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1 Introduction

Quantum mechanics is bizarre in the way that we have developed a very sophisticated math-
ematical framework to describe our world, but when faced with the question of “why does it
work?” we have no answer. One example is with the single slit experiment. We know that if we
direct a beam of electrons towards the slit we get a diffraction pattern on the screen. However,
what is surprising is when we send only a single electron. Why does it land at a particular
position of the screen and not another? There seems to be no good answer. Indeed, quantum
mechanics does not give us any insight into singular events. We only know about the statistics
of repeated events.

The interpretation we adopt is as such

« Quantum systems generally do not possess definite properties.

States only describe the “potential” of yielding some result after observation.

« Observation collapses the state and creates a result with some probability.

The probability of observing the system in some eigenstate is given by the Born rule:

Py = [(U]¢a)[".

This is also to say that the state does not have any notion about a distribution of position or
momentum before any measurement. It is only after measurement that the state has a definite
position (with some probability).

A quick review of quantum evolution in Hilbert space. We start with Schrodinger’s equation:
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ot

Inserting the completeness condition, we have

ih — H|U)

m | W)

m,n
For expansion coefficient m we have the first order equation
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where C,, = (¢,| V). The formal solution takes the form of

iH(t — to)
h

[W(t)) = exp |- W(to)) = U [¥(to)) -

Here, U is an unitary operator, i.e. Ul = (UT)* = UL,

2 Time independent perturbation theory

2.1 Non-degenerate case

Suppose we have a completely solvable Hamiltonian HO in terms of eigenkets |4%) and eigenen-
ergies E°. Can we say something about a more general system that has H° as an ideal starting
point, and with some perturbation \V'?

Let H =H 0A+ AV. We will try to express the unknown solution of H in terms of the known
solution of H°. Assume

H|U,) = (H +\V)|¥,) = E, |¥,).
As A — 0, we have the known solution:
H |¢n) = Ey [4) .

The standard trick here is to make a power series expansion of the unknown solution in terms
of the perturbation strength .

W) = [wn) + A ) + X2 [0) + -
E,=E}+ \E) + N°E: +--- .

Note a fundamental assumption here is that the states [¥,) exist in the same Hilbert space
as the Hamiltonian H°. We can also assume that all correction terms are orthogonal to the
unperturbed state |¢?). If some states have components that are not orthogonal to |¢2), we can
simply add them into |¢?) and re-normalize it. In any case, after plugging in we get:
H |\Ijn> =L, |\I]n>
(HO+ AV)([90) + A [h) + A2 [2)) = (BS + AEL + NE2) ([40) + X |yr) + A2 [92)).

Comparing the different coefficients of A,

Ay = E2[u0) ()
AOJh) + ¥ [99) = BY [d) + B3 [of) o)
FOJ2) + V7 [0) = B [u2) + B2 [t + B2 [ul) 02).



2.1.1 First order corrections

We break down each of these equations into components of the eigenstates [1/%) as our basis.
We do this by projecting them onto each of the eigenstates. For the first order equation:

(un| n) = En (Unltn) + By (Unln)-
Since H° is Hermitian, for m = n this gives us
= (U0 [V]R) = (B — ED) (un|én)

Using the completeness relation, we can find the first order correction to the eigenstate:

> lw&><w%\ o)
=2 oy -

m;én

The m = n state in the summation vanishes due to orthogonality, which we assumed by
construction, i.e. (2]l) =

For m = n, the projection
(UnlVvn) = E,

gives the first order correction to the eigenvalue.

2.1.2 Second order corrections

The approach is identical. First we project onto the basis states:
(40 | VItn) = Ep (U |en) + By (mlin) + Ex (¢ |vn) -
For m # n we get

- B e+ V(3 g |wk>) -l (T 40
k#n = T k

k#n

an

mVn &
( EO ¢0|¢>+Z kVEk Vn EO_EO

n

Insert the completeness relation to obtain

) = D7l Xenl [47)
0 mGvkn () Ann Amn
_ZZW — EY(E ZW (EO — m)2'

m  k#n

Actually we are not done yet. For the first order case we have conveniently ignored normalisation
because the state is already normalised to the first order:

(Un W) = ((¢a] + 2 (Wl ([40) + A [en)
=1+ N (Up|vy)



However since we are talking about corrections to the second order now, it is no longer normalised:
(U W) = ((Wn] + A (Wa| + X2 (W2 ]) ([¥n) + X)) + [¢2))
=1+ 2 (¢n|tn)

We have to multiply throughout by a factor of 1/4/1 4 A2 (¢1[11), or by truncating up to the
second order,

>\2 1,1 0 1 2 2
100) = (1= COh1u) ) (2 + 3 Ju) + #]u2)

We skip the substitution since it gets quite tedious.

The correction to the eigenenergy is given by the case of m = n:

E2 = (O |V]eL)
¥ an
= (vl V(—Eo o \w?n>>

m#n

Vion
"L mom

m#n

Thus overall up to the second order we have

VQ
_ 10 2 mn
E,=E,+ AV, + A E 0 po
m#n T m
We can see that the curvature 3;/{32" is proportional to A.

2.1.3 Example: Square well

Recall the exact solution to a particle trapped in an infinite square well with length L:

= T T

B h2m2n?

o omI2

Consider a perturbation that extends the width of the well by some length dL. Is this solvable
with perturbation theory? The answer is no, since the two spaces live in different Hilbert spaces.
The original exact solution exists in a Hilbert space spanned by states defined by states vanishing
at x = 0 and x = L. The new perturbed state will live in a Hilbert space that is spanned by
states vanishing at © = 0 and x = L + dL. Therefore there is no way that we are able to make
corrections to the original state using our original eigenbasis that can create a new state that
satisfies the new boundary conditions. The same goes for a perturbation where we make the
well narrower by dL.

Let us consider another problem where we have two non-interacting particles (bosons) in the
square well. This is a perturbation of

V = —aVyd(z1 — z2).



The ground state is just the product of the states of both particles:

0 2 L, . Ty
Y] = —sin — sin —~

L L L
The first order correction is given by
Bl = ([V]4})
4 L L
= —aVO—/ / sin? T2L gin? 22 (21 — z9)dzrday

a® o Jo L L
4vy [*
=2 sin® ™2 dg
a a
3
=—W
50

2.2 Degenerate case

Our earlier results were based on an assumption of non-degeneracy. Firstly, the first order
correction term

an
[¥n) = D oo V)
m#n n m

will blow up due to the denominator. Secondly, any linear combination of degenerate eigenstates
remain as an eigenstate of the same eigenvalue. Thus we do not know to which eigenstate the
unperturbed state tends to as A — 0.

We will need to consider this case separately. Let the correct state that we approach as A — 0
be |¥9). More generally, we can write it in terms of all the degenerate states ‘?ﬁn7d>:

[49) = 3" Cua|¥8.4)
d

Returning to a previous result,
HO [y) +V [un) = B ) + Ey [v7).

, we get

Projecting onto any < ~Z,d

Viun) = Ey[un)

that holds within this degenerate subspace (previously there was no restriction on what we can
project it on). So, this tells us that the eigenstates and eigenvalues of V' are the correct first
order corrections. Continuing to work in this degenerate subspace, we simply have to solve a
few relations between matrix elements:

nd> < n,d’ E chd nd>

(V54 VZCM
ik i) - B S it




Consider just a two-fold degeneracy. Let the degenerate subspace be spanned by [¢%) and [1)).

Solving for the eigenvalue:
(Vaa ‘/ab> <Ca) _ El <Oa>
Via Vv ) \Ch Cy

Vaa_El Vab -0
Via Vi, — E*|

1
. {vm Vi &\ (Vaa + Via)? + 4%@ -

Physically, this describes a splitting effect in the eigenenergies.

It is also possible to choose a diagonal basis for the degenerate subspace. In this case, the first
order correction will then be given by the diagonal matrix elements. Then the formula will be
identical with the non-degenerate case.

Here is a useful theorem. If we find a Hermitian operator P that commutes with both the
unperturbed Hamiltonian and the perturbations

[P,H] =0 [P,V] =0,

1Z~)O> and ’1;2> are
eigenstates of P with different eigenvalues, then V will be a diagonal matrix in this eigenbasis.
Qualitatively this makes sense as V should preserve the symmetry of P since they commute.

The proof is simple:
(#]741) - 27}

P, (98] 7 |d) = by (42| 7 |

the eigenstates of HP are also eigenstates of P. If the degenerate states

where P, and P, are the eigenvalues of

~a> and ‘zﬁg> respectively. Since P, # P, by assumption,

we have Vab =0.

2.2.1 Example: Particle on circle

Consider a particle of mass m moving on a ring of radius . We can describe its position using
angle ¢. The Hamiltonian is given by

A h? .
H = —L?
21~
h? 02
T 2mr2 02
The eigenvector is given by a plane wave < > 1 e™? with eigenvalue EO = ”QZZ‘ There

is two fold degeneracy in this system because you can rotate clockwise and counter-clockwise
corresponding to £n states.



Now consider a perturbation V = ef(¢) with f(¢) = f(—¢). We can solve this manually, or we
can notice that both the Hamiltonian and the perturbation preserves the parity symmetry. In
other words they commute with the parity operator. Let us choose

) = =5 ([90) = [92))

as the basis states of the degenerate subspace. Then the eigenstates

(pldt,) = \/% cos(ngp) (plin) = ﬁ sin(ngp)

are also eigenstates of the parity operator, with eigenvalues +1. Therefore, in this new basis the
perturbation matrix is diagonal. The first order energy correction can thus be evaluated in the
same way as for the non-degenerate case:

Ery = (00, |V |90, )

_ < / cos? (n) f(p)dg
By = (05 |V|90_)

- < / sin® (n) f(p)dg

2.2.2 Example: Fine structure relativistic correction

Consider a hydrogen atom with Hamiltonian

0 P? e?

2m. Amegr

n |l m degeneracy
110 0 1
0 0
2T 0.1 4
0 0
311 0,+1 9
210, £1, +2

The degeneracy goes as n?. For large n it becomes quickly impossible to solve the perturbation
with brute force. Consider the relativistic correction as a perturbation given by

. Pt
V=-—-——mm—:.
8mic?

