
PC4230
Quantum Mechanics III

Jia Xiaodong

December 1, 2021

1 Introduction

Quantum mechanics is bizarre in the way that we have developed a very sophisticated math-
ematical framework to describe our world, but when faced with the question of “why does it
work?” we have no answer. One example is with the single slit experiment. We know that if we
direct a beam of electrons towards the slit we get a diffraction pattern on the screen. However,
what is surprising is when we send only a single electron. Why does it land at a particular
position of the screen and not another? There seems to be no good answer. Indeed, quantum
mechanics does not give us any insight into singular events. We only know about the statistics
of repeated events.

The interpretation we adopt is as such

• Quantum systems generally do not possess definite properties.

• States only describe the “potential” of yielding some result after observation.

• Observation collapses the state and creates a result with some probability.

• The probability of observing the system in some eigenstate is given by the Born rule:
Pn = |〈Ψ|φn〉|2.

This is also to say that the state does not have any notion about a distribution of position or
momentum before any measurement. It is only after measurement that the state has a definite
position (with some probability).

A quick review of quantum evolution in Hilbert space. We start with Schrödinger’s equation:

i~
∂ |Ψ〉
∂t

= Ĥ |Ψ〉

Inserting the completeness condition, we have

i~
∑
m

|ψm〉
∂ 〈ψm|Ψ〉

∂t
=
∑
m,n

|ψm〉 〈ψm|Ĥ|ψn〉 〈ψn|Ψ〉

For expansion coefficient m we have the first order equation

i~
∂Cm
∂t

=
∑
n

〈ψm|Ĥ|ψn〉Cn
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where Cn = 〈ψn|Ψ〉. The formal solution takes the form of

|Ψ(t)〉 = exp

[
−iĤ(t− t0)

h

]
|Ψ(t0)〉 ≡ Û |Ψ(t0)〉 .

Here, U is an unitary operator, i.e. U † = (UT )∗ = U−1.

2 Time independent perturbation theory

2.1 Non-degenerate case

Suppose we have a completely solvable Hamiltonian Ĥ0 in terms of eigenkets |ψ0
n〉 and eigenen-

ergies E0
n. Can we say something about a more general system that has Ĥ0 as an ideal starting

point, and with some perturbation λV̂ ?

Let Ĥ = Ĥ0 + λV̂ . We will try to express the unknown solution of Ĥ in terms of the known
solution of Ĥ0. Assume

Ĥ |Ψn〉 = (Ĥ0 + λV̂ ) |Ψn〉 = En |Ψn〉 .

As λ→ 0, we have the known solution:

Ĥ0
∣∣ψ0

n

〉
= E0

n

∣∣ψ0
n

〉
.

The standard trick here is to make a power series expansion of the unknown solution in terms
of the perturbation strength λ.

|Ψn〉 =
∣∣ψ0

n

〉
+ λ

∣∣ψ1
n

〉
+ λ2

∣∣ψ2
n

〉
+ · · ·

En = E0
n + λE1

n + λ2E2
n + · · · .

Note a fundamental assumption here is that the states |Ψn〉 exist in the same Hilbert space
as the Hamiltonian Ĥ0. We can also assume that all correction terms are orthogonal to the
unperturbed state |φ0

n〉. If some states have components that are not orthogonal to |φ0
n〉, we can

simply add them into |φ0
n〉 and re-normalize it. In any case, after plugging in we get:

Ĥ |Ψn〉 = En |Ψn〉
(Ĥ0 + λV̂ )

(∣∣ψ0
n

〉
+ λ

∣∣ψ1
n

〉
+ λ2

∣∣ψ2
n

〉)
= (E0

n + λE1
n + λ2E2

n)
(∣∣ψ0

n

〉
+ λ

∣∣ψ1
n

〉
+ λ2

∣∣ψ2
n

〉)
.

