
PC3236
Computational methods in physics

Jia Xiaodong

May 7, 2021

1 Miscellaneous

1.1 Gram-Schmidt orthogonalization

Define the inner product of a set of polynomials {φm(x)} as

ˆ b

a

w(x)φm(x)φn(x)dx.

Suppose now we want to construct a orthonormal set φ out of U = {1, x, x2, . . . }. We may
apply Gram-Schmidt orthogonalization to it. Start with U0 = 1. Normalisation means φ0 = 1√

2
.

The next element φ1 by imposing orthonormality condition of all existing orthonormal vectors
and a linear combination of U1 and φ0. Orthogonality:

0 =

ˆ 1

−1

φ0(x)(U1 + α10φ0(x))dx

=

ˆ 1

−1

1√
2
xdx+ α10

ˆ 1

−1

φ0(x)φ0(x)dx

= 0 + α10

Normalisation:

1 =

ˆ 1

−1

(cx)2dx

= c2 2

3

So φ1(x) =
√

3
2
x. We can continue with the linear combination U2 + α21φ1(x) + α20φ0(x).

Orthogonality:

0 =

ˆ 1

−1

φ0(x)(U2 + α21φ1(x) + α20φ0(x))dx

=

ˆ 1

−1

1√
2
x2dx+

ˆ 1

−1

α21

√
3

2
xdx+

ˆ 1

−1

α20φ0(x)φ0(x)

=
1√
2

2

3
+ 0 + α20

1

0 =

ˆ 1

−1

φ1(x)(U2 + α21φ1(x)−
√

2

3
φ0(x))dx

= 0 + α21 + 0

Normalisation:

1 =

ˆ 1

−1

[
c

(
x2 − 1

3

)]2

dx

We find that φ2(x) =
√

5
2

3x2−1
2

.

1.2 Random number generators

1.2.1 Linear congruential method

Given a seed X0,

Xi+1 = aXi + c mod m

This generates a uniform distribution. Example values are a = 75, c = 0, and m = 231 − 1.

1.2.2 Inverse transform method

Suppose we have a probability density function f(x) of a random variable x. We want to
generate a sequence of random number with the same density function?

The cumulative distribution function is defined as

Fx(x) =

ˆ x

−∞
f(x)dx.

Next, generate a sample u ∈ U(0, 1). Then, calculate x = F−1
x (u).

1.2.3 Acceptance rejection method

This is another alternative to the inverse method. Suppose we have a method to simulate a
random variable with probability density g(X) such that f(x) ≤ cg(x) for all x. Now generate

x from g, and generate u ∈ U(0, 1). Accept x if u ≤ fX(x)
cg(x)

. Otherwise we reject it. This can be
visualised as dart throwing:

f(x)

cg(x)

x

(x1, u1)

2

2 Root finding

In this section we will explore some methods in finding roots of functions numerically.

2.1 Bisection method

The bisection scheme proceeds similarly to binary search. It is most suitable for functions that
are continuous in some interval.In a bisection scheme we must first require that the root be
bracketed. That is, we must find some interval where there is a change of sign for the function.
For example for f(x) = cosx− x, a good bracket can be [0, π

2
]. This can be achieved through

graphical means or some other methods.

To bisect the search space, we need to find which side of the interval the search should proceed
in. For a given interval [a, b] with midpoint m = a+b

2
, we calculate the product f(a)f(m). If the

product is negative, we proceed recursively in the interval [a,m], otherwise we proceed in [m, b].
The reason for this test is that we wish to find the sub-interval that possesses a zero-crossing.
The intermediate value theorem guarantees us a root in the sub-interval with the zero-crossing.

It can be seen that since the interval is halved at every iteration, so will the error. The error
after n iterations is given by ε = b−a

2n
. Solving for n, we obtain the desired number of iterations:

n = log2

(
|b− a|
ε

)
.

If the errors at every step are related to the previous step by the following relation

εi+1 = AεRi ,

then if R = 1, we say the convergence is linear, if R = 2, it is quadratic, if 1 < R < 2 then it is
super-linear. For the bisection method, the rate of convergence is linear.

If the function is not continuous or if it is undetermined, then we can set a tolerance value and
make sure |f(m)| does not explode during each iteration.

2.2 Newton-Raphson method

The Newton-Raphson method is an iterative scheme to find the root of a function using a
trial value. If we have a reasonable guess x0 of the root (i.e. x− x0 is small), taking a Taylor
expansion about x = x0 we have

f(x) ≈ f(x0) + (x− x0)f ′(x0).

Since we want to find the value of x where f(x) = 0, we have

0 = f(x0) + (x− x0)f ′(x0)

x = x0 −
f(x0)

f ′(x0)
.

3

x
x x0

x1

Continue on the next iteration with x as our new trial value.

The geometrical intuition behind the Newton-Raphson method is as follows. The equation above
is actually the tangent line at point x0. The solution to this linear equation is the x-intercept of
the tangent line, which is a better guess at the root of the original function.

The above is also an example of when the Newton-Raphson method fails. The success of the
algorithm depends on some factors, such as the distance of our guess from the real root (and
hence also the accuracy of the Taylor expansion), the first derivative being non-zero, and so on.

If everything works out and the method converges, we can stop our iteration based on some
error tolerance ε, i.e. ∣∣∣∣ f(x)

f ′(x)

∣∣∣∣ < ε.

Of course we also have to check for singularities doing our search, so we also need to check
|f(x)| does not become too large.

Now let us determine the rate of convergence. Define the error at the i-th step as εi = x− xi
where x is the actual root and xi is the trial value. Then

εi+1 = εi +
f(xi)

f ′(xi)
.

From the Taylor series, keeping the first three terms and with f(x) = 0, we get

f(x) ≈ f(xi) + (x− xi)f ′(xi) +
(x− xi)2

2
f ′′(xi)

f(xi) = −εif ′(xi)−
ε2
i

2
f ′′(xi).

Substituting,

εi+1 = εi +
−εif ′(xi)− ε2i

2
f ′′(xi)

f ′(xi)

= −ε
2
i f
′′(xi)

2f ′(xi)
.

which demonstrates that convergence is quadratic.

In the bisection method, if the root has been bracketed, it always converges, albeit slowly.
Newton’s method converges rapidly, but it can fail at times. We can combine these two methods
into one:

4

1. Bracket the root, let the interval be [a, b]. Let x0 = a+b
2

, the midpoint.

2. By computing the product f(a)f(x0) and comparing to 0, determine if the root lies on
the left or right half interval.

3. Using x0 as the trial value, apply the Newton-Rhapson method to obtain x1.

3.1. If x1 lies in the correct sub-interval, then we accept it and use it for the next
Newton-Rhapson iteration.

3.2. If x1 does not lie in the correct sub-interval, we reject it and apply the bijection
method using the correct bracket.

Algorithm 2.1: Newton-Rhapson method with bisection method.

1 function newton-rhapson(f):
2 a, b← bracket values;
3 x← (a+ b)/2;
4 dx←∞;
5 while |dx| > tolerance do
6 if f(a)f(x) < 0 then // Tightening brackets

7 b← x;

8 else
9 a← x;

10 if |f ′(x)| 6= 0 then // Try Newton-Rhapson step

11 dx← −f(x)/f ′(x);

12 else
13 dx← b− a;

14 x← x+ dx;
15 if (b− x)(x− a) < 0 then // Use bisection if wrong bracket

16 x← (a+ b)/2;
17 dx← (b− a)/2;

18 return x ;

2.3 Method of false position

Given a function f(x) and a interval [a, b] with a root in it, we can approximate the root by
drawing a straight line through a and b and taking the x− intercept.

The line can be determined using the Lagrange interpolating polynomial. In our case, where we
just want a straight line, we can express the equation of the line as

P (x) = A(x− b) +B(x− a)

where A and B are constants to be determined. By substituting the appropriate values and
solving for the x-intercept, we find that

x =
af(b)− bf(a)

f(b)− f(a)
.

After the guess is made, we determine which sub-interval ([a, x] or [x, b]) the root lies in, then
perform another iteration with the new bounds.

5

y

x
a

b

Algorithm 2.2: Method of false position

1 function falseposition(f):
2 a, b← initial bounds;
3 xprev ←∞;
4 while ε > Tolerance do
5 x← (af(b)− bf(a))/(f(b)− f(a));
6 ε← |(xprev − x)/x|;
7 if f(a)f(x) < 0 then
8 b← x;

9 else
10 x← x;

11 xprev ← x;

12 return x ;

2.4 Secant Method

The secant method is based on the same principle as the Newton-Rhapson method. However
instead of requiring the first derivative of the function, we instead require two initial guesses of
the root. Instead of using the exact derivative, we instead approximate it with

f ′(xi) ≈
f(xi)− f(xi−1)

xi − xi−1

Then substituting this back into the Newton-Rhapson equation, we get the following:

xi = xi−1 − f(xi−1)
xi−1 − xi−2

f(xi−1)− f(xi−2)
.

Algorithm 2.3: Secant method

1 function secant(f):
2 x1, x2 ← appropriate guesses;
3 while |dx| > tolerance do
4 dx← −f(x2)(x2 − x1)/(f(x2)− f(x1));
5 x1 ← x2;
6 x′2 ← x2;
7 x2 ← x3;
8 x3 ← x′2 + dx;

9 return x3;

6

If evaluating the function is expensive, we can improve the algorithm by caching the previous
function evaluation, so we only evaluate the function once per iteration (except the first iteration).
This is an advantage over Newton’s method. Although the secant method converges slower than
Newton’s method (super-linear vs. quadratic), very often its better performance still makes it a
competitive choice.

2.5 Brent’s method

Brent’s method is the method of choice for general one-dimensional root finding problems where
we do not have the first derivative. It is similar to the combined Newton and bisection scheme,
just that the Newton-Rhapson method is changed into a quadratic interpolation algorithm.

First, we find a bracket for the root as usual, [x1, x2]. The first point x3 is obtained through
bisection. We then approximate the root using inverse quadratic interpolation. The idea behind
inverse quadratic interpolation is to use quadratic interpolation to approximate the inverse of
the function in question. The interpolation can be carried out using the Lagrange interpolation
polynomial (see example 3.1). Given three points x1, x2, and x3, and their evaluated values
f1 = f(x1), f2 = f(x2), f3 = f(x3), the Lagrange formula yields

f−1(y) =
(y − f2)(y − f3)

(f1 − f2)(f1 − f3)
x1 +

(y − f1)(y − f3)

(f2 − f1)(f2 − f3)
x2 +

(y − f1)(y − f2)

(f3 − f1)(f3 − f2)
x3.