Notice how we can rewrite the perturbation as

2 2
VI—1|:HO—|— e 1

c2




The unperturbed Hamiltonian possesses rotational symmetry. In fact, the degeneracy originates
from this rotational symmetry. From the rewriting, we can see that V is also rotationally
symmetric. So they both commute with L2 (and also L,). Thus, the first order correction is
just given by the expected value of the perturbation on the radial eigenvalues:

1 4
En,l,m X < n,l m‘P n,l,m>
7.0 & 21(,7.0
X <¢n,l,m‘(H0 - VI:Oulumb) n,l,m>

1 1
0 2 0 2
X |:(En,l,m) + 2kjE’n,l,m <;> + k <ﬁ>:|

N _(Eglm>2|: 4n _3}

2mec? |1+ 1/2

where k = €2 /4meq. Expectation values are evaluated on the unperturbed hydrogen wavefunc-
tions, and are just integrals. So we have simplified a problem with a high degeneracy. This also
illustrates the power of symmetry.

3 Discrete variable representation

In preparation for developing a computational approach to solving problems in quantum
physics, we will develop a system for discretising continuous variables. We will first focus on
time-independent 1D problems.

We discretise the space coordinates by first confining ourselves to a region of interest. This
region is chosen with the assumption that the states essentially vanish at the boundaries. Then
we simply divide this region into /N intervals with width Az. The width is chosen so that
the maximum momentum of interest would be around h/Ax (obtained from the de Broglie
wavelength). This gives us N — 1 non-trivial points, which also sets a limit on the dimension of
our Hilbert space.

For each cell centred around the i-th point with position x;, we define the discretised position
eigenstate

lerAac/Z

\/A[IZ‘ z;—Az/2

It is a equally weighted uniform distribution of all states in the cell. They are orthogonal and
normalisable:

dz.

1 CCZ+A$/2 z;j+Ax/2
= —/ |z") deda’
Az —Az/2 z;—Ax/2
1 ri+Az/2  pri+Ac/2
= —/ / §(x — 2')dxda’
A xi—Ax/2 Jxj—Ax/2

= 0;j

Recall that the Hamiltonian is given by H =T + V. We show that V is still diagonal in this
basis. Assuming that the wavefunction is fairly smooth within each cells, we can perform a



mid-point approximation on some of the integrals without too much error.

ri+Az/2  pri+Ac/2
(|V05) = e /gc /m (x|V|2") dzda’

—Azx/2 —Azx/2
ri+Ax /2 pxj +Ax/2
= / z) (z|2") deda’
xi—Az/2 Jaxj—Ax/2

1 zi+Az/2 z;j+Ax/2
= — Va:/ d(x — 2")dada'
Az zi—Ax/2 ( ) z;—Az/2 ( )

Note that we can use the same method to solve for perturbations. For example

<w2!%!w&>=2<w°li> (iV,13) (05
—Z<w°| ) Vit 0i (3|
—ZK U8V ()

However we could have also just included the perturbation directly into V.

Next consider the kinetic energy matrix T. Similarly, we can do some mid-point approximations

on the integrals.
xi+Az/2  pxj+Ax/2
([T |) Az/ / (2|T]a’) dwda’

i—Az/2 —Azx/2
zi+Ax/2 xJ+Aw/2
= / (x|T|z") dzda’
i —Ax/2 Jxj—Ax/2
xi+Az/2  prj+Axc/2
x2|T|x] / / dzdz’
z;—Azx/2 Jz;—Ax/2
= Az <x1]T|m]> .

Our wavefunction under consideration vanishes at the endpoints. Hence we are able to use the
solutions for a particle in a infinite square well as basis states.

(l6,) = 1 2sin "7 =)

They must also be eigenstates of T.
25522

N n

|6n)

We can now put in the completeness condition
N-1

(@il Tlas) = ) (wildn) (Sl T|ow) (Swl;)

. nw(x; — a) n?hPn? \/5 nm(z; —a)
i T DI ) 2 sin L)

Il
—

I
= %5
=

Il
—

2 §\ﬁ
H »uﬂ—‘

2n?hn? | nw(z;—a) . nw(z; —a)
= sin sin
L 2mL? L L

3
Il
—



Notice how we sum only up to the resolution limit N — 1. This should be a infinite sum, but we
can truncate it early because we will not have the resolution to capture the structure given by
any higher order terms.

3.1 Reduced units

It will help in both simplifying our calculation and also reducing floating point errors if we use
reduced units. It would be bad if we were multiplying something as small as i everywhere.

This involves making position and momentum dimensionless. Consider the following scaling

.| h L
T =T\ — p = pVmwh.
mw
Here, & and p are our new dimensionless coordinates and momentum. Why this strange scaling?

Some simple calculations will show:

This means this scaling is equivalent to setting h = 1. What is w? Here w is the characteristic
frequency scale of the system.

Recall the harmonic oscillator with Hamiltonian given by

N2

Ij_, p 1 2.2

= — 4+ —mw“z”.
2m + 2
Substituting in our scaled position and momentum,
. p? 1 h
=" hw + Zw?z?
2 2 w

So we have something like a new scaled Hamiltonian given by H = &5 + %EQ, and hw is an
energy scaling. This also means that this scaling is as though m = 1.

We can also apply it to the time dependent Schodinger equation

Loy o o
i W—H\W—H(m})hﬂ)
o)

@'m = H |¢)

In summary, the new units of our new scaled variables are listed below.

h

mw

VhEmw

Kl

~| T3
e &

In our calculations, we will proceed with i =1 and m = 1, and this will give us results in terms
of the dimensionless variables. To convert them back to real units (meters, seconds, etc.) we
multiply them with the scale listed above.
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3.2 Limitations

Imagine we are computationally solving for the n-th eigenstate of the harmonic oscillator. We
know that

1
_2 _
proc(n—73)
D ox /N
. 1 L 1
Therefore we should have a resolution of around T So ~ < T
We also have
1
15:2 X N3
2 2

T o \/n

Therefore we also have another constraint of \/n < L.

VN < L

When will our computation fail? Assume n ~ N. Then, the two conditions will say

L<+vVN

which contradicts each other. So our computation is only valid if n < N.

3.3 Methodology

Knowing these limitations, how do we get started without knowing the exact solutions? Let us
consider another problem and pretend that we don’t know how to solve it:

~2
g=2

o + D[l — exp(—a(z — xo))]2

First, we should find an appropriate value for w. Performing a series expansion, we have

N a?
HQD{1—<1—a(z—xo)+

2
—(x—x
(o=l
In a harmonic approximation,
1

Do (x — x9)? ~ Emwz(x — xp)?

and obtain that w = y/2Da?/m. Rewrite the Hamiltonian with our scaled units:
. D?
H=_—mw+ D

2m

1 —exp (—a m—hw(m - ZL‘Q)>]
{2+ 2l - e(ata - )] o

where & = a\/h/mw. Our H is given by the terms in the curly braces.

11



4 Time evolution

4.1 Introduction

All wave equations have time evolutions. Therefore just studying the time evolution of the
Schrodinger equation is not very interesting. What is more interesting is the interplay between
time evolution and measurement.

Take the time dependent Schrédinger equation

a1w)

ih = H|V).
5 W)

Note the two responsibilities of the Hamiltonian. Firstly, it gives you the energy as its eigenvalues.
Secondly, it is also the generator of the time evolution. We know that the equation has solution

of the form

(1)) = exp [—M (1))

h

where U = exp [—M] is an unitary operator. Unitary operators do not change the length

of vectors and the inner product between vectors. Plugging the solution back to the Schodinger
equation, we have

oU (t,t oo
ih %:HU(t,to).

This is the most general setting, because we do not care about initial state. For a time
independent Hamiltonian, we have the solution above. For a time dependent Hamiltonian, the

solution reads
t t
/ aU(—Odt _/ HAU (' to)dt!
to ot

ih(U(t,tO) to,to /H Ut to)dt

U(tto_l——/H ttod

Below are some properties of U:
« Ulty, to) = 1.
o« Ulty, t)U(ta, t1) = Ults, ty).
o« U(ty, t2)Ul(tg, t1) = Ul(ty, 1) = 1. In other words, Uf(ta, 1) = U™ (ts, 1) = U(ty, ts).

There is a group structure being exhibited here.
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Time independent operators can be transformed via the application of U to make them time
dependent:

L OUN (¢, t)OU(t,tg) oUT . .. 0U
= -U'HOU + U'OHU
= UTOUUYHOU + U'HUUTOHU
= [ATOU, UTﬁIU]

We used the following identities above:

AT
(Ho) —oth
ou ..
[Ty
o
o
—Zhai—UTH
ot

If O is time dependent, then we could do the above again, but with an extra term of ihU 8—0 U.

4.2 Quantum Zeno effect

Consider an initial state |¢). The state after a small time At is given by exp(—zf[At/h) |®).
What is the probability of the system remaining in the initial state?

(e (-5 o)
- T T2 A 42
%<¢ iHAt  H2At ¢><¢ ¢>

ho 2m?
AL, AR it AL
= (14 55 ottt} = G i) ) (1- S5 @) - Sz i)

At?

2

iHAt  H2A#
A 2h2

1+ 11—

1+ S (WIAW) - S WIEY)

-8 ()

_1_Ah_f<AH)2

where AH denotes the variance. After N measurements, the probability of the system remaining
in the same initial state is given by
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Suppose that these measurements were made in the duration of total time 7', with At =T/N.
We can rewrite the probability
T2 A2\ Y
(1 s (am) ) |

As N — oo, this probability goes to 1, and this is the quantum Zeno effect. This is something
that cannot be derived from the time evolution of the Schrédinger equation.