Comparing the different coefficients of λ,

Ĥ0
∣∣ψ0

n

〉
= E0

n

∣∣ψ0
n

〉
(λ0)

Ĥ0
∣∣ψ1

n

〉
+ V̂

∣∣ψ0
n

〉
= E0

n

∣∣ψ1
n

〉
+ E1

n

∣∣ψ0
n

〉
(λ1)

Ĥ0
∣∣ψ2

n

〉
+ V̂

∣∣ψ1
n

〉
= E0

n

∣∣ψ2
n

〉
+ E1

n

∣∣ψ1
n

〉
+ E2

n

∣∣ψ0
n

〉
(λ2).
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2.1.1 First order corrections

We break down each of these equations into components of the eigenstates |ψ0
n〉 as our basis.

We do this by projecting them onto each of the eigenstates. For the first order equation:〈
ψ0
m

∣∣Ĥ0
∣∣ψ1

n

〉
+
〈
ψ0
m

∣∣V̂ ∣∣ψ0
n

〉
= E0

n

〈
ψ0
m

∣∣ψ1
n

〉
+ E1

n

〈
ψ0
m

∣∣ψ0
n

〉
.

Since Ĥ0 is Hermitian, for m 6= n this gives us

V̂mn =
〈
ψ0
m

∣∣V̂ ∣∣ψ0
n

〉
= (E0

n − E0
m)
〈
ψ0
m

∣∣ψ1
n

〉
.

Using the completeness relation, we can find the first order correction to the eigenstate:∣∣ψ1
n

〉
=
∑
m

∣∣ψ0
m

〉〈
ψ0
m

∣∣ ∣∣ψ1
n

〉
=
∑
m 6=n

V̂mn
(E0

n − E0
m)

∣∣ψ0
m

〉
.

The m = n state in the summation vanishes due to orthogonality, which we assumed by
construction, i.e. 〈ψ0

n|ψ1
n〉 = 0.

For m = n, the projection 〈
ψ0
n

∣∣V̂ ∣∣ψ0
n

〉
= E1

n

gives the first order correction to the eigenvalue.

2.1.2 Second order corrections

The approach is identical. First we project onto the basis states:〈
ψ0
m

∣∣Ĥ0
∣∣ψ2

n

〉
+
〈
ψ0
m

∣∣V̂ ∣∣ψ1
n

〉
= E0

n

〈
ψ0
m

∣∣ψ2
n

〉
+ E1

n

〈
ψ0
m

∣∣ψ1
n

〉
+ E2

n

〈
ψ0
m

∣∣ψ0
n

〉
.

For m 6= n we get

(E0
m − E0

n)
〈
ψ0
m

∣∣ψ2
n

〉
+
〈
ψ0
m

∣∣ V̂(∑
k 6=n

V̂kn
E0
n − E0

k

∣∣ψ0
k

〉)
= E1

n

〈
ψ0
m

∣∣(∑
k 6=n

V̂kn
E0
n − E0

k

∣∣ψ0
k

〉)

(E0
m − E0

n)
〈
ψ0
m

∣∣ψ2
n

〉
+
∑
k 6=n

V̂mkV̂kn
E0
n − E0

k

= V̂nn
Vmn

E0
n − E0

m

Insert the completeness relation to obtain∣∣ψ2
n

〉
=
∑
m

∣∣ψ0
m

〉〈
ψ0
m

∣∣ ∣∣ψ2
n

〉
=
∑
m

∑
k 6=n

∣∣ψ0
m

〉 V̂mkV̂kn
(E0

n − E0
k)(E

0
m − E0

n)
−
∑
m

∣∣ψ0
m

〉 V̂nnV̂mn
(E0

n − E0
m)2

.

Actually we are not done yet. For the first order case we have conveniently ignored normalisation
because the state is already normalised to the first order:

〈Ψn|Ψn〉 =
(〈
ψ0
n

∣∣+ λ
〈
ψ1
n

∣∣)(∣∣ψ0
n

〉
+ λ

∣∣ψ1
n

〉
)

= 1 + λ2
〈
ψ1
n

∣∣ψ1
n

〉
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However since we are talking about corrections to the second order now, it is no longer normalised:

〈Ψn|Ψn〉 =
(〈
ψ0
n

∣∣+ λ
〈
ψ1
n

∣∣+ λ2
〈
ψ2
n

∣∣)(∣∣ψ0
n

〉
+ λ

∣∣ψ1
n

〉
+
∣∣ψ2

n

〉
)

= 1 + λ2
〈
ψ1
n

∣∣ψ1
n

〉
We have to multiply throughout by a factor of 1/

√
1 + λ2 〈ψ1

n|ψ1
n〉, or by truncating up to the

second order,

|Ψn〉 =

(
1− λ2

2

〈
ψ1
n

∣∣ψ1
n

〉)(∣∣ψ0
n

〉
+ λ

∣∣ψ1
n

〉
+ λ2

∣∣ψ2
n

〉)
We skip the substitution since it gets quite tedious.