Solving for the root at y = 0 gives

x =
f2f3

(f1 − f2)(f1 − f3)
x1 +

f1f3

(f2 − f1)(f2 − f3)
x2 +

f1f2

(f3 − f1)(f3 − f2)
x3.

Next, if the approximate root x lies in the correct sub-interval, we accept the root and use the
endpoints of the sub-interval together with x for our next iteration. Otherwise we apply the
bisection method to find a new approximation.

7

Algorithm 2.4: Brent’s method

1 function brent(f):
2 a, b← initial bracket;
3 x1, x2 ← a, b;
4 x3 ← (x1 + x2)/2;
5 while ε > tolerance do
6 if f(x1)f(x3) < 0 then // Tighten brackets

7 b← x3;

8 else
9 a← x3;

10 if f(x1) 6= f(x2) 6= f(x3) then // Check to prevent division by 0

11 x← see formula above;

12 else // If div. by 0, force bisection.

13 x← x3 + b;

14 if (b− x)(x− a) < 0 then // If out of bracket, use bisect

15 x← (a+ b)/2;

16 ε← |x− x3|;
17 if x < x3 then // New bounds, maintain x1 < x3 < x2

18 x2 ← x3;

19 else
20 x1 ← x3;

21 x3 ← x;

22 return x;

By caching previous function evaluations, we only need to perform one function call per iteration.
Furthermore, it also converges super-linearly and so is quite a good general purpose method.

2.6 Laguerre’s method

Laguerre’s method provides a way to find all roots to a polynomial. One may use methods like
Newton’s method, but Laguerre’s method is a dedicated technique for polynomials.

Two tools are required for this method. First we need an efficient algorithm for evaluating a
polynomial and its derivatives. Second, we need a way to deflate polynomials. This involves
calculating P (x)/(x− r) after finding a root r.

2.6.1 Evaluating polynomials and their derivatives

A polynomial of degree n (real or complex) takes the form of

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

The naive way of calculating P (x) incurs O(n2) multiplications. More efficiently, we evaluate it
from right to left to avoid wasting previous multiplications:

P (x) = a0 + x(a1 + x(a2 + · · ·+ x(an−1 + xan)))

8

We can thus evaluate P (x) in O(n) evaluations with the following recurrence:

P0(x) = an

Pi(x) = an−i + xPi−1(x).

Now the derivatives may be obtained directly from the above recurrence. It is clear that finding
the derivative of Pi involves differentiating Pi−1. We get another set of recurrences,

P ′0(x) = 0

P ′i (x) = Pi−1(x) + xP ′i−1(x)

P ′′0 (x) = 0

P ′′i (x) = 2P ′i−1(x) + xP ′′i−1(x).

2.6.2 Deflating

After a root r of polynomial P (x) has been determined, we wish to factor it out. Suppose
P (x) = Q(x)(x− r), and

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

Q(x) = bn−1x
n−1 + bn−2x

n−2 + · · ·+ b1x+ b0.

Then, equating the two,

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = (x− r)(bn−1x
n−1 + bn−2x

n−2 + · · ·+ b1x+ b0).

Comparing coefficients give us

an = bn−1 ak = bk−1 − rbk

2.6.3 Derivation

Suppose if we know a polynomial has a root at x = r and n− 1 roots at x = q. Then we can
write

Pn(x) = (x− r)(x− q)n−1.

Our objective is to determine r, given the polynomial in its general form Pn(x) = a1x
n+a2x

n−1 +
· · ·+ an+1.

Differentiating once yield

P ′n(x) = (x− q)n−1 + (n− 1)(x− r)(x− q)n−2

= Pn(x)

(
1

x− r
+
n− 1

x− q

)
P ′n(x)

Pn(x)
=

1

x− r
+
n− 1

x− q
.

Differentiating this expression again yields

P ′′n (x)

Pn(x)
−
(
P ′n(x)

Pn(x)

)2

= − 1

(x− r)2
− n− 1

(x− q)2
.

9

Now, let

G =
P ′n(x)

Pn(x)
H = G2 − P ′′n (x)

Pn(x)
.

Solving the simultaneous equations

G =
1

x− r
+
n− 1

x− q

H =
1

(x− r)2
+

n− 1

(x− q)2
.

for x− q, we obtain a quadratic equation in x− r. The solution of this equation is Laguerre’s
formula,

x− r =
n

G±
√

(n− 1)(nH −G2)
.

The formula is exact for our special case. However, it turns out that it works well as an iterative
method for any polynomial. We will start with a first trial value x = x0. Our next value will
then be r = x1, and so on. To ensure convergence, we should pick the denominator with a larger
absolute value. This will minimize the difference x− r. We stop when |x− r| is below some
error threshold.

Algorithm 2.5: Root finding with Laguerre’s method.

// a is a list of coefficients of the polynomial a1x
n + a2x

n−1 + · · ·+ an+1.

function lroot(x):
1 for coeffi in a do
2 r ← laguerre(a, n);
3 rootsi ← r;
4 a← deflate(a, r);

Algorithm 2.6: Deflation algorithm.

1 function deflate(a, r):
2 b1 ← a1;
3 for i in [2..(|a| − 1)] do
4 bi ← ai + r ∗ bi−1;

5 return b;

10

Algorithm 2.7: Laguerre’s method.

1 function laguerre(a): // Note that n = |a| − 1.
2 x← random guess; dx←∞;
3 while |dx| > tolerance ∨ |p| > tolerance do
4 (p, dp, ddp)← evalpoly(a, x);

5 G← dp
p

;

6 H ← G2 − ddp
p

;

7 s←
√

(n− 1)(nH −G2);
8 if |g + f | < |g − f | then
9 dx← n

g−f

10 else
11 dx← n

g+f

12 x← x− dx;

2.7 Systems of equations

So far we have only dealt with solving a single equation. Now let us consider solving an
n-dimensional problem using Newton’s method.

Given a set of equations
f(x) = 0,

Taylor expansion of fi about x gives

fi(xi + ∆xi) = fi(xi) +
n∑
j=1

∂fi
∂xj

∆xj +O(∆x2).

Dropping the squared terms give

f(x + ∆x) = f(x) + J(x)∆x

where J(x) = (jij) = ∂fi
∂xj

is the Jacobian.

Hence, if x is our current approximation of the root of f , we can find the correction term ∆x by
setting f(x + ∆x) = 0, and then solving

J(x)∆x = −f(x).

Then we repeat the process using x + ∆x as our new approximation.

To calculate the partial derivatives, we may use a finite difference approximation with a small
perturbation δ and unit vector e in the direction of xj:

∂fi
∂xj
≈ fi(x + δej)− fi(x)

δ
.

11

Algorithm 2.8: Solving systems of equations using Newton’s method.

1 function simult(f ,x): // Input list of functions f and parameters x.
2 dx← [∞, . . . ,∞];
3 while ‖dx‖ > tolerance do
4 J← jacobian(f ,x);
5 dx← J−1(−f(x));
6 x← x + dx;

Algorithm 2.9: Finding the Jacobian using the finite difference approximation.

1 function jacobian(f ,x):
2 δ ← small perturbation;
3 f0 ← f(x);
4 for xj ∈ x do
5 temp← xj;
6 xj ← xj + δ;
7 f1 ← f(x);
8 xj ← temp;

9 Jij ←
[
f1−f0
δ

]
i
;

3 Interpolation and extrapolation

In interpolation we are given a set of points in a region and are asked to estimate an unknown
point in the region. This is used for many other numerical techniques such as integration and
differentiation.

Interpolation however is usually unsuitable for predicting points outside the given data points
since they do not use information about trends in the data. That is where extrapolation comes
in.

3.1 Lagrange interpolation

Given a function f(x), consider two points (x1, y1) and (x2, y2). Taylor’s series gives

f(xi) = f(x) + (xi − x)f ′(x) + · · ·

Approximating f(x) by an unknown function p(x) this can be made exact

f(xi) = p(x) + (xi − x)p′(x).

Solving for p, we have

p(x) =
x− x2

x1 − x2

f(x1) +
x− x1

x2 − x1

f(x2)

= A(x− x2) +B(x− x1).

This is a straight line joining the two points, and is known as the Lagrange interpolating
polynomial. It is easy to calculate the constants by plugging in x = x1 and x = x2.

12

If we were to add another point, we can do the same

f(xi) = p(x) + (xi − x)p′(x) +
(xi − x)2

2
p′′(x)

which gives a system of equation which when solved gives

p(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
f(x1) +

(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
f(x2) +

(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
f(x3)

= A(x− x2)(x− x3) +B(x− x1)(x− x3) + C(x− x1)(x− x2).

Following this trend, for four unknowns we have

p(x) =
(x− x2)(x− x3)(x− x4)

(x1 − x2)(x1 − x3)(x− x4)
f(x1) +

(x− x1)(x− x3)(x− x4)

(x2 − x1)(x2 − x3)(x2 − x4)
f(x2)

+
(x− x1)(x− x2)(x− x4)

(x3 − x1)(x3 − x2)(x3 − x4)
f(x3) +

(x− x1)(x− x2)(x− x3)

(x4 − x1)(x4 − x2)(x4 − x3)
f(x4)

Example 3.1. In Brent’s method we perform the inverse quadratic interpolation. Given (x1, y1),
(x2, y2), (x3, y3), we plot x against y, then the inverse quadratic polynomial can be written as

x =
(y − y2)(y − y3)

(y1 − y2)(y1 − y3)
x1 +

(y − y1)(y − y3)

(y2 − y1)(y2 − y3)
x2 +

(y − y1)(y − y2)

(y3 − y1)(y3 − y2)
x3.

♦

In general the Lagrange interpolating polynomial of order n− 1 is given by

pn−1(x) =
n∑
j=1

lj,n(x)f(xj)

where the coefficients

lj,n(x) =
n∏
k=1
k 6=j

x− xk
xj − xk

.

Note that sometimes increasing the number of polynomials can actually increase the error.
Sometimes a kind of oscillation errors may arise. This can be mitigated using Chebychev nodes
or just by simply subdividing the region of interest to avoid high order polynomials.

3.2 Newton interpolation

Although Lagrange’s method is simple, it is computationally inefficient. A more efficient method
is Newton’s method, where the interpolating polynomial is written as

pn−1(x) = a1 + (x− x1)a2 + (x− x1)(x− x2)a3 + . . .

13

Example 3.2. Consider the case n = 4. Then

p3(x) = a1 + (x− x1)a2 + (x− x1)(x− x2)a3 + (x− x1)(x− x2)(x− x3)a4

= a1 + (x− x1)(a2 + (x− x2)[a3 + (x− x3)a4])

This can be evaluated with the recurrence

p0(x) = a4

p1(x) = a3 + (x− x3)p0(x)

p2(x) = a2 + (x− x2)p1(x)

p3(x) = a1 + (x− x1)p2(x)

♦

From the example, for arbitrary n we have

p0(x) = an

pk(x) = an−k + (x− xn−k)pk−1(x).