5 Time dependent perturbation theory

5.1 Heisenberg representation

What we have been using so far is the Schrodinger representation. This is where we let the
states evolve in time according to some unitary operator. In the Heisenberg representation, we
let observables evolve and keep the states fixed.

In the Schrodinger representation, the expectation value of an observable at some time is
(WOIO@)W(1) = (W(to)| T (¢, 1) O()U (¢, 1) ¥ (t0))

If we define the operator in the Heisenberg representation as
Ou(t) = U'(t, to)Os(t)U(t, to)
then we will get the same result
(L(B)O0s(B) (1)) = (¥ (to)|On (1) ¥ (ko))

Heisenberg’s equation of motion is then given by

) A
2 00u(t) _, OUTOs()U

ot ot
A N .90« -
- [UTOSU, UTHSU} + b0t
A . 90g
- [OH’HH} +ih ot v

What about Born’s rule? Consider the operator Os with eigenstate |¢) in the Schrodinger
representation. The probability of finding the system U |¥(t)) with eigenvalue ¢ is given

A 2 A
by‘ <¢|U|\I’(t0)>‘ . In the Heisenberg representation, the eigenstate is given by UT|¢). The
2

system is given by simply |¥(ty)), and Born’s rule says ‘ (O|U (1))

5.2 Interaction representation

Let us divide the Hamiltonian H into a time independent Hy and a time dependent perturbation
V(t). The time evolution of the unperturbed system is usually known, by choosing the
appropriate Hy. How do we find the evolution in the presence of perturbation V7?7
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Let us factorise the unitary evolution operator into two parts, Uy without the perturbation and
U; which is an additional correction due to the perturbation:

U(t, to) = Up(t, to)Us(t, L)
Then we can write

(T(1)[O0s (£ () = (T(to)| Us(t, to)Ud (¢, o) O(t) Us(t, o) Ur(t, to) ¥ (to))
= (W;(t6)|O1(1)| W1 (o))

where O; = UlOU, and |¥;) = U;|¥). This also explains why the interaction representation
is also called an intermediate representation. Operators will transform by U, and states will
transform by Uj.

Now we need to figure out what U, is doing.

ou; . oUJU
ihar = h—
— mag 07 + iU} %U

= —UlHU + UJHU
U 000y + U,
:UMﬁ—ﬁQm&
= ViU
We are interested in solving this equation. We shall solve it perturbatively:

« Zeroth order: ihaa—l? = 0, meaning Uy =1.

« First order: ihaa—ﬁt’ = ‘A/I(t), where we have plugged in Uy =1. Integrating both sides we

have
t
[ [ Lwrar

WHMJ+_/%
« Second order: again we plug the first order solution back in, and get

R 1 t 1 2 ot ) t
0 =1+ % / Vi) dt’ + (_) / Uit / Vi) dt a”
ih Ji, ih to to

We can see the general form. Every next order will add a new term with an extra integral.
However second order will suffice for our purposes.

Some rearrangement gives us an interesting interpretation of this procedure. Consider the first

15



order solution:
U = U,U;

. ~ 1 [t
= UO + UO_/ ‘/}(t/) dt/
ih Jy,

. . 1 [t. . .
Us(t, to) + Uo(t»to),i—h/ US (' o)V () Uo(t, to) dt’

to

& 1 tA INY 7/ INT / /
Oolt, t0) + = / Dot )V () D¢ ) dt

to

So this describes a free evolution from time ¢, to ¢/, then we meet the potential, followed by
another free evolution to time ¢, and we do this for all possible . We can do the same for the
second order solution (only looking at the extra term):

tto( )/dt/dt”v Wi
to

t/
— (_> / dt’ / A" Uy (t, )V () O (t, ")V (1" U (1" o)
th to to

which shows us encountering the potential twice. This expansion is also called the Dyson series.

5.3 First order result

Let us walk through how we would use first order perturbation in our calculations. Recall for
first order we have UI(t to) =1+ 3 ft VI t')dt’, and in the interaction picture Vi = UOVUO.

Using the eigenstates of H,y to express the matrix elements,
w9n>

A 1 t I:I r . [:[ o
(1000 = o+ [ <¢g - (¥) e (¥>

e ; i(Ey — E) (1 — to)
= [ (08 V00 i) exp (APl
Transition amplitudes are then given by
<1/12|U<t7t0)‘¢21> = <w2‘00(t,t0)01(t,t0)‘w21>
B (tg —t .
S ) UGS

Finally, the transition probability (for m # n) is given by

Pacan = | (0210 t0) 2]
- <w2|01<t,t0>\w&>\2

/ W \¢0>exp< E;)( —to))dt,

Apart from some constant factors, the transition probability given by the first order perturbation
is proportional to the Fourier transform of the matrix element of the matrix element V,,,
EO— K9,
e

2

evaluated at the frequency determined by w,,,, =
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5.4 Example: constant perturbation

We start with Hamiltonian H 0 and turn on a constant perturbation V starting at time ¢,. We
have
2

1 t .
P, = ﬁ\vmnﬁ / exp (iwnm (' — o)) dt’

to

_ |‘/m’n|2 eiw"m(t_to) -1 2
K2 Whm
|Vnm|2 iwnm (t—10) /212 | iwnm (t—to)/2 —iwnm (t—t0) /2|2
— e nm e nm —e nm
] §
4 Vnm ? ' nm t—1
— [V sin? Wi (t — to)
w2 h? 2

Some rearrangement allows us to write it as so:

A Viun]? W At
Pm%n = | | SinC2 (ZW 5 )At2

2 32
w2, I

The following is a sketch of the function:

n—sm

Roughly speaking, this shows that the transition probability is significant for AEAt ~ h, which
is some kind of uncertainty principle. For small At, it is possible for the system to transition to
another energy. As At — oo, the function approaches a Dirac delta, and AE — 0. This means
that energy is conserved, but only at very long At, and it is possible to go against the law due
to the uncertainty principle.

5.5 Periodic perturbation

Consider a perturbation of the form

~

V(t) = v]exp(iwt) + exp(—iwt)]
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with w > 0. The matrix element is given by

<¢2‘f/(t) |1Z)21> = Upm|exp(iwt) + exp(—iwt)].

The probability amplitude is simply (setting ¢ty = 0):

1 2

Pyn= 7 /0 <¢2}f/(t1)|¢31> exp (iwnm (t' — o)) dt’

2 2
_ |Unm|

h2
. |Unm|2

=3

t
/ expli(w + wum)t'] + expli(wpm — w)t'] dt’
0

2

expli(w + wpm)t] — 1 N expi(Wpm — w)t] — 1

W+ Whm Wom — W

If w is quite close to |wpy,|, the denominator might go to zero. In this case we make the following
approximation:

o If wym < 0 (meaning E? < EY), then the first term dominates.
o If wyy, > 0 (meaning EY > EY), then the second term dominates.

To justify this, let us consider the first case. In this case, performing a Taylor expansion to the
first order gives

exp[i(w + an)t/] —1 ~ 1 + Z(w + wnm)t —1

o t.

Meanwhile, the other term is oscillating with ¢, and will contribute less to the amplitude. This
approximation is also known as the rotating wave approximation. All in all, in this case we get

2,2
Upm| 7 . W+ Wpm )t
Prsn ~ % sinc? (%)

If the perturbation is caused by a single photon, then this means that after a long time, then
Wnm = w, so the system will have either captured or emitted a photon.

For the other case, the expression is very similar:

2,42
Upm| t° . Wom — W)t
Prsn ~ % sinc? (%)

Interestingly, our results also means that an oscillating field can bring a quantum state down to
lower energy levels.

5.6 Two photon processes

Since we have seen that first order perturbation theory can describe single photon processes,
we would naturally expect second order perturbation theory to be able to describe two photon
processes. Assume we have two eigenstates with energies F,, — E,, ~ 2hw. The perturbation as
usual is V(t) = v cos(wt). The driving frequency is far from the single photon resonance so our
previous results will not be applicable here.
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Let us assume that m # n and that the first order term does not really contribute any effect
since again w is too small to cause a transition. Then,

(UnlOr[v)

(3 e [ ek

(zlh) 1/}0{/ dt/ dt” Ugv cos(wt') UgUgw cos(wt”) Uy |13,)

~ () [oef o

b (Mﬁftv <¢2| v cos(wt’)ffo Z }w2><w2\ 03“ cos(wt”) exp (ZEO t”) WO >
k

1 2 t t/
= (5) 3 ol tleluny [[ar [
k 0 0
Ent BN (B B
6Xp<27;I >COS(W,)€XP( th )exp(l g )cos(wt”)exp<l g )

_ 1 2 0 0 0 0 ! / g "
- () 5 (Ul ol [ ar [ a

eiwnkt' |:l€iwt’ + le—iwt'} 6iwkmt” |:16iwt” + le—iwt”
2 2

2 2
1
~1(5) S Rlelet) ottt
/t 6z(wnm+2w) _ ez(wnk+w) ezwnmt/ _ ei(wnkfw)t’
0 Wem + W Wem 1 W
eiwnmt’ _ ei(wnk+w)t’ ei(wnm72w)t’ _ ei(wnkfw)t’ i
L — + po— t

In the above we use wy,, = (E, — E,,)/h as shorthand. Given the condition that 2w ~ Wy,
we see that only the seventh exponential will not be oscillating as much. Hence it will end up
being the dominating term. This gives us the final result:

ei(wnm —2w)t __ 1

1\? 0 0 0l |40
0y _(_) 2l Gl o — sy

Hence the probability amplitude is given by

(nl0;

2

P = 16h4 Z (0o (2]o]¢2,) £ sine? (%)

6 Computational studies of quantum dynamics

In this section we are interested in simulating time dependent problems
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6.1 Discrete Fourier transform

We have already introduced the discrete variable transformation. Since the Fourier transform
plays an important role in quantum mechanics, it kind of follows that we would need a discrete
implementation of the Fourier transform. As we will see, the Fourier transform used to switch
between position and momentum representations can help us solve some problems faster .

