~ to make the integral dimensionless.
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Now we move on to the energy density

U = 2
∑
k

Eknk

= 2
∑
k

Ek
eβEk − 1

=
V

4π3

ˆ
Ek

eβEk − 1
d3k

=
V

π2

ˆ ∞
0

~ck3

eβ~ck − 1
dk

=
V ~
π2c3

ˆ ∞
0

ω3

eβ~ω − 1
dω

U

V
=

~
π2c3

ˆ ∞
0

ω3

eβ~ω − 1
dω

=
~
π2c3

(
1

β~

)4ˆ ∞
0

x3

ex − 1
dx

=
π2(kBT )4

15(~c)3

which is also known as the Stefan-Boltzmann law. We also have

u(w) =
~
π2c3

ω3

eβ~ω − 1
.

which is also known as the Planck spectral density.

We may also be interested in the blackbody radiation pressure P = −
(
∂F
∂V

)
T

. Since the modes

are all distinguishable, we have F = −kBT2
∑

k lnZk. Furthermore we are given that Ek ∝ 1
V 1/3 ,

and so ∂Ek
∂V

= −1
3
Ek
V

. Then

P = −
(
∂F

∂V

)
T

= − ∂

∂V
2kBT

∑
k

ln
(
1− eβEk

)
= −2

∑
k

∂Ek
∂V
e−βEk

1− e−βEk

=
1

3V

∑
k

2Ek
eβEk − 1

=
1

3

U

V
.
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9 Appendix

9.1 Partial derivatives

Some relations. (
∂x

∂y

)
z

=
1(
∂y
∂x

)
z

A simple derivation of the chain rule:

dx =

(
∂x

∂y

)
z

dy +

(
∂x

∂z

)
y

dz

dy =

(
∂y

∂x

)
z

dx+

(
∂y

∂z

)
x

dz

=⇒ dx =
∂x

∂y

∂y

∂x
dx+

∂x

∂y

∂y

∂z
dz +

∂x

∂z
dz

=⇒ −1 =
∂x

∂y

∂y

∂z

∂z

∂x

Let w = w(x, y, z). Then (
∂x

∂y

)
w

=

(
∂x
∂z

)
w(

∂y
∂z

)
w

.

We also have (
∂x

∂y

)
w

=

(
∂x

∂y

)
z

+

(
∂x

∂z

)
y

(
∂z

∂y

)
w

.

Finally
∂2y

∂z∂x
=

[
∂

∂z

(
∂y

∂x

)
z

]
x

=

[
∂

∂x

(
∂y

∂z

)
x

]
z

.

9.2 Equations of state

We call a function S = S(x, y) iff dS is an exact differential. In other words, we can write

dS =

(
∂S

∂x

)
y

dx+

(
∂S

∂y

)
x

dy

So work is not a state function.

Suppose we are given S = A dx + B dy. How do we find the expression for S? First, we can
integrate A: (

∂S

∂x

)
y

= A

S =

ˆ
A dx+ f(y)
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Then, differentiate it again and equate it to B.

B =

(
∂S

∂y

)
x

=
∂

∂y

[ˆ
A dx+ f(y)

]
Using this, we can find an expression for f(y),

∂f

∂y
= B − ∂

∂y

ˆ
A dx

f =

ˆ [
B − ∂

∂y

ˆ
A dx

]
dy

Then now we can integrate B and find the true expression for S.

S =

ˆ
A dx+

ˆ [
B − ∂

∂y

ˆ
A dx

]
dy

Example 9.1. For some gas, we are given

A =

(
∂P

∂T

)
V

=
NKB

V −Nb

B =

(
∂P

∂V

)
T

= − NKBT

(V −Nb)2
+

2aN2

V 3
,

and that the gas becomes an ideal gas for large T and V , find the equation of state for this gas.

First, integrate A:

P =

ˆ
NKB

V −Nb
dT =

NKBT

V −Nb
+ f(V ).

Partial derivative with respect to V :

B =
∂P

∂V
=

∂

∂V

[
NKBT

V −Nb
+ f(V )

]
=

NKBT

(V −Nb)2
+
∂f

∂V

Then we see directly that

∂f

∂V
=

2aN2

V 3

f = −aN
2

V 2
+ C

Therefore we get that

P =
NKBT

V −Nb
− aN2

V 2
+ C.

Plugging in the given boundary condition, when T, V →∞ we need P = NKBT
V

, so C = 0. ♦

9.3 Probability

Sometimes we simply cannot keep track of something because it is too difficult to do so, or
because it is inherently random. So we have to turn to probability.
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Given a random variable x and the probability density function p, we first note that p(x0) does
not give us the probability for x = x0. Rather, it is defined as

Pr[x1 < x < x2] =

ˆ x2

x1

p(x) dx .

We also have the cumulative probability at some point, which is given by

P (x) =

ˆ x

−∞
p(x) d(x)

Furthermore, we also have some statistics. The mean is defined as

〈x〉 =

ˆ ∞
−∞

xp(x) dx 〈f(x)〉 =

ˆ ∞
−∞

f(x)p(x) dx

We also have the variance, which is the square of the standard deviation σ:

σ2 = 〈(x− 〈x〉)2〉 = 〈x2〉 − 〈x〉2
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