The coefficients of pn−1 are determined by forcing the polynomial to pass through each data
point we have, in other words, solving the following set of equations

y1 = a1

y2 = a1 + (x2 − x1)a2

y3 = a1 + (x3 − x1)a2 + (x3 − x1)(x3 − x2)a3

...

Define

∇yi =
yi − y1

xi − x1

i = 2, 3, . . .

∇2yi =
∇yi −∇y2

xi − x2

i = 3, 4, . . .

...

∇n−1yi =
∇n−2yi −∇n−2yi−1

xi − xi−1

When solving, we see that first

a2 =
y2 − y1

x2 − x1

= ∇y2

a3 =
y3 − y1 − (x3 − x1)∇y2

(x3 − x1)(x3 − x2)

=
∇y3 −∇y2

x3 − x− 2

= ∇2y3

...

an = ∇n−1yn

This form makes the algorithm very suitable for optimization through memoization.

14

Example 3.3. Fit a polynomial onto the given data points

x 1 −1 3 2 4 −2
y −2 −14 18 1 61 −47

.

We tabulate our results as follows:

i x y ∆ ∆2 ∆3 ∆4 ∆5

1 1 −2
2 −1 −24 6
3 3 18 10 1
4 2 1 3 −1 2
5 4 61 21 3 2 0
6 −2 −47 15 −9 2 0 0

Newton’s interpolating polynomial is written as

y = −2 + (x− 1)6 + (x− 1)(x+ 1) + (x− 1)(x+ 1)(x− 3)2.

♦

3.3 Hermite interpolation

In the case of the Hermite interpolating polynomials, we also assume the availability of first
derivative values at the data points.

Example 3.4. We desire the interpolation polynomial

p(x) = ax3 + bx3 + cx+ d

given that p(i)(x1) = f(x1) and p(i)(x2) = f(x2) where i = 0, 1 (zero and first derivatives).
Solving for the coefficients we have the Hermite cubic interpolating polynomial:

p(x) =
(1− 2 x−x1

x1−x2)(x− x2)2

(x1 − x2)2
f(x1) +

(1− 2 x−x2
x2−x1)(x− x1)2

(x1 − x2)2
f(x2)

+
(x− x1)(x− x2)2

(x1 − x2)2
f ′(x1) +

(x− x2)(x− x1)2

(x1 − x2)2
f ′(x2)

♦

The general Hermite interpolating polynomial is

p(x) =
n∑
j=1

hj,n(x)f(xj) +
n∑
j=1

h̄j,n(x)f ′(xj).

We want to obtain an expression for h and h̄. We can start from the relations p(xi) = f(xi).
This alone tells us

hj,n(xi) = δij h̄j,n(xi) = 0.

15

Next, differentiating we have

p′(x) =
n∑
j=1

h′j,n(x)f(xj) +
n∑
j=1

h̄′j,n(x)f ′(xj).

and using the relation p′(xi) = f ′(xi), we obtain

h′j,n(xi) = 0 h̄′j,n(xi) = δij

We make the following hypothesis

hj,n(xi) = (ajx+ bj)l
2
j,n(x) h̄j,n(xi) = (cjx+ dj)l

2
j,n(x)

h′j,n(xi) = (ajx+ bj)2lj,n(x)l′j,n(x) + ajl
2
j,n(x) h̄′j,n(xi) = (cjx+ dj)2lj,n(x)l′j,n(x) + cjl

2
j,n(x)

where lj,n is the same as in Lagrange interpolation, but reproduced here:

lj,n(x) =
n∏
k=1
k 6=j

x− xk
xj − xk

.

Together with our observations, we are able to solve and obtain the following

ajxj + bj = 1 cjxj + dj = 0

aj + 2l′j,n(xj) = 0 cj = 1.

Thus, substituting and simplifying we finally get

hj,n(x) = (1− 2(x− xj)l′j,n(xj))l
2
j,n(x)

h̄j,n(x) = (x− xj)l2j,n(x)

3.4 Cubic splines

Splines are piecewise polynomials in which the component polynomials satisfy some continuity
conditions.

Suppose we have a function and we have n samples. Between every two points xj and xj+1 we
can define a cubic polynomial as

p(x) = aj(x− xj)3 + bj(x− xj)2 + cj(x− xj) + dj.

We require the approximation to be exact at x = xj and x = xj+1, which means

p(xj) = dj

p(xj+1) = aj(xj+1 − xj)3 + bj(xj+1 − xj)2 + cj(xj+1 − xj) + p(xj)

We want the final polynomial to be differentiable, so the pieces have to be twice differentiable to
ensure a continuous derivative so they can be joined without kinks. The derivatives are given by

p′(x) = 3aj(x− xj)2 + 2bj(x− xj) + cj

p′′(x) = 6aj(x− xj) + 2bj.

16

For the second derivative, we have

p′′(xj) = 2bj

p′′(xj+1) = 6ajhj + 2bj.

We can now solve to get

dj = p(xj)

bj =
p′′(xj)

2

aj =
1

6

p′′(xj+1)− p′′(xj)
xj+1 − xj

cj =
p(xj+1)− p(xj)
xj+1 − xj

− (xj+1 − xj)p′′(xj+1) + 2(xj+1 − xj)p′′(xj)
6

.

Now we impose the continuity of first derivatives. In other words,

pj(xj) = cj = pj−1(xj) = 3aj−1(xj − xj−1)2 + 2bj−1(xj − xj−1) + cj−1

Solving this very large equation (skipped), we obtain

(xj+1 − xj)p′′(xj+1) + 2p′′(xj)(xj+1 − xj−1) + (xj − xj−1)p′′(xj−1)

= 6

(
p(xj+1)− p(xj)
xj+1 − xj

− p(xj)− p(xj−1)

xj − xj−1

)
.

This is valid for j = 2, . . . , n− 1. We need two more equations to fully solve for the p′′’s. The
additional equations come from specifying the derivatives at the endpoints x1 and xn. This is
also known as a clamped spline. Substituting these into our expression for p′(x) gives

(x2 − x1)(2p′′(x1) + p′′(x2)) = 6
p(x2)− p(x1)

x2 − x1

− 6p′(x1)

(xn − xn−1)(p′′(xn−1) + 2p′′(xn)) = −6
p(xn)− p(xn−1)

xn − xn−1

+ 6p′(xn)

If the first derivatives at the endpoints are not known, we can set the second derivatives to zero
at the endpoints. This is known as a natural spline. We can express all these as a simple matrix
equation

2(x2−x1) x2−x1
x2−x1 2(x3−x1) x3−x2

x3−x2 2(x4−x2) x4−x3
. . .

xn−1−xn−2 2(xn−xn−2) xn−xn−1

xn−xn−1 2(xn−xn−1)




p′′(x1)
p′′(x2)
p′′(x3)

...
p′′(xn−1)
p′′(xn)



=



6p(x2)−p(x1)
x2−x1 − 6p′(x1)

6p(x3)−p(x2)
x3−x2 − 6p(x2)−p(x1)

x2−x1
6p(x4)−p(x3)

x4−x3 − 6p(x3)−p(x2)
x3−x2

...

6p(xn)−p(xn−1)
xn−xn−1

− 6p(xn−1)−p(xn−2)
xn−xn−1

−6p(xn)−p(xn−1)
xn−xn−1

− 6p′(xn)



17

For the natural spline, we have
1

2(x3−x1) x3−x2
x3−x2 2(x4−x2) x4−x3

. . .
xn−1−xn−2 2(xn−xn−2)

1




p′′(x1)
p′′(x2)
p′′(x3)

...
p′′(xn−1)
p′′(xn)



=



0

6p(x3)−p(x2)
x3−x2 − 6p(x2)−p(x1)

x2−x1
6p(x4)−p(x3)

x4−x3 − 6p(x3)−p(x2)
x3−x2

...

6p(xn)−p(xn−1)
xn−xn−1

− 6p(xn−1)−p(xn−2)
xn−xn−1

0



3.5 Padé approximation

We use rational functions to approximate a function f(x) over a small portion of its domain. A

rational function is a ratio of two polynomials R(x) = P (x)
Q(x)

. To make the approximation unique,

We ask that Q(0) = 1, so the constant term for Q be set to 1. In other words define

Rn,m(x) =
Pn(x)

Qm(x)
=

∑n
i=0pix

i

1 +
∑m

j=1qjx
j

We require that f(x) and Rn,m(x) and their n+m derivatives agree at x0. This gives rise to
n+m+ 1 equations that allow us to solve for the coefficients. Consider the Taylor expansion of
f(x)−Rn,m(x):

f(x)−Rn,m(x) = f(x0) + (x− x0)f ′(x0) + · · ·+ c1(x− x0)n+m+1 + . . .

− [Rn,m(x0) + (x− x0)R′n,m(x0) + · · ·+ c2(x− x0)n+m+1 + . . .]

= (c1 − c2)(x− x0)n+m+1 + . . .

where the second step arises due to our condition of R
(k)
n,m(x0) = f (k)(x0). So the lowest power is

n+m+ 1. We can write

f(x)−Rn,m(x) =
f(x)Qm(x)− Pn(x)

Qm(x)

=

∑∞
i=0aix

i
∑m

j=0qjx
j −

∑n
i=0pix

i

Qm(x)

We know the numerator has no terms of of decree lower than n−m inclusive. Hence,

n+m∑
i=0

aiqk−i = pk k = 0, 1, . . . n+m.

This gives a system of equations (note that q0 = 1 and p0 = a0).

Example 3.5. Let n = 3 and m = 2. The function in question is f(x) = e−x =
∑∞

k=0
(−1)k

k!
xk.

The first few coefficients are

a0 = 1 a1 = −1 a2 =
1

2
a3 = −1

6
a4 =

1

24
a5 = − 1

120

18

Then, the coefficients of the Padé approximant can be determined by solving the following
matrix equation: 

a0 0 −1 0 0
a1 a0 0 −1 0
a2 a1 0 0 −1
a3 a2 0 0 0
a4 a3 0 0 0



q1

q2

p1

p2

p3

 = −


a0

a1

a2

a3

a4

 .

This gives us

R3,2(x) =
1− 3

5
x+ 3

20
x2 − 1

60
x3

1 + 2
5
x+ 1

20
x2

.