The correction to the eigenenergy is given by the case of m = n:

E2
n =

〈
ψ0
m

∣∣V̂ ∣∣ψ1
n

〉
=
∑
m6=n

〈
ψ0
n

∣∣ V̂( V̂mn
E0
n − E0

m

∣∣ψ0
m

〉)

=
∑
m 6=n

V 2
mn

E0
n − E0

m

.

Thus overall up to the second order we have

En = E0
n + λVmn + λ2

∑
m 6=n

V 2
mn

E0
n − E0

m

We can see that the curvature ∂2En

∂λ2
is proportional to λ.

2.1.3 Example: Square well

Recall the exact solution to a particle trapped in an infinite square well with length L:∣∣φ0
n

〉
=

√
2

L
sin

nπx

L

E0
n =

~2π2n2

2mL2

Consider a perturbation that extends the width of the well by some length dL. Is this solvable
with perturbation theory? The answer is no, since the two spaces live in different Hilbert spaces.
The original exact solution exists in a Hilbert space spanned by states defined by states vanishing
at x = 0 and x = L. The new perturbed state will live in a Hilbert space that is spanned by
states vanishing at x = 0 and x = L+ dL. Therefore there is no way that we are able to make
corrections to the original state using our original eigenbasis that can create a new state that
satisfies the new boundary conditions. The same goes for a perturbation where we make the
well narrower by dL.

Let us consider another problem where we have two non-interacting particles (bosons) in the
square well. This is a perturbation of

V̂ = −aV0δ(x1 − x2).
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The ground state is just the product of the states of both particles:

ψ0
1 =

2

L
sin

πx1

L
sin

πx2

L

The first order correction is given by

E1
1 =

〈
ψ0

1

∣∣V̂ ∣∣ψ0
1

〉
= −aV0

4

a2

ˆ L

0

ˆ L

0

sin2 πx1

L
sin2 πx2

L
δ(x1 − x2)dx1dx2

= −4V0

a

ˆ L

a

sin4 πx

L
dx

= −3

2
V0

2.2 Degenerate case

Our earlier results were based on an assumption of non-degeneracy. Firstly, the first order
correction term ∣∣ψ1

n

〉
=
∑
m 6=n

Vmn
E0
n − E0

m

∣∣ψ0
m

〉
will blow up due to the denominator. Secondly, any linear combination of degenerate eigenstates
remain as an eigenstate of the same eigenvalue. Thus we do not know to which eigenstate the
unperturbed state tends to as λ→ 0.

We will need to consider this case separately. Let the correct state that we approach as λ→ 0

be |ψ0
n〉. More generally, we can write it in terms of all the degenerate states

∣∣∣ψ̃n,d〉:

∣∣ψ0
n

〉
=
∑
d

Cn,d

∣∣∣ψ̃0
n,d

〉
Returning to a previous result,

Ĥ0
∣∣ψ1

n

〉
+ V̂

∣∣ψ0
n

〉
= E0

n

∣∣ψ1
n

〉
+ E1

n

∣∣ψ0
n

〉
.