Given a function f and a periodic boundary condition f(n) = f(n — N), we have the discrete
Fourier transform

g0m) = 3" exp 27 o

and the inverse transform

Consider a discrete variable representation of a function ¢ on a lattice starting at some position
xo with a separation between points of Az. Define x,, = nAx, and (n) = ¥ (x, — zo). The
Fourier transform is given by

g 2imnAx
o(m) = Z exp (_N—Awm) U(x, — o).
n=0

Denote z,, = x,, — xg and the total length L = NAxz. Rewriting,

D(p;) = ¢p(m) = NZ_I exp <—ip‘%x">w(i‘n)-

where p; = hk; = 2mmh/L. Thus the Fourier transform is clearly a transformation from position
space to momentum space.

Note that the possible range of momentum we have here is always positive ranging from 0 to
(N —1)2wh/L. Also, due to periodicity, we have ®(p,;) = ¥(p; — 2nh/Ax). We have argued
before that due to a resolution limit, we are usually not interested in high momentum states.
However here we see that W(0) is large. This is not very physical. Very simply, we just decrease
the right half of the momentum lattice by N units. So, the lattice should instead range from:

2rh 2mh N 2rh (N 2rh (N 2mh 2mh
O’T’QT"”(E‘l)T’(E_N)T’(EH_N)T’”"_T'

So, instead of considering high momentum values, we shift it into the negative regime. Again,
this is purely a matter of interpretation which occurs due to the implicitly assumed periodic
condition imposed by the Fourier transform, which is fine for a position representation but is
not physical (without modification) in the momentum representation.

1Recall the calculation of the matrix elements of the 7' matrix in discrete variable transformation. It is
troublesome because it is not diagonal in the position representation, but is diagonal in the momentum (energy)
representation.
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6.2 Split operator method

As mentioned at the start of the section we want to switch between position and momentum
representations to avoid finding eigenvalues and eigenvectors.

Imagine if we have operator A which is diagonal in momentum representation and B which is
diagonal in position representation. Then A + B is not easily evaluated in either position or
momentum representation. Indeed it can be hard to obtain exp(A + B) if it is not diagonal.

We can make use of something called the Baker-Camper-Hausdorff (BCH) formula, which says
that

exp(idA) exp(idB) = exp(id Z)
where Z is given by
) 52

Z:A+B+5[A,B]—E([A,[A,B]]Jr[B,[B,A]])+....

For small 9, taking a BCH approximation up to second order, we have
. 10 , 10 3
exp(i0(A + B)) = exp EA exp(id B) exp EA + 0(6°).
What follows is a proof of this statement. First consider
. 0 .
exp(idB) exp(;A) ~ exp(i0Z;)

where the BCH formula gives Z; = B + A/2 4 i§/2[B, A/2]. Next, consider
exp(10/2A) exp(idZy) ~ exp(id Zs).

The BCH formula gives

A id[A
Z2:§+Zl+§|:§aZ1:|

A A i6 A id [ A A
~—+—+4+B+—|B,—|+—=|=,B+—

2+2+ +2{’21 2{2’ +2]
=A+B

Thus substituting the first equation into the second gives us our claim.

Therefore, we can now write

exp ( _;ft (T + V)) R~ exp ( _2? T) exp ( _;jt V) exp ( —227;515 T)

—10t —10t —10t —10t
—(T+V)| = —V —T V
exp( - (T + )) exp< o, )exp( > )exp( 5%, )
which allow us to handle only diagonal matrices in either momentum or position representation,
which we can easily switch between using Fourier transforms. Not only is it easier to compute,

or
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the matrices are also sparser, saving both time and memory. As usual accuracy can be improved
by increasing resolution of dt.

The final time evolution operator is thus given by

N .
—i0tH (t;
U(ttotala 0) ~ H €Xp (%)
j=1
N

~ Eexp(_;gtV(tj)) exp(_:ftT(tj)> exp(;igtv(tjo

If the Hamiltonian is not time dependent then this simplifies to just taking a power of N. Thus
the strategy for evaluation would be

1. Start with v in position representation

2. Multiply with exp(V'...)

3. FFT % into momentum representation

4. Multiply with exp(7T'...)

5. IFFT % back into position representation
6. Multiply with exp(V'...)

7. Move to next time step

7 Adiabatic approximation

7.1 Introduction

)

We consider a process as adiabatic if the change in the Hamiltonian is slow. The “slowness’
is determined by comparing the time scales between the change versus the time scale of the
system itself. This is known as a separation of time scales. For example, a vibrating molecule
induces a time dependent Hamiltonian on the electrons in the molecule. However, this vibration
is much slower than the speed at which the electrons are moving at, even though the vibration
may be extremely fast relative to a human scale.

We will write our Hamiltonian in terms of a set of time dependent parameters A\(t) =
{A1(t), ..., A(t)}, for example these could be mass, position, colour of an incident laser beam,
etc.

01¥(t))
ot

The instantaneous eigenvalues and eigenfunctions are assumed to be as usual:
H) [1a(N) = Ea(A) [ (V) -

Note that the |1)) states here have no relation with the |¥) state. The |¥) state is a solution to
the initial value problem, while the eigenstate [¢)) is only the solution to a time-independent

ih = HA®)]2(1)) -
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solution given by an fixed point of time. We can connect the two with a time dependent unitary
operator Ug(t)

[W(t)) = Ur(t) [0(t)) -
Plugging this back into the Schrodinger equation,
- OUR(D) [9(0)

O _ st o)
n 28O oy 4 inra(ny U i ]ate) o)
it 08 ) + i )
a2l — (o - g S8 ) ().

Notice that the last term in the brackets form a effective Hamiltonian H.g in this representation.
Notice that if we choose Ug = U, the true unitary evolution of the system, we recover the
Heisenberg representation. Indeed if we worked it out we would obtain H.g = 0, meaning the
states are not evolving. If we choose Ugr = Uy, we recover the interaction representation.

For our purposes, we will define Uy as
U= [a(AE))Nn(AM0)].

To see what it does, consider the action of this operator on an initial state |1,,(A(0))):

(W (t)) = Ur [m(A0))) = [¢¥m(A(2))) -
It maps an initial eigenstate to the same eigenstate, but with the new parameters. For example,
if we move the potential of a harmonic oscillator slowly, the ground state should follow. If
the movement was fast however, this would not be true, the new state would be a very messy
superposition of the new eigenstates. It is a good exercise to simulate this with the computational
methods we have discussed so far.

Plugging in our Uy into H.g,

He = U§1H[)\(t)]UR —ihUR! é’gR

= > [a(A0)))thn ) S 1 )X (A(0))

=i O] S T @ 00)
= 3 0D} EO0) (0

—ih Y [Ya(A(0))) (m(A0))] (¥n(A(H))] W.

Substituting this into the Schrodinger equation,

10 [an (D) (A0

=N O)) (O] (00 W AN 10y
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Again, keep in mind the difference between [i(t)), |V(t)), and [p(A(t))). Project this onto
(Y (A(0))], and denote Dy = (1 (A(0))[1(2)):
0Dy,

. O | m(A(t
g = BOWID, = Y D ()| L2
We now need to solve this. If we only consider the first part:
oD
Zha—tk = Ei(A()) Dy

The solution is standard:

This motivates an ansatz
Dy, = Cy(t) exp % / Ek()\(t))dt].

Plugging the ansatz back in, and define 6, = _T [ Ex(6(t)) dt as the dynamical phase. We have

macgt 0 _ th 8\%5?(15)»@(”6%
OCk(1) O[¥m(A®)))

o == > (M) =5 Cr(p)e O

We split the summation into two cases:

m;én
It turns out that for adiabatic processes, because we are integrating over a long period of time,

and the second term contains an oscillating term, we can safely approximate it away. This will
be valid as long as along the process E,, and E) do not get close to each other:

0, — Or %1 /Em()\(t)) _ B(A\(®)) dt.

The solution of

is given by
Ck(t) = Ck(O)el’Yk(t)
where we defined the geometric phase as

ity = [ () 22 o

Therefore, finally, we have
(W(t)) = Ur (1))
= URZO e et [y, (M(0)))
- Zo 0 [y, (\(1)))

Thus, if the initial state starts off as the k-th eigenstate, it will also end up as the k-th eigenstate
with some phase factors.
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7.2 Aside

The term “adiabatic” used in this context seems to be different from the same term defined
in statistical mechanics. However, as we see, since the k-th state goes to the k-th state, the
occupational probability for each state remains the same. Therefore, the informational entropy
remains a constant, which is analogous to the thermodynamic entropy remaining constant in
statistical mechanics.

The dynamical phase 6,, comes from the eigenenergies and it is expected that they will contribute
to an overall phase (recall the phase for a stationary system). What is the meaning behind the
geometric phase 7,7

@) =1 [ e A g

= /0 <¢m(A(t’)) Z—a¢mgj,i(t))> W gy
R N LX)
- /A(O) <¢m<k(t>); ot >d/\

and this is why it is called a geometric phase. It is a line integral along the path taken by the
adiabatic process in the A-parameter phase.