♦

3.6 Approximating derivatives

From Taylor’s expansion

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) + · · ·

we solve for f ′(x)

f ′(x) =
1

h

[
f(x+ h)− f(x)− h2

2!
f ′′(x) + · · ·

]
=
f(x+ h)− f(x)

h
+O(h)

This expression for f ′(x) is known as the forward difference expression. Starting with a different
Taylor expansion

f(x− h) = f(x)− hf ′(x) +
h2

2!
f ′′(x)− h3

3!
f ′′′(x) + · · ·

we get the backward difference approximation

f ′(x) =
f(x)− f(x− h)

h
+O(h).

To get a better approximation, we can subtract the two Taylor expansions to obtain

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2).

This is known as the central difference formula. We can also add the two Taylor expansions to
obtain

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+O(h2)

To develop a forward difference formula for the second derivative, we can use another expansion

f(x+ 2h) = f(x) + 2hf ′(x) +
4h2

2!
f ′′(x) +

8h3

3!
f ′′′(x) + · · ·

19

which gives us

f ′′(x) =
f(x)− 2f(x+ h) + f(x+ 2h)

h2
+O(h).

A smaller h decreases the truncation error, however it should also be noted that for extremely
small h due to finite precision (float, double, etc.) the error can actually increase from round off
errors.

Example 3.6. Suppose we are calculating the second derivative using the central difference
formula. Assume we incur the same round off error e for computing f(x+h), f(x), and f(x−h).
Therefore the total round off error is their sum, 4e

h2
. Now the truncation error is given by the

O(h2) term in the formula. It has a leading term of −h2

12
f (4)(x). So, we seek the minima for the

total error:

0 =
d

dh

(
4e

h2
+
h2

12
f (4)(x)

)
= −8e

h3
+
h

6
f (4)(x)

h =

(
48e

f (4)(x)

) 1
4

♦

3.7 Richardson extrapolation

Richardson extrapolation is a method to generate high accuracy results from low order formulas.

Let D(h) be an approximation to a derivative f ′ with step size h. Then f ′ = D(h) +E(h) where
E(h) = chp is the error. Then if we perform the calculation with two step sizes,

F = D(h1) + chp1
F = D(h2) + chp2.

We can eliminate c and obtain

F =
hp2D(h1)− hp1D(h2)

hp2 − h
p
1

Example 3.7. Starting from the central difference formula

f ′(x) =
f(x+ h)− f(x− h)

2h
− h2

6
f ′′′(x) + . . .

we want to increase its accuracy. This means finding another formula that allows us to remove
the trailing term. Using a step size of 2h, we get

f ′(x) =
f(x+ 2h)− f(x− 2h)

4h
− 4h2

6
f ′′′(x) +

Now combining the two equations we are able to obtain

f ′(x) =
f(x− 2h)− 8f(x− h) + 8f(x+ h)− f(x+ 2h)

12h
+O(h4).

♦

20

Example 3.8. Now consider the forward difference formula

f ′(x) =
f(x+ h)− f(x)

h
+O(h).

A better approximation is obtained with h1 = 2h2

f ′(x) =
−3f(x) + 4f(x+ h)− f(x+ 2h)

2h
+O(h2).

♦

Richardson extrapolation can be used for many other numerical methods other than derivatives.
We will see an use for it in integration later on.

3.8 Curve fitting

Consider the least squares error

S(a1, . . . am) =
N∑
k=1

(yk − Y (xk, a1, . . . am))2,

where yk is the provided data points at point xk and Y is the proposed function we are trying
to fit. The goal is to minimize S. The question can be rephrased as finding the point at which
∂S
∂ai

= 0 for i = 1, . . . ,m.

This gives rise to a system of equations which can be solved by Newton’s method. We perform
the iteration

J(x)∆x = −f(x)

where Jijxj =
∑

j
∂fj
∂xj

∆xj and f = fi. Only that here, the system in question is fi = ∂S
∂ai

, so we

have ∑
j

∂2S

∂ai∂aj
∆aj = − ∂S

∂ai
.

The terms Sij = ∂2S
∂ai∂aj

form the Hessian matrix which we denote by S. Hence the solution to

our problem is obtained by iterating the following equation

m∑
j=1

Sij(a1, a2, . . . , am)∆aj = −∂S(a1, a2, . . . , am)

∂ai

with trial values a1, a2, . . . am. The derivatives can be approximated with repeated applications
of the finite difference approximation.

Sii ≈
S(ai + δi, . . .)− 2S(ai, . . .) + S(ai − δi, . . .)

δ2
i

Sij ≈
1

2δi

[
S(ai + δi, aj + δj, . . .)− S(ai + δi, aj − δj, . . .)

2δj

−S(ai − δi, aj + δj, . . .)− S(ai − δi, aj − δj, . . .)
2δj

]

21

Algorithm 3.1: Non-linear curve fitting.

1 function nonlinear(x):
2 X← x data points;
3 Y ← y data points;
4 A← initial trial values;
5 while ‖dx‖ > tolerance do
6 S← hessian(A, δ);
7 dx← S−1(−f(x));
8 A← A + dx;

4 Numerical integration

4.1 Newton-Cotes formula

Consider an integral

I =

ˆ b

a

f(x)dx.

We seek a quadrature

I ≈
n∑
i=1

Wifi

where Wi’s are the weights and fi = f(xi) at evaluation points xi. In Newton-Cotes we assume
the evaluation points are evenly distributed in the interval of concern [a, b] with distance d = b−a

n−a .

In our quadrature the unknowns are the weights. We can approximate f(x) by a polynomial of
degree n− 1 that intersects all xi. The Lagrange form of this polynomial is

Pn−1(x) =
n∑
i=1

f(xi)li,n(x).

Therefore,

I =

ˆ b

a

Pn−1(x)dx

=
n∑
i=1

(
f(x)

ˆ b

a

li,n(x)dx

)
A comparison tells us the weights are given by

Wi =

ˆ b

a

li,ndx

4.1.1 Trapezoidal approximation

Using two data points (n = 2), we get a simple trapezoidal approximation. We have l1,2 = x−b
a−b .

Therefore

W1 =

ˆ b

a

x− b
a− b

dx =
b− a

2

22

and for l2,2 = x−a
b−a we have

W2 =
b− a

2
.

Therefore

I ≈ (f(a) + f(b))
b− a

2
.

The error term is − (b−a)3

12
f ′′(x). This error term can be obtained from a Taylor series expansion

which we skip.

4.1.2 Simpson’s one-third rule

Newton-Cotes with n = 3 gives us Simpson’s one-third rule. Our points are located at

x1 = a x2 =
a+ b

2
x3 = b.

separated by d = b−a
2

. Lagrange interpolation gives

l1,3(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
l2,3(x) =

(x− x2)(x− x3)

(x2 − x1)(x2 − x3)
l3,3(x) =

(x− x1)(x− x2)

(x3 − x1)(x3 − x2)

A change of variables makes our life easier. We center the origin around ξ = x2, so

ξ = x− x2 ξ1 = −h ξ2 = 0 ξ3 = h.

Then,

Wi =

ˆ b

a

li,n(x)dx =

ˆ h

−h
li,n(ξ)dξ.

We can plug in the new variables to obtain

W1 =

ˆ h

−h

(ξ − 0)(ξ − h)

(−h)(−2h)
dξ =

h

3

W2 =

ˆ h

−h

(ξ + h)(ξ − h)

(−h)(−h)
dξ =

4h

3

W3 =

ˆ h

−h

(ξ + h)(ξ − 0)

(2h)(h)
dξ =

h

3
.

This gives

I = (f(a) + 4f(−h) + f(b))
h

3

with error −h5

90
f ′′′′(ξ). It might be noted that this method is exact for cubic polynomials.

For n = 4 we get the Simpson’s 3/8 rule, give by

ˆ x4

x1

f(x)dx ≈ 3d

8
(f(x1) + 3f(x2) + 3f(x3) + f(x4))

with error −3d5

80
f ′′′′(x).

23

4.2 Composite rules

In interpolation we avoid high degree polynomials to avoid oscillation. We subdivide the intervals
and use low degree polynomials in them instead. Numerical integration is similar. We may
subdivide a curve into panels:

x1 = a xn = bx2 xn−1

d

Then we apply the trapezoidal rule in a piecewise fashion. The approximate area of the i-th
panel is

Ii = (f(xi) + f(xi+1))
d

2
and the total area is

I =
n−1∑
i=1

Ii = (f(x1) + 2f(x2) + 2f(x3) + · · ·+ 2f(xn−1) + f(xn))
d

2
.

For Simpson’s one-third rule, the area of two adjacent panels (d is still the width of a single
panel) is

Ii = (f(xi) + 4f(xi+1) + f(xi+2))
d

3
.

Thus the total area is approximately

I =
n−2∑

i=1,3,...

Ii = (f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + · · ·+ 2f(xn−1) + 4f(xn−1) + f(xn))
d

3
.

This formula only works for an even number of panels. For odd panels we have to combine this
with another method. For example we can leave out the last three panels and use the 3/8 rule.

4.3 Euler-McClaurin

Consider the integral of f(x) as an integral over its Taylor series about x = a instead:

I =

ˆ b

a

f(x)dx

=

ˆ b

a

∞∑
n=0

(x− a)n

n!
f (n)(a)

=
∞∑
n=0

(b− a)n+1

(n+ 1)!
f (n)(a).

24

Do the same thing but expanding about x = b and we obtain

I =
∞∑
n=0

− (a− b)n+1

(n+ 1)!
f (n)(a).

Add them together and divide by two:

I =
∞∑
n=0

1

2

(b− a)n+1 − (a− b)n+1

(n+ 1)!
f (n)(a)

=
b− a

2
(f(a) + f(b))− (b− a)2

4
(f ′(a)− f ′(b)) + · · · .

The first term we recognize as the trapezoidal rule. Notice that odd derivatives appear as
differences while even derivatives appear as sums. Consider the Taylor expansion of f ′(x) about
x = a and then evaluating at b:

f ′(b) = f ′(a) + (b− a)f ′′(a) +
(b− a)2

2
f ′′′(a) + · · · .

Similarly for expanding about x = b and evaluating at a.

f ′(a) = f ′(b)− (b− a)f ′′(a) +
(b− a)2

2
f ′′′(a) + · · · .

Subtracting the second from the first gives

f ′′(a) + f ′′(b) =
2

b− a
(f ′(b)− f ′(a))− b− a

2
(f ′′′(a)− f ′′′(b))− · · · .

We can also do the same thing for f ′′′(x), and get

f (4)(a) + f (4)(b) =
2

b− a
(f ′′′(b)− f ′′′(a))− · · · ,

Using these equations allow us to express the integral in terms of odd derivatives.

I =
b− a

2
(f(a) + f(b)) +

(b− a)2

12
(f ′(a)− f ′(b))− (b− a)4

720
(f ′′′(a)− f ′′′(b)) +

This is the trapezoidal rule with corrections.

Now consider two equally spaced panels [a, b] and [b, c]. Then

ˆ c

a

fdx =

ˆ b

a

fdx+

ˆ c

b

fdx

=
b− a

2
[f(a) + f(b) + f(b) + f(b)] +

(b− a)2

12
[f ′(a)− f ′(b) + f ′(b)− f ′(c)] + · · · .

We can see that a general formula for n equally spaced panels is given by

ˆ xn

x1

fdx =
d

2
(f(x1) + · · ·+ f(xn)) +

d2

12
(f ′(x1)− f ′(xn))− d4

720
(f ′′′(x1)− f ′′′(xn)) + · · ·

where d = x2 − x1 is the distance between panels. This is the Euler-Maclaurin integration rule.

25

4.4 Romberg Intergration

Here we combine the trapezoidal rule with Richardson extrapolation. Denote the result obtained
from the trapezoidal rule with n = 2m−1 panels as Tm,1. We know this has O(d2) error. If we
use an interval half as large, Richardson extrapolation gives

T =
2pT (d

2
)− T (d)

2p − 1

For example

Tm,2 =
4Tm,1 − Tm−1,1

3

gives us an O(d4) error. Applied once more we get

Tm,3 =
16Tm,2 − Tm−1,2

15

with an error of O(d6).

In general, we have

Tm,k =
4k−1Tm,k−1 − Tm−1,k−1

4k−1 − 1
.

4.5 Improper integrals

An improper integral is one where there are singularities along the path of integration or if one
of the limits are at infinity. For singularities, since we can always split the interval of integration,
we will only consider the case where singularities appear at one of the limits of integration.

An easy technique we can try first is substitution. For example we can try x = 1+y
1−y which maps

[0,∞]→ [−1, 1] or x = y
1−y which maps [0,∞]→ [0, 1].

Another technique is to rewrite
´
fdx as

´
f
g
gdx with an appropriate g such that f

g
is easier to

integrate, then we use the substitution dy = gdx.

Example 4.1. Consider
´∞

0
1

(1+x)
√
x
dx. Let g(x) = 1√

x
and dy = dx

g(x)
. This means y = 2

√
x.

Then ˆ ∞
0

1

(1 + x)
√
x

=

ˆ ∞
0

1

(1 + x)
√
x

√
x

dx√
x

=

ˆ ∞
0

1

1 + y2

4

dy

Next, let y = z
1−z .

ˆ ∞
0

1

1 + y2

4

dy =

ˆ 1

0

4

4(1− z)2 + z2
dz

which is easy to evaluate numerically. ♦

26

Example 4.2. Consider
´∞

1
x−

3
2 sin 1

x
dx. Let g(x) = x−

3
2 and dy = dx

g(x)
. This means y = −2√

x
.

Note that this changes the limits of integration. Then
ˆ ∞

1

x−
3
2 sin

1

x
dx =

ˆ ∞
1

sin
1

x

dx

x−
3
2

=

ˆ 0

−2

sin
y2

4
dy.

♦

4.6 Gaussian integration

Consider integrals of the form

ˆ b

a

f(x)w(x)dx =
n∑

m=1

Wmf(xm).

where w(x) is a positive definite weighting function. This is similar to Newton-Cotes, but in
this case the abscissas xm’s are not evenly spaced. Trapezoidal approximation is exact for linear
polynomials and Simpsons’s is exact for cubic polynomials. Gaussian quadrature is exact for
polynomials of degree 2n− 1.

Let f(x) be a polynomial of degree 2n−1 and {φi(x)} be a complete set of orthogonal polynomials.
We can write

f2n−1(x) = qn−1(x)φn(x) + rn−1(x).

where qn−1 and rn−1 are polynomials of order at most n − 1. We can also express qn−1 as a
linear combination of φ’s, qn−1(x) =

∑n−1
i=0 αiφi(x). Then we have

ˆ b

a

qn−1(x)φn(x)w(x)dx =
n−1∑
i=0

αi

ˆ b

a

φi(x)φn(x)w(x)dx

=
n−1∑
i=0

α1δinCn

= 0.

Using the quadrature formula,

ˆ b

a

qn−1(x)φn(x)w(x)dx =
n∑

m=1

Wmqn−1(xm)φn(xm) = 0.

Therefore this means that φn(xm) = 0 for all xm, since f2n−1 and hence qn−1 are arbitrary
functions. This means that xm are chosen to be the zeros of φn. What is left is to determine
the weights Wm.

Consider

lj,n(x) =
n∏
k=1
k 6=j

x− xk
xj − xk

.

Note that
li,n(xj) = δij.

27

Thus, using the quadrature formula,
ˆ b

a

lj,n(x)w(x)dx =
n∑

m=1

Wmlj,n(xm) = Wj

Compare with Netwon-Cotes where Wj =
´ b
a
lj,n(x)dx.

4.6.1 Gauss-Legendre quadrature

Gauss-Legendre is the most used Gaussian quadrature. We shall develop an way to integrate
integrals of the form

I =

ˆ 1

−1

f(x)dx.

Legendre polynomials form an appropriate basis set. The abscissas are the zeros of φn. For
example for n = 2 (evaluating at two points) we have the abscissas

x1 = − 1√
3

x2 =
1√
3

The weights are given by Wi =
´ 1

−1
li,n(x)dx, so we have for n = 2

W1 =

ˆ 1

−1

x− x2

x1 − x2

dx

= 1

and

W2 =

ˆ 1

−1

x− x1

x2 − x1

dx

= 1.

Thus we have

I =

ˆ 1

−1

f(x)dx = f

(
− 1√

3

)
+ f

(
1√
3

)
.

The quadrature is exact for polynomials of degree 2n− 1, in this case, cubic polynomials.

For an arbitrary integration interval, we can use a change of variables

x =
b+ a

2
+
b− a

2
ξ

ˆ b

a

f(x)dx =
b− a

2

ˆ 1

−1

f(x)dξ ≈ b− a
2

n∑
i=1

Wif(xi).

When computing the quadrature, take care that ξ takes up the values of the abscissas, and no
longer x, despite the notation!

Example 4.3.

ˆ 1

0

x3dx =
1

2

[(
1

2
− 1

2
√

3

)3

+

(
1

2
+

1

2
√

3

)3
]

=
1

4

♦

28

4.7 Multidimensional integration

Consider a double integral

I =

ˆ b

a

ˆ d

c

f(x, y)dxdy.

We can simply compute

I =

ˆ b

a

F (y)dy F (y) =

ˆ d

c

f(x, y)dx.

It is not even a problem if the limits are not constants. We just evaluate the nested integral like
any other function.

Example 4.4. Simpson’s one-third rule:

ˆ 1

0

ˆ y

0

x

x+ y
dxdy =

ˆ 1

0

y/2

3

[
0 + 4

y/2

y/2 + y
+

y

y + y

]
dy

=

ˆ 1

0

11

36
ydy

=
11

36

1/2

3
(0 +

4

2
+ 1)

=
11

72
.

♦

4.8 Monte Carlo integration

Since we have the average

〈f〉 =
1

b− a

ˆ b

a

f(x)dx

we can find the integral if we have a way of finding the average. We can do this by generating
random values uniformly in the interval [a, b], and evaluating f there, then taking the average.

To reduce the error, we can use importance sampling. If we can find a g(x) ≈ f(x) that we
know how to integrate, then we can write

ˆ b

a

f(x)dx =

ˆ b

a

f(x)

g(x)
(g(x)dx).

Setting dy = g(x)dx, where y =
´
g(x)dx. Instead of uniformly sampling x to integrate f(x),

we uniformly sample y and integrate f(x)
g(x)

. This makes the integrand flatter and thus increases
the accuracy of the randomly sampled average.

Example 4.5. Consider
´ 1

0
exdx. From the Taylor series we have ex ≈ 1 + x. We have

y =

ˆ
1 + xdx = x+

x2

2
.

29

and
ˆ 1

0

ex

1 + x
(1 + x)dx =

ˆ 3
2

0

e
√

1+2y−1

√
1 + 2y

dy

≈ 3

2

1

n

n∑
i=1

e
√

1+2yi−1

√
1 + 2yi

.

♦

5 Ordinary Differential Equations

5.1 Lowering order of ODEs

We can lower any higher order ODEs to first order ODEs by adding auxiliary variables. This
means we only need to know how to solve first order ODEs.

Consider y′′ = f(x, y, y′). Let y1 = y and y2 = y′. Then, we can rewrite the second order ODE
in terms of coupled first order equations{

y′1 = y2

y′2 = f(x, y1, y2)
.

This can be convenient expressed in the matrix equation(
y1

y2

)′
=

(
y2

f(x, y1, y2).

)

For a third order ODE y′′′ = f(x, y, y′, y′′), we can rewrite it as
y′1 = y2

y′2 = y3

y′3 = f(x, y, y2, y3)

.

5.2 Euler Methods

5.2.1 Forward, backward Euler methods

Consider the ODE
y′ = f(x, y)

with initial conditions y(x0) = y0. The second derivative is given by

y′′ =
∂

∂x
f + f

∂

∂y
f.

Therefore the second order Taylor expansion of y about x0 is

y(x) = y0 + (x− x0)f(x0, y0) +
(x− x0)2

2!

[
∂f(x0, y0)

∂x
+ f(x0, y0)

∂f(x0, y0)

∂y

]
+

(x− x0)3

3!
y′′′(ξ)

30

where x0 ≤ ξ ≤ x, and if known, allows us to obtain the error directly. Letting h = x− x0, we
summarise it as follows

y(x0 + h) = y(x0) + hf(x0, y(x0)) +O(h2)

and this is known as the forward Euler method. One may think of it as a linear extrapolation
of the gradient to predict the value of y. Similarly the backward Euler method arises from the
Taylor expansion

y(x0) = y(x)− hy′(x) +
h2

2!
y′′(x) + · · ·

and some rearrangement gives

y(x) = y(x0) + hy′(x)− h2

2!
y′′(x) + · · ·

and so
y(x0 + h) = y(x0) + hf(x0 + h, y(x0 + h)) + · · ·

The two methods both have the same accuracy, but the forward Euler method is an explicit
scheme whereas backward Euler is implicit. Explicit schemes calculate the state of the system
at a future time using initial conditions. Implicit schemes solve equations involving the future
and current state of the system. The solution of these equations cause an overhead, but they
are usually more numerically stable. Explicit schemes are usual numerically unstable unless an
extremely small step size is used.

Example 5.1. Consider the ODE
y′ = −100y.