%

If the eigenfunction along a path in the parameter space is always real in a certain representation,
then the geometric phase must be zero. This is simply because the geometric phase itself is
always real. This in turn is because of the normalisation condition which means

O (Ultn)
—a

which then results in

Olom(N) _ 9 (@m(N)]
(V)] o2 = ZRE ()
50 Vo = V-
7.3 Example: transport without transit
We start off with an example from [1]. Consider a system with three potential wells. The

tunnelling rate from well 7 to j is given by €;;. We simplify our calculations greatly if we model
this as a three level system. We have a model Hamiltonian given by

0 Qs 0
Ha=h|Q, 0 Qo
0 Q 0

The tunnelling rates can be adjusted by adjusting the laser intensity that forms the wells. Thus,
we are going to investigate the dynamics of the system when we change the tunnelling rates
very slowly.
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For a fixed 215 and 253, we can solve for the eigenvalues:

—E Qp 0
O, —E Q| =0
0 Q, —E

—E(E? — |Qs]?) — |Q0)*E = 0.

The solutions are given by Ey = 0 and EL = +h§), where Q) = \/\Q1z|2 + |923|2. The
eigenvector for Ey = 0 is given by (up to normalization)

Qo3

W0> = 0
-5

In the case where |[Qo3] > [Q12]|, we can approximate this with (1,0,0). Similarly when
|Q93] < |212|, we can approximate it with (0,0, 1). Thus, our idea here is to modify €5 and
(253 slowly to evolve the system between these two eigenstates. This would result in the trapped
particle moving from well 1 to well 3.

What is surprising here is that the system will never be found in well 2. Also, as long as we
maintain [Qa3] > [Q12], the system will remain in well 1 despite being able to tunnel into well 2.

7.4 Example: laser atom interaction

Now consider a three level system. We have a pump laser field that excites atoms from the
ground state (state 1) into an excited state (state 2), and a Stokes field that entices the atoms
down from the excited state into a middle state (state 3)between the ground and excited state.
In this case, the coupling strength (Rabi frequency) is given by

th = <7/)1| —d- Ep |1/)2>
R = (o] —d - Eg |t3) .

Qualitatively, the following three configurations have the same energy:
1. atom on state 1, with one free pump field photon,
2. atom on state 2, with one less pump field photon,

3. atom on state 3, with one more photon in the Stokes field.

However, configurations 1 and 2 are coupled, and configurations 2 and 3 are coupled. So the
whole situation is analogous to the three-well problem above. For convenience, set E5 = 0. The
effective Hamiltonian is thus

0, 0
Q09
0 0 0

h
Heff:§

» %

We will do something counter-intuitive. We will turn on the Stoke field first then transition
into the pumping field. This is a transition from a state of |Q5] > |€,| into [Q,] < |2,]. By
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a similar reasoning as the previous section, atoms transition from state 1 to 3 without going
through state 2. This is useful in certain cases, such as when the excited state is too energetic
and so decays too quickly.

If we kept |25 > |Q,| throughout the evolution, the atom will remain at the ground state. This
is kind of surprising, because this means that the atoms are not going to absorb the pumping
field, even if it is at a resonant frequency. This means that we are able to turn a opaque medium
transparent. This is called Electromagnetically Induced Transparency.

7.5 Example: Landau-Zener process

Consider the Hamiltonian
— A
Hyy = ( N 7) |

We want to find out what happens when we change the bias parameter v from +o0o to —oo. Firstly,
the eigenvalues are given by Ey = +41/A? 4+ ~2. The eigenvectors are (up to normalization):

(Eﬁ v) '

Let us only worry about the case for E,. When v = 400, the resulting state will be (0, 1) and
when v = —o0, the resulting state will be (1,0). The eigenvector for E_ will be orthogonal to
the eigenvector for F,. Thus at v = +o00 the system is at (1,0), and at y = —oo the system is
at (0,1). So this is a way to implement a NOT gate. One big advantage of this operation (and
similarly for all adiabatic processes) is that the system is not sensitive to the duration of the
operation.

8 Berry phase

Suppose we have parameters A\, Ao, ... and our Hamiltonian is parametrised by them. If we
let the system adiabatically evolve through a closed loop in the parameter space, what is the
resultant geometric phase of the system after it has finished the loop? The obtained phase for
this process is called the Berry phase.

In a closed loop in the A space the geometric phase can be written as

o = 55 GV V [9m(N)) - dA.

Using Stoke’s theorem,

o = i / V X (V)] [n(A) - 2.

We have previously shown that the geometric phase is zero if the eigenfunction can be chosen to
always be real. Then in this case the Berry phase will also be zero. Moreover, the Berry phase
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is independent of how we choose the overall phases of the eigenstates that are continuous over
the parameters. This is known as the gauge invariance of the Berry phase. To see this, consider
the eigenstate e/ |1, ()\)). The new Berry phase is

Yo = yf (G (V)] e OF [N, (V] - dA
- yﬁ (BN € FO[i(F fon (W)™ [0 (W) + DT [ (AD] - dA
i 75 Vn(0) - dA £ yﬁ G N)] V (V) - X

The first integral is zero since we are integrating over a closed loop. Thus the phase change
does not affect the Berry phase.

In differential geometry, The “parallel” in parallel transport means that the inner product is
maintained locally to be unity. The loose analogue of this in quantum mechanics is to change
states while maintaining the inner product at unity:

(W) (A + dA)) =
<wn<A> BalN) + M> 1
L+ ()]

dA
d ¢ (N)
dA

()] L1 g

=1

Substituting in a state with a relative phase,

(W] € 2[00 s ()]

a5 L0y 1)) 4 e LD |
A s g L)

= S

is exactly the expression for the Berry phase. Local parallel transport does not preserve local
phase.

8.1 Example: particle in magnetic field

Consider a spin % particle in a slowly rotating magnetic field with components
B, = Bsinf cos ¢ B, = Bsinfsin ¢ B, = Bcosf
The Hamiltonian is given by
H=-—B-S
= —?(Brax + Byo, + B.o,)
—ﬂB ( cosf sin 9€_i¢)

2 sinfe®  —cosf
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The ground state is given by the spin up state

X+(0,0) = ( 'Cosfge) :

i 9
e sl 5

Consider the simple loop with constant € and ¢ goes from 0 to 2. The Berry phase is given by

o d|x4) o 9 ; 0
, 0 i 0) [
2/0 (xy| ——— 10 do = /0 (cost e sin?) (z’e“ﬁ sin g) do

2 0
=2 / sin? = d¢
0 2

= m(cosf —1).

For an arbitrary loop, we can use the curl form:
X+‘ ’X+>
/ V X X+|d¢ |X+> -dfdop = / — sin? —d9d¢

= //sm¢9d9d¢
2 S

The integral is just the expression for a solid angle on the Bloch sphere traced out by the loop.
Hence, we see how the geometric phase actually relates to some kind of interpreted geometry
in the parameter phase. The integral is also a flux integral, and the curl looks like some kind
of fictitious magnetic field. Thus this is an analogue of a magnetic field that has magnetic
monopoles, since it has flux.

9 Transitionless quantum driving

We have previously derived that adiabatic processes bring the k-th eigenstate of the initial
Hamiltonian to the k-eigenstate of the new Hamiltonian. Can we do this precisely and rapidly?
In other Words given an initial state |U(0)) = |¢x(A(0))) which evolves later to |¥(t)) =
ek e ® |ah (A())), how do we make this into an exact solution of a system with some
Hamiltonian H(t).

Let us recall evaluate a few terms that will be used later:

O — —% /0 "ELO) dr
)

=i [ oy R g
=1 ()| LR

We know that the following unitary operator maps the initial state to the final state:

U(t,0) = Yy ™D g (A(6)) Xer(A(0))]

k
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What kind of Hamiltonian can realise U? From the Schroodinger equation, the Hamiltonian is
given by

ou
H = ZFLEU
— i [Z i85+ 301 e MO KA + e LA <wk<A<o>>|]
k

[Z. \wj<A<o>>><wk<A<t>>\]
0 4(A(1)

= ih [Zi(ék + ) [k (A(0) (r(A(0))] + A—A <¢k(A(t))|]

k

- ih[Zi(—%Ek(A(t)) i) ESL ) o)

) + ZHAZ [ BN (0] 2 '%’“A(A» +2 Wgﬁ” <wk(A)|}

+m§; o '@f()” [n0) (W V).

The last step was achieved by inserting the completeness condition into the second term in the
summation, and by using the fact that

| da(N) (@) S [ (V)
AN En(/\)—Em()\) '

Now, going back to our derivation, notice that in the adiabatic limit A = 0, the second term
goes to zero, which supports the initial claim made by adiabatic approximation. Also it is
evident that the cost we pay for speed is the complexity of creating a system that obey this new
Hamiltonian.

9.1 Example: application to Landau-Zener process

—v A
Hpz = (A’y 7)

We showed that an adiabatic Landau-Zener process can realise a NOT operation. Since the
wavefunction can always be chosen to be real, the geometric phase is zero. So for our case

U=3" €™ gy (y () N1 (0))

k=1,2

Recall the Hamiltonian

where the two eigenstates are given by

1 (7)) = (Siné) e

COS bl

— COoS g
sin g
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where § = arccot(y/A). This parametrisation simplifies normalisation. The results we have
derived give us an alternative Hamiltonian. The following computation is obtained not from the
last result in the derivation above, but from the third line.

d

d [sin2 —cos 8
_ : - 8Y 1 5 i 8
H=H;;+ 271& (cos %) (sm coS 5) + zhE < sin §2 (— cos sin 5)

B ain B 28 : in B B in2 B
. — COS 5 SIn 5 COSs™ 5 . —Sin 5 Cos 5 si- 5
:HLz—F@ﬁg( 252 5 2 B)—i_lhé( 2 2 5 25)

[S]ieY

02 8 : 8 .
—sin® £ —sin 5 cos 5 2 —cos’5  cosSsing
B B0 1
—HLZ+Zh§ 1 0
3h
:HLZ_%O-y

This Hamiltonian is comparatively easy to create. All we need to do is to apply a field along
the y direction with a time dependence matching f3.