Using the forward Euler method we have the recurrence

yi+1 = yi + hfi = yi(1− 100h).

Therefore,
yn = (1− 100h)ny0

which means that a forward Euler method is stable only when |1− 100h| ≤ 1. Using a backward
Euler method we have

yi+1 = yi + hfi+1 = yi + h(−100yi+1)yi+1 =
yi

1 + 100h
.

Therefore
yn =

y0

(1 + 100h)n
.

This method is unconditionally stable. ♦

5.2.2 Modified Euler method

In the modified Euler method, we take the derivative at the midpoint instead of at the beginning
of the interval. Let xm = x0 + h

2
. From y′ = f(x, y), integrate both sides

y(x0 + h)− y(x0) =

ˆ x0+h

x0

f(ξ, y)dξ

≈
ˆ x0+h

x0

f(xm, ym) + (ξ − xm)f ′ + · · · dξ

= hf(xm, ym) +O(h3)

31

where ym is approximated using a Taylor expansion:

ym ≈ y(x0) +
h

2
f(x0, y0).

In summary:

y(x0 + h) ≈ y(x0) + hf

(
x0 +

h

2
+ y0 +

h

2
f0

)
.

5.2.3 Improved Euler method

An improvement to the Euler method, also known as Heun’s method, is to average the slopes at
the start and the end of the interval. Since we do not know the value for y1, we make a guess
y1 ≈ y0 + hf0.

m =
f(x0, y0) + f(x1, y0 + hf(x0 + y0))

2

This average slope is then used to extrapolate linearly from y0 to y1 using the forward Euler
method,

y1 = y0 + hm.

The Crank-Nicolson method is obtained by converting this to an implicit scheme:

y(x0 + h) = y(x0) + h
f(x0, y0) + f(x0 + h, y0 + h)

2

Example 5.2. Consider the ODE

y′ = −y y(0) = 1

We have via the Crank-Nicolson method

y1 = y0 +
h

2
(f0 + f1)

= y0 +
h

2
(−y0 − y1)

=
1− h

2

1 + h
2

y

It is clear that this is unconditionally stable. ♦

5.3 Runge-Kutta Methods

The Runge-Kutta method is a widely used method for solving initial value problems. The basic
idea behind it is to approximate the integral by a weighted average of slopes and to approximate
the slopes at a number of points.

First we note that the Euler methods can be written as a linear combination of slopes.

y(x0 + h) = y(x0) + h[αf0 + βf(x0 + γg, y0 + δhf0)].

32

For example in the modified Euler method we have α = 0, β = 1, γ = δ = 1
2
.

This can be written as a Taylor expansion

y1 = y0 + hαf0 + hβ

[
f(x0, y0) + γh

∂f0

∂x
+ δhf0

∂f0

∂y
+O(h2)

]
= y0 + h(α + β)f0 + h2β

[
γ
∂f0

∂x
+ δf0

∂f0

∂y

]
+O(h3).

Comparing this to the Taylor series expansion of y,

y(x) = y0 + hf0 +
h2

2!

[
∂f0

∂x
+ f0

∂f0

∂y

]
+O(h3)

we see that α + β = 1, βγ = βδ = 1
2

makes the original expression agree with the Taylor series.
Following are some popular choices:

• Modified Euler: α = 0, β = 1, γ = δ = 1
2
.

• Heun’s: α = 1
2
, β = 1

2
, γ = δ = 1.

• Ralston’s: α = 1
3
, β = 2

3
, γ = δ = 3

4
.

Ralston’s method is the best among the second order Runge-Kutta methods.

The most well known method among the Runge-Kutta methods is the fourth order Runge-Kutta
method. As with the second order case, there are an infinite number of versions. The most
common however is defined with the intermediate quantities

f0 = f(x0, y0) f1 = f

(
x0 +

h

2
, y0 +

h

2
f0

)
f2 = f

(
x0 +

h

2
, y0 +

h

2
f1

)
f3 = f(x0 + h, y0 + hf2)

and the solution is expressed as

y(x0 + h) = y(x0) +
h

6
(f0 + 2f1 + 2f2 + f3).

5.4 Verlet algorithm

One inefficiency of the Runge-Kutta method is the need for repeated evaluation of the function
every time step. For example in the fourth order Runge-Kutta method, four evaluations are
needed every step. This can be expensive. Verlet integration is a method frequently used to
give numerical solutions for Newton’s equations of motion. Consider the equations of motion

r̈ = a(r) ṙ = v.

Using the central difference formula, we have

rn+1 + rn−1 − 2rn
h2

+O(h2) = an
rn+1 − rn−1

2h
+O(h2) = vn

33

Solving for rn+1, we have

rn+1 = 2rn − rn−1 + h2an +O(h4) vn =
rn+1 − rn−1

2h
+O(h2)

which only requires one function evaluation per step. This iterative scheme is not self starting
(since r−1 does not exist). We need another method like Runge-Kutta to provide the first value
r1. Another problem is the expression for v involves the difference between two quantities of
similar magnitude, which may lead to the loss of precision. A more common method is the
velocity Verlet method. Adding rn+1 on both sides, gives

2rn+1 = 2rn +

2hvn+O(h3)︷ ︸︸ ︷
rn+1 − rn−1 +h2an +O(h4)

rn+1 = rn + hvn +
1

2
h2an.

Now consider the original Verlet method expression to one obtained by replacing n+ 1 by n.

rn+1 = 2rn − rn−1 + h2an +O(h4)

rn = 2rn−1 − rn−2 + h2an−1 +O(h4).

We add them and rearrange to obtain

2hvn︷ ︸︸ ︷
rn+1 − rn−1 =

2hvn−1︷ ︸︸ ︷
rn − rn−2 +h2(an−1 + an)

vn = vn−1 +
h

2
(an−1 + an).

In summary, the velocity Verlet method is given by

rn+1 = rn + hvn +
1

2
h2an vn+1 = vn +

h

2
(an + an+1).

Note that it is self-starting.

5.5 Bulirsch-Stoer method

The Burlirsch-Stoer method gives high accuracy but only works for smooth functions. Consider
y′(x) = f(x, y). Integrating givesˆ

x+h

x− hy′(t)dy =

ˆ
x+h

x− hf(u, y)du.

We can approximate this integral at the midpoint of the integration range, which gives

y(x+ h)− y(x− h) = 2hf(x, y).

Consider advancing the solution of the problem from x0 to x0 +H. We divide the interval into n
steps of equal length h = H

n
. Also note that the scheme is not self starting (there is no x0 − h),

so we shall use the forward Euler method for the first step. The iterative scheme is as follows:

y1 = y0 + hf0

y2 = y0 + 2hf1

y3 = y1 + 2hf2

...

yn = yn−2 + 2hfn−1

34

Lastly we use the backward Euler to find the value of yn

yn = yn−1 + hfn

and take the average of the two yn values obtained to get the final result. In summary

y(x0 +H) =
1

2
(yn + yn−1 + hfn).

The interesting part about this method is that the error term consists of only even power terms
of h. Therefore, we can use Richardson extrapolation to eliminate leading error terms and this
gives us very high accuracy. For example, we can repeat the process first with h and then again
with h

2
. Let the results obtained be g1 and g2 respectively, and a better approximation would be

y(x0 +H) =
4g2 − g1

3

5.6 Applications

5.6.1 Projectile motion

Consider a flight of a projectile. It has mass m, position r(t) and velocity v(t). They are related
by

dv

dt
=

1

m
Fa(v)− gŷ dr

dt
= v.

Here Fa is air resistance. We will assume

Fa = −1

2
CdρA|v|2v̂.

The drag coefficient Cd < 1 for a streamlined object. The whole problem takes the form of the
following matrix equation (

r
t

)′
=

(
v

1
m

Fa(v)− gŷ

)
Using the forward Euler gives us the following recurrence:(

r
t

)
n+1

=

(
r
t

)
n

+ τ

(
v

1
m

Fa(v)− gŷ

)
n

We loop over this until the projectile hits the ground.

5.6.2 Kepler

Consider a small satellite orbiting the sun. The force on the comet is

mr̈ = F = −GmM
|r|2

r̂

35

where r is the position of the satellite, m is its mass, and M is the mass of the sun. This is
expressed as the following matrix equation:(

r
v

)′
=

(
v

−G M
|r|3 r̂

)

Or more verbosely: 
rx
ry
vx
vy


′

=


vx
vy
Fx

m
Fy

m

 .

5.6.3 Driven pendulum

Consider a pendulum consisting of a rod of length l and a point mass m attached on one end.
The pendulum is driven by a driving force fd and experiences a resistive force fr. Newton’s
laws of motions states that

mat = fg + fd + fr

where fg = −mg sin θ is the contribution by gravity, and at = lθ̈ is the tangential acceleration.

Assume that the driving force is periodic, given as fd(t) = f0 cosωt, and the resistive force
is fr = −kv where v = lθ̇ is the tangential velocity and k is some constant parameter. The
problem can be expressed as the following equation

θ̈ + qθ̇ + sin θ = b cosωt

where q and b are constants. We can rewrite it in matrix form(
y1

y2

)′
=

(
y2

−qy2 − sin y1 + b cosωt

)
.

5.7 Relaxation methods

We will now be considering boundary value and eigenvalue problems rather than initial value
problems. Consider the differential equation

y′′(x) = f(y′, y, x) y(a) = α y(b) = β.

The value of the dependent variable y is fixed at the boundaries and this is known as a Dirichlet
problem. We gave seen how we can approximate derivatives. Divide the domain into n equally
spaced nodes, x1, x2, . . . , xn. The central difference formula gives

y′i ≈
yi+1 − yi−1

2h
y′′i ≈

yi+1 − 2y1 + yi−1

h2

We simply substitute these equations in and solve for yi. Then, we will solve this with a
relaxation method.

36

Example 5.3.

y′′(x)− 5y′(x) + 10y = 10x y(0) = 0 y(1) = 100.

Substituting the central difference formula gives

yi+1 − 2y1 + yi−1

h2
− 5

yi+1 − yi−1

2h
+ 10yi = 10xi

and solving for yi gives

yi =
1

2− 10h2

[(
1− 5h

2

)
yi+1 +

(
1 +

5h

2

)
yi−1 − 10h2xi

]
♦

5.7.1 Jacobi scheme

Next, we perform the Jacobi scheme. In the Jacobi scheme the old values of y are used to obtain
new ones. We make an initial guess for all y

(0)
i . Then we will evaluate the first iteration y

(1)
i

using our guessed y
(0)
i+1 and y

(0)
i−1 (and possibly others). Then after evaluating for all i, we will

iterate again for y
(2)
i .

Example 5.4. For the same example above,

y
(j)
i =

1

2− 10h2

[(
1− 5h

2

)
y

(j−1)
i+1 +

(
1 +

5h

2

)
y

(j−1)
i−1 − 10h2xi

]
.

♦

5.7.2 Gauss-Seidel scheme

The Gauss-Seidel scheme is an improved version of the Jacobi scheme. Instead of always using
previous iteration values, whenever an updated value becomes available, it is immediately used.

Example 5.5. Using the same example as above, in determining y
(j)
i , only the y

(j−1)
i+1 term is

not available. So we modify the equation to make use of the most recent values:

y
(j)
i =

1

2− 10h2

[(
1− 5h

2

)
y

(j−1)
i+1 +

(
1 +

5h

2

)
y

(j)
i−1 − 10h2xi

]
.

♦

In general, convergence can be improved if we employ the successive over-relaxation (SOR)
method. Express a weighted average of the dependent variable obtained from its current and
previous iterations:

y
(j)
i = αy

(j)
i + (1− α)y

(j−1)
i .

Here α is called the relaxation factor. If α = 1, we get the original Gauss-Seidel scheme, and if
1 < α < 2, we have SOR where convergence is accelerated.

The bounds for α are found in the following way. We can write

y
(j+1)
i − y(j)

i = β
(
y

(j)
i − y

(j−1)
i

)
.

with 0 < β < 1 as the rate of convergence. Therefore, this gives us α = 1 + β, and hence the
bound 1 < α < 2.

37

5.8 Shooting method

For a second order boundary value problem

y′′(x) = f(y′, y, x) y(a) = α y(b) = β

we can turn it into a initial value problem

y′′(x) = f(y′, y, x) y(a) = α y′(a) = u.

What we need to do is to find the correct value of u. This can be done by trial and error. We
guess u, then solve the initial value problem from x = a to x = b. Then we adjust u depending
on how close we come to the boundary condition y(b) = β. We note that the value of y at b is
in fact a function that depends on u, i.e. y(b) = γ(u). And our goal is to find a u such that
γ(u) = β. Now define the function r(u) = γ(u) − β. We have changed this to a root finding
problem.

5.9 Finite elements

Consider a simple differential equation y′′ − 6x = 0 subject to the boundary conditions y(0) = 0
and y(1) = 1. We guess a quadratic solution p(x) = αx2 + βx+ γ. Plugging in the boundary
conditions give us p(x) = αx2 + (1 − α)x. Substituting the trial solution, we get a residual
error of R = p′′ − 6x = 2α− 6x. We can then minimize α. To achieve this, we can consider the
integral of the square of the error I =

´ 1

0
R2dx and minimize it:

∂I

∂α
= 2

ˆ 1

0

R
∂R

∂α
dx = 0

Evaluating, we get α = 3
2
. Thus p(x) = 1

2
(3x2 − x) is the best quadratic approximation to the

differential equation. The exact solution is actually x3.

In general the last step can be expressed as
´ b
a
Rwdx = 0, where w is the weighting function.

For instance the choice w = ∂R
∂α

, we get the least squares finite element method.

Now, instead of using high degree polynomials, it might be easier to break the region of interest
into smaller intervals, and use low degree polynomials in these subregions. It is thus useful to
define basis functions, which the final solution will be a linear combination of. We shall only
consider piecewise linear trial functions. Define the basis functions φi associated with the node
xi as

φi(x) =


0, if x ≤ xi−1
x−xi−1

xi−xi−1
, if xi−1 ≤ x ≤ xi

xi+1−x
xi+1−xi , if xi ≤ x ≤ xi+1

0, if xi+1 ≤ xi

.

It takes up a kind of a triangular shape with a peak at xi.

Write the trial function as

p(x) =
n∑
i=0

αiφi(x).

38

The boundary conditions p(a) = y(a) and p(b) = y(b) give α0 = y(a) and αn = y(b). To
determine the other coefficients, we require that the error

ˆ b

a

R(x)wi(x)dx = 0.

The Galerkin method is widely used in finite element methods, where we set wi = φi. For
example, in our previous problem we will get

ˆ 1

0

d2p(x)

dx2
φi(x)− 6xφi(x)dx = 0.

Integrating by parts, the first term gives

ˆ 1

0

d2p

dx2
φi(x)dx =

dp

dx
φi

∣∣∣∣1
0

−
ˆ 1

0

dp

dx

dφi
dx

dx

= −
n∑
j=0

αj

ˆ 1

0

dφj(x)

dx

dφi(x)

dx
dx

= −
n∑
j=0

αj


2
h
, if |i− j| = 0

− 1
h
, if |i− j| = 1

0, if |i− j| > 1.

=
−αi−1 + 2αi − αi+1

h
.

We can solve the other part of the integral easily to obtain

−αi−1 + 2αi − αi+1

h
= 6hxi

to get a system of equations and solved for the coefficients.

5.10 Applications

5.10.1 Schrödinger equation

Consider the one dimensional Schrödinger equation

ψ′′(x) +
2m

~2
[E − V (x)]ψ(x) = 0.

We want to solve for a particle bound in a potential well

V (x) =
6~2

m

[
1

2
− 1

cosh2 x

]
The boundary conditions are ψ(x)→ 0 for x→ ±∞. However there is a small problem here,
being that E is also an unknown.

The following is a plot of the potential function. We see that it is made up of two classically
forbidden regions I and III. Deep inside region I, we can make the assumption ψ(x0) = 0 and
ψ′(x0) = ψ′0, where ψ′0 is a small positive number. Then, we integrate from x0 to a point deep

39

I II III

inside region III. However, we will find that we do not get a solution that satisfies the equation
regardless of which E we use, even for the exact solution E = 1. There is a simple reason for
this. Recall that for a square well, in the forbidden region the solution is a linear combination
of two solutions

ψ = Ceβx +De−βx.

Analytically we are able to set one of the coefficients to 0, but numerically we do not have this
ability. Thus, at sufficiently large x, one of the exponentials will still end up dominating and
ruin the solution.

The solution to this is to integrate along the direction of the physical solution. In other words,
we want to integrate from region I to III but stop, and likewise from III to I. This way, the
non-physical solution does not end up dominating the physical solution. Now, with two solutions,
they have to satisfy the continuity conditions at the point where they meet, xm:

ψleft(xm) = ψright(xm)

ψ′left(xm) = ψ′right(xm).

We can combine them into

ψ′left(xm)

ψleft(xm)
=
ψ′right(xm)

ψright(xm)
.

We can replace the derivatives by the central difference approximation, and turn it into a root
searching problem:

f(E) =
[ψl(xm + h)− ψl(xm − h)]− [ψr(xm + h)− ψr(xm − h)]

2hψ(xm)
= 0.

5.10.2 Quantum tunnelling

A potential occupies a region of space from 0 to a. A particle approaches from the left. The
general solution outside the potential region is given by

ψ(x) =

{
ψ1(x) = eikx + Ae−ikx, if x < 0

ψ3(x) = Beik(x−a), if x > a

The boundary conditions are

ψ2(0) = ψ1(0) = 1 + A ψ2(a) = ψ3(0) = B

ψ′2(0) = ψ′1(a) = ik(1− A) ψ′2(a) = ψ′3(a) = ikB

40

Define y1 = ψ2 and y2 = ψ′2. For a guess of A, looking at the boundary conditions, we see
that in general we get two values of B. However if A was chosen correctly, they coincide and
so y2(a) = iky1(a). This means we can define a function g(A) = |y2(a)− iky1(a)|2 (the square
comes since the functions are complex valued), and minimize g.

6 Partial differential equations

6.1 Classes of PDEs

Consider a general linear homogeneous second order PDE in two variables x and t:

A
∂2u

∂x2
+B

∂2u

∂x∂t
+ C

∂2u

∂t2
+D

∂u

∂x
+ E

∂u

∂t
+ Fu = 0

where the coefficients are functions of x and t.

If

B2(x0, t0)− 4A(x0, t0)C(x0, t0) > 0

at (x0, t0), then we say that the PDE is hyperbolic at the point (x0, t0). If the PDE is hyperbolic
at all points in the domain of interest, then it is said to be a hyperbolic equation. An example
is the one dimensional wave equation

∂2u

∂t2
− c2∂

2u

∂x2
= 0.

A hyperbolic equation generally describe time-dependent conservative physical processes that
are not evolving towards a steady state. To have a solution, we need two initial conditions and
two boundary conditions.

If

B2(x0, t0)− 4A(x0, t0)C(x0, t0) = 0

at (x0, t0), then we say that the PDE is parabolic at the point (x0, t0). An example is the
diffusion equation

∂u

∂t
− k∂

2u

∂x2
= 0.

Parabolic equations describe time-dependent dissipative physical processes that are evolving to
a steady state. For a solution, we need one initial condition and two boundary conditions.

If

B2(x0, t0)− 4A(x0, t0)C(x0, t0) < 0

at (x0, t0), then we say that the PDE is elliptic at the point (x0, t0). An example is the Laplace
equation

∂2u

∂x2
+
∂2u

∂y2
= 0

or the Poisson equation

∂2u

∂x2
+
∂2u

∂y2
= f(x, y).

Elliptic equations describe processes that have already reached a steady state. Only boundary
conditions are needed for a solution.

41

6.2 Wave equation

Example 6.1 (Vibrating string). Consider an ideal string stretched between two supports. For
a small string element between x and x + ∆x, there are two forces acting on it, namely the
tensions at both ends.

Fx = T (x+ ∆x) cos β − T (x) cosα Fy = T (x+ ∆x) sin β − T (x) sinα

Small angle approximation gives sin θ ≈ tan θ and cos θ ≈ 1. First of all, we will assume that the
string element only moves in the transverse direction. In other words, Fx ≈ T (x)−T (x−∆x) ≈ 0.
Next, we note that the tangent of an angle is simply the slope at that point, so

Fy ≈ −T (x)
∂u

∂x

∣∣∣∣
x

+ T (x+ ∆x)
∂u

∂x

∣∣∣∣
x+∆x

From our previous discussion, T (x) ≈ T (x−∆x) and also using a Taylor series expansion we
get

Fy ≈ −T (x)
∂u

∂x

∣∣∣∣
x

+ T (x)
∂u

∂x

∣∣∣∣
x+∆x

= −T (x)
∂u

∂x

∣∣∣∣
x

+ T (x)

[
∂u

∂x

∣∣∣∣
x

+ ∆x
∂

∂x

∂u

∂x

∣∣∣∣
x

+ · · ·
]

≈ T∆x
∂2u

∂x2
.