10 Open quantum systems

The motivation behind this section is that all quantum systems are in the presence of some
environment. Thus it is necessary to understand what happens to a quantum system in this
situation. Previously we have always assumed that the system and environment is one and the
same, described by some Hamiltonian, etc. Now we have to be very clear what we are interested
and not interested in.

Consider entanglement. We have two systems. Once they interact, the total wavefunction in
general will no longer be a direct product of their individual wavefunctions and this is what we
call “entanglement”. In principle, the entire universe must be described by one whole entity as
a highly entangled wavefunction.

What is the difference between classical and quantum correlation? Suppose Alice and Bob have
a total of $100. Then by knowing the amount of money Alice has, we will know the money Bob
has. Now consider an entangled system

1
EHT>A|¢>B = )4l s]

By measuring particle A we will know the state of B since they are of opposite spin by
construction. This is exactly like classical correlation, and there is nothing to be excited of.
However, wavefunctions do not describe reality, but potentiality. Observations depend on how
measurement is performed. Consider the following rewriting of the same wavefunction:

L |T>,47L |¢>A — |T>B+ |¢>B + |T>A — |¢>A ® |T>137L H’>B
V2L V2 V2 V2 V2

Thus a different measurement on A will cause different properties to emerge on B. Entanglement
is thus correlations about potentiality, without having reality first. How system B’s reality
emerges depends on how we go about measuring particle A.

®
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10.1 Density matrices

A pure state is a system that is described by a wavefunction. So far, all that we have learned is
regarding pure states. If a system is in state |¢) then we define the density matriz (or density
operator)

p = Xl
We have the von Neumann equation
200 _ 010) 0]
= HYy| + ) [H )]
— Hp—pH
= [H, p].

We can also do the same in the interaction representation,

pr(t) = |¥r(t)) ()]
and

 0p X
i = Vi,

recalling

AU (t,tg) .

ih e Vi) Ui (t, to).

In a particular representation ) = ). ¢;|¢;), then we have the matrix

p= Z cici [Pi)vy

ij

jer|” o
|caf® )
* .
CZ C] ’Cn|2

This also tells us why we call it a density matrix. The diagonal terms gives us the population in
a certain representation, and the off diagonal terms are something called “coherence” that are
cross terms during expansion and intuitively measure the interference between states.

10.1.1 Trace of density matrices

By normalisation it follows that



We also have

trp* = tr(jv) (¥[y) (W)

= tr [¢) (Y]
=1

Suppose we have an observable A with eigenstates |¢;) such that Al|¢;) = A; |¢;). The
expectation value is given by

(WlAR) = 3 Aol
- Z (i) (14il0)
= Z (@il pA |6)
= tri,éfl

Here it may be helpful to point out that tr AB = tr BA.

10.1.2 Mixed state density operators

Consider the following experimental setup. We make a spin measurement on a particle, and if it
has spin up, we produce a state |¢), and if it has spin down, we produce a state [¢)2). Now
how do we describe the entire ensemble as a whole?

The system produced is |1y ), with probability P;. Then the ensemble average
<121> = Z Pe (| Al
k
=Y Petr |v)i] A
k
=ty P i)yl A
k

This naturally gives rise to the definition of the mixed state density operator

P =) P |l -
k

It is also easy to determine some properties of the trace

trp® =tr Y P o)l
k
= > P rlun)ul

k
:Zpk?
k
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Thus, if tr p?> = 1, then we have a pure state. Otherwise, it is a mixed state.

There is a difference between mixed states and superposition states. For instance, the pure state
1) = ¢1 [th1) 4 ¢ |1b2) will be measured at state |t;) with probability |c¢;|* and state [15) with
probability ]02\2. However, this is an entirely quantum description. The state is prepared exactly
in the state |psi). This does not mean that the system is at state |,) with probability |c;|?
and state [1h,) with probability |c;|°. To further highlight the difference, consider the density
operators for the pure and mixed situations:

5o <|C1F clc;;) i _ (\01]2 02)
cicy e 0 e

Here is a puzzle to highlight this further. Let there be a macroscopic ball of mass M rolling
back and forth on a U-shaped curve. We may assume that this could be described as a mixed
state of different energy eigenstates

Pball—zpk |Ek: Ek|

because we do not expect the massive particle to exhibit any quantum interference effects. Let
us calculate the expectation value of position x:

k

0

Thus the particle never moves if it is described as a mixed state. Even at macroscopic levels,
quantum interference effects still play a role. This is actually not surprising, because stationary
states are stationary apart from some phase change. To have meaningful time dependent
behaviour, we cannot avoid interference between stationary states.

10.1.3 Reduced density matrix

We have a system A which is of interest and a system B which comprises of all other degrees of
freedom, including the environment. The likely observables will look something like Or®1,
where Ip is the identity operator on system B. In this case, we will see that we do not need the
density matrix of the entire system.

Let the basis of system A be [¢;) and the basis of system B be |¢,). The entire system has basis
|t1) |¢r). The trace of some operator Oap in this system is hence

> (Wil (6k] Onn k) [y = (il (Z CATON |¢k>> |4r)

I,k k

where the term in brackets is called a partial trace.
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As an example, the trace of the density operator is given by

trpas = Y _ (¢ <Z (Pr] pan \¢k>> |41)

l k
= (Ui paln)
!
=trapa
where we have defined p4 as the partial trace. This term is our reduced density matrix.

To see the usefulness of this definition, consider the expectation of our operator On @ Ig.

tr(panOan @ Tn) = > (vl (@l pan [6n) Oa 1)

k.l

=3 Wl Y (dl pané) On i)
l k

= Z (¥] paOa 1)
[

= tra pa0a

10.2 Quantum measurement

What happens during measurement? von Neumann proposed that measurement is implemented
by physical interaction. A apparatus could be thought of as something that tries to map a
system’s state onto say a needle’s state:

|system;) !apparatusready> — |system;) |apparatus;)

What if the initial system is in a superposition?

Z C; |Sz> |aready> — Z Ci |SZ> |CL1>

3 [

At the end of measurement, the system and apparatus becomes entangled. Let us compute the
reduced density matrix of the apparatus. The total density matrix is

lasa = Zci |Sz> |a2> ZC;( <aj| <Sj|

i J
The reduced density matrix is
pAa = try ﬁsa
= tr, | Y cic) ai)ag] |si)s,]
]
=Y ac laiay] (sy]s:)
]

= Z il |aiXail
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In the end the apparatus is a mixed state, which seems like it has been prepared in state ¢ with
probability \ci\Q. This agrees with Born’s rule. We can do the same for the system, and get

~ 2
ps =Y leil* [silsil

This is why we say that the act of measurement destroys the state.

10.2.1 Wigner’s friend paradox

Here is a thought experiment called Wigner’s friend. Wigner’s friend measures the state of
Schrodingers’ cat.

%ﬂalive) + |dead)) [ready) — %(\alive) [happy) + |dead) [sad))
Wigner thinks that before he asks his friend, his friend does not have an answer as his friend is
entangled with the cat. However, from his friend’s point of view, no matter if Wigner asks him
or not, he has already performed the measurement, and the superposition has collapsed. Which
is the correct state? There is still no easy answer. To perhaps resolve the so called paradox, we
should keep in mind that the wavefunction is not a description of reality, but is only able to tell
us statistics of measurements. Thus if Wigner and his friend took multiple measurements and
took the ensemble average, they will agree. It is natural for them to disagree about the exact
state with just a single measurement.

10.2.2 Which way information in double slit experiment

Consider the double slit experiment but now we have a detector at one slit to peek at which slit
the particle has gone through.

1 1
V2 V2

Our reduced density is a mixed state density

(|Yr) + |¢1)) [ready) — (|g) |excited) + |1r) |ground))

pusom = 5 (1omX ] + o)

The probability density distribution is given by

tratom [patom |ZE><ZE” = %(|¢R($>|2 + |¢L('r>|2)

The cross terms are gone so there is no longer any interference patterns. This is even if the
detectors were just left alone without any observation. So long as the information of the travel
path is available, it is enough to kill the superposition.

Now let us consider that we just set up the double slit experiment as usual (without any
detectors), but with some environment between the slit and the detector, such as air molecules.

1

1
75 \¥r) + 1Y) [Eo) — 7

(1¥r) |Er) + [¢r) [EL))
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The system’s reduced density is given by

ps = %(|¢R><¢R‘ L)Xl + (ELlER) [YrXOL| + (Er|EL) [YLX¢R])-

If the inner product (Ep|ER) is small, then interference will vanish. If the environment is
somehow insensitive to the path the atom takes, such that the inner product is still close to 1,
then the interference will remain. The value |(Eg|EL)| is often called the decoherence factor.
Typically, the decoherence factor decays fast with time. That is, the information quickly leaks
out and the environment is effectively measuring or collapsing the wavefunction.

10.2.3 Weak adiabatic measurement

In this measurement model, the wavefunction of the system under measurement is not collapsed.
There is almost no entanglement between the system of interest and the measurement device,
which is the culprit for causing wavefunction collapse in the von Neumann model. We will be
using adiabatic evolution to imprint the expectation value of interest onto the quantum state of
a measurement device. The device is then measured as per normal and the expectation value is
estimated without collapsing the original system’s wavefunction.

Counsider a weak measurement model
H, + M)A P,

where H, is the system Hamiltonian, A, is some operator of the system, and P,, is the
momentum operator of the device. Traditionally measurement would collapse the system onto
some eigenstate of A, which is not what we want. We let the system couple very weakly to the
device and slowly turn up A.

Suppose the system is has an original eigenstate H, [1/0) = E° [¢/%). With weak coupling, the
new eigenstate |1, (A\)) & |¢9) is still close to the original eigenstate. The energy is given by

En(A) = By + (¢n| AP |¢n)
The second term is proportional to the expectation value of the operator (¢9]A,¢y?).

The Heisenberg equation of motion

dX,, i
S L[N P 00) , Xon]

= A (U] Au[o2) T [P, X,
= A (Y| As|vn)

This means that the expectation value of A, can be deduced by measuring X,,,, without collapsing
the state of the system.

10.3 Decoherence

We will explore an exactly solvable decoherence model. Before we do that, we will further
explore the idea of coherence.
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Consider a symmetric double well system and we are only interested in the ground state [¢,)
and ﬁrst excited state |1).), with respective eigenenergies £y and E;. Start with a superposition
state —= (]wg> + [1))). The density matrix of this system is

o= Nl + 19l + RNl + ey

The spatial profile of the system is given by the expectation value

(x]ps|z) = %[I%(fﬁ)l2 + (9o (@)* + ()97 () + e ()0 ()],

After some time, each of the eigenstates will acquire some phase, and the state becomes

\/Li (e7Bot o) + e 1t |1),)). Then the expectation value now becomes

(]psla) = %[I%(@IQH%( )I” + BBy () () + e T E g (2)y (2)].

Thus, the phase difference creates something like a beat signal in the interference terms. The
wave packet moves from the left well to the right well periodically. This is a simple description
quantum tunnelling due to the interference between |1),) and [t).).

Suppose we now include an environment, such that [i,) evolves to |1,) |E,) e 5ot and [¢,.)
evolves to |1.) |E.) e"F1t. The expectation value becomes

(z]ps|z)
1 (2
= Slus(@)* + [e(@)]* + BTy ()07 (@) (Bel By) + ™ e (w)ity (2) (B | ).
The particle’s average position will oscillate, but this oscillation will slowly decay. The rate of

decay depends on how fast the two branches diverge, or in other words depending on how fast
the inner product decays.

10.4 Exactly solvable decoherence model

The ensemble is made up of a particle’s spin interacting with a bath of harmonic oscillators.
The system of interest has Hamiltonian

Hs = 50&.)00'2

and the environment has Hamiltonian

We will introduce a specially tailored coupling between the two that allows us to solve the
system precisely. This coupling has the following Hamiltonian:

I:—,c - a-z X Zcz(jz
%

For each oscillator, the system is linearly coupled to the position of the operator.

L),
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The position ¢ and momentum p operators can be written in terms of creation and annihilation
operators

The total Hamiltonian thus reads

-1
A = Swi.+ ;wiaj@- +6.0 <giaj + gfdi)

—— ~— . - -

Note that Hamiltonian commutes with o,. Furthermore, the environment is modelled as
harmonic oscillators, which are easier to solve for. Finally, the coupling is linear in terms of a;
and dg. These are some of the reasons why this problem can be solved exactly.

Let us work in the interaction representation. The Hamiltonian can be divided into the time
dependent component comprising of the coupling H. and the time independent component
which is made up of the other two terms which we will call Hy. We have the following relations:

dAZ 2 ~

di = i[Ho,6.] =0

dd At A A e
T i[Hy,al] =i ijajaj, a; | = wa,;
da;

J
where all the operators above are in the interaction representation. This tells us that

0.1 =0, AII — e™itq] aip = e “a;

Thus, in the interaction representation

Luckily, this problem is exactly solvable.

10.4.1 Magnus expansion solution

We introduce the Magnus expansion. Ordinarily for a problem such as

where Y is a vector and A is a matrix. The regular approach is to use the Dyson series. There
is another approach, where the solution can be written as

Y (t) = exp Q(t, to) Yo
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where the operators
Qt) = > (1)
k=1
t
(1) = / A(ty) dty
0

_ l/t /tl[A(tl),A(tg)] dt, dt,

/ / / (t1), 2), A(ts)]] + [A(ts), [A(ts), A(t1)] dts dt, dty

Applying this to our problem
oU
i—L = HU;,

make the ansatz
Ur = exp(—iH?fft)

with

Hi" =" B
k

1 t
_ -/ Hy(ty) dty
t 0
1 t t1
__27// H (1), Hy ()] dty dy
0 0

and so on. As we will find out, [H;(t1), H;(t2)] turns out to be a number. This means that all
the commutators in the higher orders will go to 0, which means that the solution is exactly the
series taken up to the second order. Evaluate the commutator:

(), Hi(tz)) [Z gide"" + glae Zgy et 4 grager it
— Zgig; [, a]e =) 1 g g [ai’ al]eiiti=ta)

— Z |g1, e —iW; tl tQ) o eiwi(hftg))

which is just a number. Furthermore, we see that By will just produce some overall phase and
so is not of our interest. We will hence focus on By, which is a time average of the Hamiltonian
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in the interaction representation. The final solution, up to some phase, is

Ur = exp (—i /t Hi(t") dt’)

=exp| —i0, ® Z/ gia; ale™t + g;kaie_iwit' dt’)
] gial (et —1) | grai(e ' —1)
=exp|o, Z ( o + _—

i

2

7

—exp| 2 3 (afni(t) - m*())]

where
2g; .
)\i t) = = (1 — et
(1) = 2 - e

Let us test the solution with the state |s) = [a [1) + b]|))] @ |Ep).

Ui(1) |s)
= aexp [% Z <a;r/\i(t) — ai/\f(t)> 1Y | Eo) + bexp [—% Z (ajx\i(t) — ai)\f(t))

= ol TTeww |5 (o0 = i(0) ] 180 + 010 TTexo | =5 (ol(0) ~ auxic0) | 1)
= 1) e () + 1 e (1)

Let

) [Eo)

Ay = exp[Aa’ — N\a] |Ep).

This is known as a coherent state in quantum optics, because it can be shown that it is an
eigenstate of a. Then we can write
iﬁ> .
2

It is not too important for us right now, but it can be expanded as

ey =]

i

which gives us a relation between two coherent states:
1 1 .
() = exp(( 51 = Glul*+ )

and so the decoherence factor is given by

e =Tlew (507
— exp <— 3 4|g:2| (1- coswﬁ))

i

R exp (— > 2Igz~l2152>
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The last step uses the approximation cosw;t &~ 1 — w?t?/2. The decoherence factor exhibits
Gaussian decay.

We are still in the interaction representation. To change back into the Schrodinger representation,
we multiply the state with Uy. However, when computing the density matrix, U, and Ug will
cancel. p = Uyp IU(;r is simply a rotation. The key factor that determines the rate of decay is
still the decoherence factor.

10.4.2 BCH formula solution

Again, we want to solve for the propagator

oU N
i—L = H,,U;

ot
with

He(t) =6.© Z [gidjem + giae™™" .

Recall the BCH formula

exp(idA) exp(idB) = exp(id Z)
where

i6 52

Z=A+ B+ Z[A B = S(AJAB]+ [B[BA) + ...

Notice that if the commutator [A, B] is a number, the later commutators will vanish.

We can split the evolution into many small time intervals. For example, let us just begin with
the following:

U[(t, 0) — 6—’iH[(tg)Ate—iH](tQ)Ate—’iH[(tl)At.

We have previously shown that [H;(t), H;(t')] is just a number. Using the BCH formula we can
combine the last two exponentials:

U[(t, 0) = eXp(—iH](tg)At) eXp(—i[H](tg) =+ H[(tl)]At) exXp (—%[H[(tz), H[(tl)]Atz) .
Applying it again:

1

Us(t,0) = exp(—i[Hr(ts) + Hy(tz) + Hy(t)] M) exp (—2 (Hy (t), H (1) + Hz(tl)]At2) .

At2>
When we make At — 0, the sums turn into integrals, and we have

Ur(t,0) = exp <—z’/0t H(t) dt’) exp (—%/gt [HI(t’),/Ot, H(t") dt”] dt’)

This looks like our solution given by the Magnus expansion.

Generalising this for an arbitrary number of terms, we will have

U[(t, 0) = exXp (—Z i H[(ffj)Alf) exp (—% i [H[(fm),mz_ H](tj)

m=2 J=1
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10.5 Dynamical decoupling for suppression of decoherence

We have learned about decoherence and how it makes life hard when designing quantum systems.
It is usually more difficult to affect the environment. Therefore, in this section we will learn
how to affect the system instead to suppress the coupling between the system and environment.

Let us return to the pure dephasing model in the previous question.

N 1 .
— Z w6 e s ol ora
H = §waz + Zi:wzaiaz +0,® ZZ: (gzai +g; az) + H.(t)
Our goals is to find a control Hamiltonian H, that may suppress the system-environment
coupling. A basic idea we can come up with here is to make the spin flip rapidly about the z-axis.
This makes o, averaged out to 0 from the environment’s point of view, effectively decoupling
the system and environment.

Let A = 1. Since we have

finding U, is equivalent to finding H.. Let us work in a representation rotated by U., or
equivalently, by choosing U, as the U, in the interaction representation. We denote operators in
this representation with a tilde. Then, the effective Hamiltonian in this representation,

3 dU,
H =U![H,+ H, + Hip, + H)U. — iU} "

= U!H, + H, + Hy + H)U. — U H.U,
- ]:Is + ]—Tle + -Elint

The last step is because the environment operators commute with all system operators. U, is
only applied to the system and so H, = H..

Let us assume a periodic U, with a period t., i.e. U.(t 4+ t.) = U.(t). If t. is small, then it sets a

very small characteristic system. This period will affect H as well, since its time dependence
comes from U,.. Thus the unitary evolution operator induced by H will also be periodic. Hence
we only need to worry calculate the dynamics up to t.:

U(Nt.,0) = U.(Nty,0)U(Nt,0) = 1-Ul(ty, 0)™

So now we need to solve

Applying Magnus expansion to the total propagator,

U(t.,0) ~ exp [—itc(ﬁo YH )}

- 1 [l .
H():—/ A(t) dty
& )
. A L .
H1:2—tc/0 /0 [H(tl),H(tQ)} dty dty
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Since the integrals are always from 0 to t., we can see that Hy is of zeroth order of ¢, and H,
is of first order of t.. So if t. is small enough, we can truncate the expansion up to the zeroth
order. Furthermore, if

we have

te A .
Ul(t.,0) =~ exp —i/ Hy(t) + Ho(t) + Hine (1) dt}
0

— exp|—i /0 i) + L) dt}

te R R
= exp —i/ UCJr s(t)U. dt} ® exp [—iHetC]
0

This means that the final state will not be an entangled state.