Let µ be the mass density of the string. Then Newton’s laws gives

µ∆x
∂2u

∂t2
= T∆x

∂2u

∂x2

∂2u

∂t2
= c2∂

2u

∂x2

where c =
√

T
µ

. ♦

6.2.1 Finite differences

Consider the one-dimensional wave equation derived in the previous section. In two dimensions,
we impose an evenly spaced rectangular grid in space and time such that xi = ih and tj = jτ
for i = 0, 1, . . . , nx and j = 0, 1, . . . , nt. This allows us to discretise the equation. The second
derivatives can be approximated with the central difference approximation

uj+1
i − 2uji + uj−1

i

τ 2
− c2u

j
i+1 − 2uji + uji−1

h2
= 0.

where uji = u(xi, tj). Solving for uj+1
i , we find

uj+1
i =

(τc
h

)2(
uji+1 + uji−1

)
+ 2

(
1−

(τc
h

)2
)
uji − u

j−1
i .

This equation is not self starting. To solve this problem, we can make use of the initial values
given. Using the central difference approximation, we can write the first derivative as

∂u

∂t

∣∣∣∣
t=0

≈ u1
i − u−1

i

2τ

42

or after some rearrangement

u−1
i = u1

i − 2τ
∂u

∂t

∣∣∣∣
t=0

.

Substituting this back to the original equation gives for the first time step:

u1
i =

(τc
h

)2(
u0
i+1 + u0

i−1

)
+ 2

(
1−

(τc
h

)2
)
u0
i − u1

i + 2τ
∂u

∂t

∣∣∣∣
t=0

=
τ 2c2

2h2

(
u0
i+1 + u0

i−1

)
+ (1− τ 2c2

h2
)u0

i + τ
∂u

∂t

∣∣∣∣
t=0

6.3 Schrödinger equation

6.3.1 Forward time centred space

Consider the Schrödinger equation in one dimension

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
+ V ψ.

We discretise time and space in increments of h and τ . Let ψnj = ψ(xj, tn). We use the forward
Euler method for the left hand side, and the central difference approximation for the right hand
side to get

i~
ψn+1
j − ψnj

τ
= − ~2

2m

ψnj+1 + ψnj−1 − 2ψnj
h2

+ Vjψ
n
j

where Vj = V (xj). Since the Hamiltonian is a linear operator, we can write

i~
ψn+1
j − ψnj

τ
=

n∑
i=1

Hjkψ
n
k

where

Hjk = − ~2

2m

δj+1,k + δj−1,k − 2δj,k
h2

+ Vjδj,k.

Computing for each j we get a system of equations

ψn+1
j = ψnj −

iτ

~

n∑
k=1

Hjkψ
n
k .

In matrix notation,

ψn+1 = (I− iτ

~
H)ψn.

This is the explicit forward time centred space scheme for solving the one dimensional Schrödinger
equation.

However, this might not always be numerically stable. From the above, we see that eigenvalues
take the form of 1− iτ

~ λ. The complex magnitude is strictly larger than 1, since the eigenvalues
λ of the Hamiltonian are all real. Therefore the scheme is unstable.

43

We can try switching to the backward Euler method, and after the same manipulations we get

ψn+1 = ψn − iτ

~
Hψn+1.

The eigenvalues take a form of (1 + iτ
~ λ)−1. The complex magnitude is smaller than 1, so this

method is unconditionally stable.

6.4 Crank-Nicolson

A more accurate and stable scheme uses the Crank-Nicolson method. Recall that for the ODE
y′ = f , the Crank-Nicolson method gives

yn+1 = yn +
h

2
(fn + fn+1).

The Schrödinger equation is already in this form, ∂ψ
∂t

= − i
~Hψ. Thus,

ψn+1 = ψn − iτ

2~
H(ψn +ψn+1).

Rearranging, we have

ψn+1 =

(
I− iτ

2~H
)(

I + iτ
2~H

)ψn

6.5 Laplace equation

Consider the heat equation

∇2u =
1

k

∂u

∂t

where k = K
σρ

, K is the conductivity, σ the specific heat, ρ the density, and u the temperature.
If we are looking for a steady state distribution across a thin plate then this reduces to the
Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0.

Discretise the plate by imposing a rectangular grid such that xi = ihx and yj = jhy. We will
solve this using the Gauss-Seidel scheme. Using the central difference approximation we have

ui+1,j − 2ui,j + ui−1,j

h2
x

+
ui,j+1 − 2ui,j + ui,j−1

h2
y

= 0.

where ui,j = u(xi, yj). Solving for ui,j, we have

ui,j =
h2
xh

2
y

2h2
x + 2h2

y

(
ui+1,j + ui−1,j

h2
x

+
ui,j+1 + ui,j−1

h2
y

)
.

44

Setting hx = hy makes the equation much simpler,

ui,j =
1

4
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1),

which is just the average of its surrounding neighbours.

We can also solve the heat equation at a non steady state, as a function of time.

It may happen that the physical system does not match the grid. For a disc, we could try
polar coordinates. But for an arbitrarily shaped plate, we might not be able to fit it perfectly
onto any sensible grid. Take for example the case where all the neighbours of (i, j) lie on the
grid except for (i+ 1, j). Further assume that the boundary of the plate intersects the grid at
(xi + ε, yj). The Taylor expansion about xi gives

f(xi + ε) = f(xi) + εf ′(xi) +
ε2

2
f ′′(xi) +

ε3

3!
f ′′′(xi) + · · ·

f(xi − h) = f(xi)− hf ′(xi) +
h2

2
f ′′(xi)−

h3

3!
f ′′′(xi) + · · ·

Combining these two equations give

f ′′(xi) = 2 · hf(xi + ε)− (h+ ε)f(xi) + εf(xi − h)

hε(h+ ε)
+
h− ε

3
f ′′′(xi) + · · · .

This expression can then be used, for example in the central difference approximation scheme
above:

2 · hu(xi + ε, yi)− (h+ ε)ui,j + εui−1,j

hε(h+ ε)
+
ui,j+1 − 2ui,j + ui,j−1

h2
= 0.

Some simplification gives

ui,j =
ε

2(h+ ε)

(
2h2

ε(h+ ε)
u(xi + ε, yi) +

2h

h+ ε
ui−1,j + ui,j+1 + ui,j−1

)
.

6.6 Von Neumann stability

Consider a wave y(x, t) = A(t)eikx. In the discretised form, we have

yj,n = Aneikjh

where xj = jh, tn = nτ , and yj,n = y(xj, tn). Advancing the solution by one step gives

yj,n+1 = An+1eikjh = ξyj,n

where ξ is called the amplification factor. The strategy here is to insert the trial solution (i.e.
yj,n) into a numerical scheme and solve for the amplification factor. If |ξ| > 1, then the scheme
is said to be unstable.

Example 6.2. Consider the advection equation ∂y
∂t

= −c ∂y
∂x

. Using finite time central space, we
have

yj,n+1 − yj,n
τ

= −cyj+1,n − yj−1,n

2h

45

Solving for yj,n+1,

yj,n+1 = yj,n −
cτ

2h
(yj+1,n − yj−1,n).

Using the same trial solution, substitution gives

ξAneikjh = Aneikjh − cτ

2h
(Aneik(j+1)h − Aneik(j−1)h.

and it is easy to solve for ξ:

ξ = 1− icτ
h

sin(kh).

For non-zero k we have |ξ| > 1, so the solution is unstable. ♦

Example 6.3. The Lax scheme is where we replace the yj,n term with the average of its
neighbours. For the above example, this gives us

yj,n+1 =
1

2
(yj+1,n + yj−1,n)− cτ

2h
(yj+1,n − yj−1,n).

Inserting the same trial solution and solving we get

ξ = cos(kh)− icτ
h

sin(kh).

|ξ| ≤ 1 iff
∣∣ cτ
h

∣∣ ≤ 1. ♦

6.7 Neumann boundary conditions

Neumann boundary conditions, simply put, give us the values of first derivatives on the boundary.
For example, consider a square metal plate and we supply heat to one edge, and heat flows out
of the other edges.

Consider a point on the left edge of the plate. Using the central difference approximation on
the boundary condition gives

∂u

∂x

∣∣∣∣
x=0

= Aj ≈
ui,j − u−1,j

2hx
.

We already have an expression for the discretised steady state heat equation in an earlier section.
We substitute this in, and solve for u0,j to get

u0,j =
h2
xh

2
y

2h2
x + 2h2

y

(
2u1,j − 2hxAj

h2
x

+
u0,j+1 + u0,j−1

h2
y

)
.

For hx = hy = h

u0,j =
2u1,j − 2hAj + u0,j+1 + u0,j−1

4

We can do the same thing for the other sides. The last thing to consider are the corners.
Consider u0,0. We have two boundary conditions

∂u

∂x

∣∣∣∣
x=0

= Aj ≈
u1,j − u−1,j

2h

∂u

∂y

∣∣∣∣
y=0

= Ci ≈
ui,1 − ui,−1

2h
.

46

Thus, substituting into the discretised Laplace equation gives

u0,0 =
1

4
(u−1,0 + u0,−1 + u1,0 + u0,1)

=
1

2
(u1,0 − hA0 + u0,1 − hC0).

47

	Miscellaneous
	Gram-Schmidt orthogonalization
	Random number generators
	Linear congruential method
	Inverse transform method
	Acceptance rejection method

	Root finding
	Bisection method
	Newton-Raphson method
	Method of false position
	Secant Method
	Brent's method
	Laguerre's method
	Evaluating polynomials and their derivatives
	Deflating
	Derivation

	Systems of equations

	Interpolation and extrapolation
	Lagrange interpolation
	Newton interpolation
	Hermite interpolation
	Cubic splines
	Padé approximation
	Approximating derivatives
	Richardson extrapolation
	Curve fitting

	Numerical integration
	Newton-Cotes formula
	Trapezoidal approximation
	Simpson's one-third rule

	Composite rules
	Euler-McClaurin
	Romberg Intergration
	Improper integrals
	Gaussian integration
	Gauss-Legendre quadrature

	Multidimensional integration
	Monte Carlo integration

	Ordinary Differential Equations
	Lowering order of ODEs
	Euler Methods
	Forward, backward Euler methods
	Modified Euler method
	Improved Euler method

	Runge-Kutta Methods
	Verlet algorithm
	Bulirsch-Stoer method
	Applications
	Projectile motion
	Kepler
	Driven pendulum

	Relaxation methods
	Jacobi scheme
	Gauss-Seidel scheme

	Shooting method
	Finite elements
	Applications
	Schrödinger equation
	Quantum tunnelling

	Partial differential equations
	Classes of PDEs
	Wave equation
	Finite differences

	Schrödinger equation
	Forward time centred space

	Crank-Nicolson
	Laplace equation
	Von Neumann stability
	Neumann boundary conditions