So now our efforts are focused on finding a correct U, that makes the integral vanish. Let us

go back to the original pure dephasing model. Hy, is essentially o, for our purposes since we

cannot touch the environment part of the Hamiltonian. Propose U, = exp —izt—’:tam>.

te 27t 27t te Art
exp|i—o, |o,exp| —i o, | dt = o,exp| —i—o, | dt
0 tc tc 0 tc

te 4t . . 4wt
=0, COoS — 40, Sin ; dt
0

=0
Where we made use of the following relations.
00, = —0,0, exp(i(fi+ o)a) =cosa+i(h-o0)sina
Finally,
du,
H,=i—U!
Tdr e
27
= —0,;
te

This answer is very natural! The easiest way to rotate the spin is to apply a field along the
x-axis such that the spin precesses.

Could we create a more general U, such that this scheme would work in a general situation? In
other words, what if the coupling depends on all o,, o,, and ¢.? One thing we could try is to
rotate the spin about two axes

27t 2nt
U. =exp zt—nyay expl ¢ . NGOy

Check with o, as coupling:
te 27t 27t 27t 2mt
exp| —i—mny0oy, | exp| —i—ny0, |oyexp| i—mny0o, | exp| i—ng0, | dt
0 tc tc tc tc
te Amt
= oyexp| ¢ Ngo, | dt
0 tc
0
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Check with o, as coupling:

te 2t 2t 2t 2t
exp| —i—nyo, | exp| —i——n,0, |0 exp| i—ny,0y | exp| i—ng0, | dt
0 tc tc tc tc
te 27t At 27t
= exp| —1 Nyoy, |0z exp| ¢ nyoy | exp| @ n,o, | dt
0 tc tc tc
te 27t 4t . . 4wt 27t
= 0z exp| —i—ny0o, | |[cos —n, + i0ysin —n, | exp| i—ng,0, | di
0 tc tc tc tc
te 27t o Amt 27t
= o, oy exp| t—mnyoy | |isin —n, | exp| i—ng0, | dt
0 tc tc tc
. b 4qrt At
= 10,0y sin . Ny €XP 2t—nxax dt
0

c C

. b 4qrt A7t . . 4wt
= 10,0 sin n, |cos —n, + 1o, sin —n, | dt
I t. t t

Cc

c C

This integral is 0 if n, # n,.

What is H.?
H.
dU,
—i—cyt
Car e

27 27t 27t 27t 2 27t
= — t—nyayexp zt—nyoy exp lt Ny0z | + exp Zt Ny Oy t—nmamexp Zt NyOyp

C C C c Cc (&

( 27t > ( 27t )
oxp | —i=—n.0; ) exp| —i——ny0,

o o ( Art )
= ———ny,0, — — N0, €Xp —zt—nyay

tC tC C
2T 2T 47t .. Amt
=~ MyOy — S Malz | COS ——ny — ioy sin ——n,
Notice how we have fields along all axes, recall 0,0, = —0..

10.6 Quantum Born-Markov master equation

This section will focus on the derivation of an equation of motion for the reduced density matrix
of a system. More specifically, we are looking for a propagator for

Ps(t) = tre psc(t) = tre((jﬁse(o)UT)’

We will be considering a total Hamiltonian of the form

A

H=H,+H +H,

+Zéa®Ea

H,
H,
All terms are assumed to be time-independent.
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If there is no environment, then
dﬁs (t) T ry! A
=i[H!, ps
0, )

Here H’ is to indicate possible modifications to the effective Hamiltonian due to the environment.
If there is some system-environment coupling, we expect

dps(t)
dt

which is a sum of some unitary evolution and additional environment effects.

- _i[HL/w ﬁs] + D(ﬁs)a

We start off from

d/Zt(t) = —i[H. (1), pr(t)]

Here this density matrix is for the entire ensemble. Integrating the above

~

prlt) = 50) =i [ i), (0] 0

Put the integral back into the original equation,

dﬁét(t) = —3 |:ﬁc](t),,5(0) —i/o [ﬁ€[(t)7p/\l<t/)] dt/:|

— —i[a0.0)] - [ [0, [7100. 0]

We have ps;(t) = tre pr(t). Thus

Pl — it [10).50)] = [ ox [t [Feao) )]

We will begin to make some approximations. First, we assume that at time ¢ = 0, the system
and environment are not entangled:

Now,

A

tre Her(t)pr(0) = tre Z Sa(t)Ea(t)ﬁeI] ps1(0)

= Z tre[Eaper|Sapsy(0)

= 3t e O B )y (0)
- Z tre[Eaper)Sapsi(0)

The last step results from observing that from statistical mechanics we have p, = e # /7 2
and so they commute, and also the cyclic property of trace tr(AB) = tr(BA). The trace turns

2Boltzmann distribution means that the state |¢;) with eigenvalue Ej, occurs with probability e =#F /Z. If the

environment is at thermal equilibrium, then it is at a mixed state >, |5 )| e PEx /Z = e=BHe |Z 57, | )tby| =
—BH. /Z
€ .
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out to be time independent. We can easily set it to 0, and this is also known as the centring
condition:

So far up to the second order we have

df’gft ®_ /0 ttre [Hd(t), [Hef(t'),ﬁf(t')ﬂ dt’

To simplify this, we make another approximation that

pr(t) = pur(t) ® .

That is, the environment state is not perturbed by the system. We may worry that this
approximation is too aggressive. However, it can be justified since we are already at the second
order. Most of the interaction will be captured by the first two terms in the commutator. Their
correlation is not assumed to be important any more. Thus,

dﬁSI(t)
dt

= [ [0, [0, o) @ 5]
0
Now,
f{cl(t) = UgﬁcUo
_ pi(Hs+He)t Z S, e HetHo)t
_ Z eiHstSaZiHsteiHetEaeiHet

= 8ar ® Ea;

Let us simplify the commutators first.

tre [Sar @ Bar, |Sh, @ Bhyo b @ e | = tre [SarBar, S, B e — #upeSh By, |

Al A

- tre[SaIEa[SéIEéIﬁ;[ﬁe - Sa]EaIpsteSéIE,gI
- S/IBIEIBIﬁ;IﬁesaIEOéI + ﬁ;]ﬁeSEJIE;jISaIEaI]

= tre[EOLIE/ﬁ]IaE] <SOZIS/6115/$I - Slﬁ]la;.[sa[>
0B Barpel (9155, Sar = SardesShy )

Here, the prime denotes using ¢’ as argument versus ¢. Define the environment self correlation
function as

Cap(t — 1) = tre [EaIEéije]

Pe
We are close, except that on the left side of our equation we have p,;(t), and on the other side
we have pg;(t'). Finally we apply the Markov approximation. This means that the current rate

of change does not depend on the entire history of the system. This is expressed by making the
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correlator C,p(t —t') decay very fast, since this would mean that the observables at t and ¢’
are not correlated. We can also extend the lower limit of the integral to —oo because of this.
This is mainly to result in a indefinite integral that looks nice. Rewrite 7 = ¢ — t'. Furthermore,
assuming the correlation function C,s(7) is very short, we can replace the history ps;(t — 7) by
the current p,;(f). The final integral reads

dpSI / Z Caﬁ )Sﬁj(t —7)psy(t) — Sﬁ[(t - T)ﬁs[(t)SM(t)]
+ Caﬁ(—T) 151 (t)Sp,(t = 7)Sar(t) = Sar(t)ps;(t)Sp,(t — 7)] dr

Transforming back to the Schrodinger representation,

dﬁS(t) _ —Z[I:I ,5 (t)] + e—iﬁst<dﬁsl(t))eiﬁst‘

dt dt

We will need the following manipulations while solving:

efiHStSaI(t)Sﬁl(t - T)pASI<t>€iHSt — efiHStSaI(t)eiHstefiHstSﬁI(t o 7_)61'H5 ZHStﬁS (t) iHst

— Sae—zHStsﬁesztpAs

Finally,

Pl — il o[ 32 CealnS Sos(=p0) + Cor [P0y, o)

10.6.1 Evaluating the correlation function

Let us try to solve for the correlation function in the case of the pure dephasing model, where
[j[e =0y Z Ciq;
and
= Z ¢iGi(T) E(0) = Z CiGi

Note that we are still in the interaction representation. We have previously derived that

1
~ _ wiT T zwlr
q(7) ST, l[a;e” T + ale™ ]

So our final task is to evaluate
Z cilaie™" + ale™ ] Z ¢ ! [a; +al] ) .
- - 2mw; /
K] ﬁe

The ¢-th oscillator should be only correlated with the i-th oscillator. The expression above now
becomes

%
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Look at the i-th oscillator alone. Consider the following terms. First,

e_BHi e_BHn
tr| a;a; Z In)n| 7| = Z (n|a;a;|n) 7
n n
=0
Similarly, we get that
76Hn

tr [a}az Z In)n| ¢ = 0.

The only non zero terms are thus
e_ﬁH’n e_BHn

tr [aiaz Z In)n|

_ i
=3 (nlasalln)

- fa + 1
> {nloles + 1lm) =

ne—Bnhwi+3)
- 41
o 5P
eBhwi eBhwi
= {oPhon — 1)2/eﬂfw !
1
T P — ] 1
B 1
1 — e B
and
—BHn —BHn
e e
tr [alai Z In)n| 7| = Z (n]a;al +1 —1|n) 7
T 1 — e Pl
B 1
efhwi 1

Thus in summary the correlation function is given by

— W T

Z ) e N eiwif
G\T P Bhwr _ 1
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