Projecting onto any
〈
ψ̃nn,d

∣∣∣, we get

V̂
∣∣ψ0

n

〉
= E1

n

∣∣ψ0
n

〉
that holds within this degenerate subspace (previously there was no restriction on what we can
project it on). So, this tells us that the eigenstates and eigenvalues of V̂ are the correct first
order corrections. Continuing to work in this degenerate subspace, we simply have to solve a
few relations between matrix elements:〈

ψ̃0
n,d′

∣∣∣ V̂ ∑
d

Cn,d

∣∣∣ψ̃0
n,d

〉
=
〈
ψ̃0
n,d′

∣∣∣E1
n

∑
d

Cn,d

∣∣∣ψ̃0
n,d

〉
∑
d

Cn,d

〈
ψ̃0
n,d′

∣∣∣ V̂ ∣∣∣ψ̃0
n,d

〉
= E1

n

∑
d

Cn,d

〈
ψ̃0
n,d′

∣∣∣ψ̃0
n,d

〉
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Consider just a two-fold degeneracy. Let the degenerate subspace be spanned by |ψ0
a〉 and |ψ0

b 〉.
Solving for the eigenvalue: (

Vaa Vab
Vba Vbb

)(
Ca
Cb

)
= E1

(
Ca
Cb

)
∣∣∣∣Vaa − E1 Vab

Vba Vbb − E1

∣∣∣∣ = 0

1

2

[
Vaa + Vbb ±

√
(Vaa + Vbb)2 + 4|Vab|2

]
= E1

Physically, this describes a splitting effect in the eigenenergies.

It is also possible to choose a diagonal basis for the degenerate subspace. In this case, the first
order correction will then be given by the diagonal matrix elements. Then the formula will be
identical with the non-degenerate case.

Here is a useful theorem. If we find a Hermitian operator P̂ that commutes with both the
unperturbed Hamiltonian and the perturbations

[P̂ , Ĥ0] = 0 [P̂ , V̂ ] = 0,

the eigenstates of Ĥ0 are also eigenstates of P̂ . If the degenerate states
∣∣∣ψ̃0

a

〉
and

∣∣∣ψ̃0
b

〉
are

eigenstates of P̂ with different eigenvalues, then V̂ will be a diagonal matrix in this eigenbasis.
Qualitatively this makes sense as V̂ should preserve the symmetry of P̂ since they commute.
The proof is simple: 〈

ψ̃0
a

∣∣∣ P̂ V̂ ∣∣∣ψ̃0
b

〉
=
〈
ψ̃0
a

∣∣∣ V̂ P̂ ∣∣∣ψ̃0
b

〉
Pa

〈
ψ̃0
a

∣∣∣ V̂ ∣∣∣ψ̃0
b

〉
= Pb

〈
ψ̃0
a

∣∣∣ V̂ ∣∣∣ψ̃0
b

〉

where Pa and Pb are the eigenvalues of
∣∣∣ψ̃0

a

〉
and

∣∣∣ψ̃0
b

〉
respectively. Since Pa 6= Pb by assumption,

we have V̂ab = 0.

2.2.1 Example: Particle on circle

Consider a particle of mass m moving on a ring of radius r. We can describe its position using
angle ϕ. The Hamiltonian is given by

Ĥ0 =
~2

2I
L̂2
z

= − ~2

2mr2

∂2

∂ϕ2

The eigenvector is given by a plane wave
〈
ϕ
∣∣∣ψ̃0

n

〉
= 1√

2π
einϕ with eigenvalue E0

n = n2~2
2mr2

. There

is two fold degeneracy in this system because you can rotate clockwise and counter-clockwise
corresponding to ±n states.
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Now consider a perturbation V̂ = εf(ϕ) with f(ϕ) = f(−ϕ). We can solve this manually, or we
can notice that both the Hamiltonian and the perturbation preserves the parity symmetry. In
other words they commute with the parity operator. Let us choose∣∣ψ0

±n
〉

=
1√
2

(∣∣∣ψ̃0
n

〉
±
∣∣∣ψ̃0
−n

〉)
as the basis states of the degenerate subspace. Then the eigenstates〈

ϕ
∣∣∣ψ̃0

n+

〉
=

√
1

π
cos(nϕ)

〈
ϕ
∣∣∣ψ̃0

n−

〉
=

√
1

π
sin(nϕ)

are also eigenstates of the parity operator, with eigenvalues ±1. Therefore, in this new basis the
perturbation matrix is diagonal. The first order energy correction can thus be evaluated in the
same way as for the non-degenerate case:

E1
n+ =

〈
ψ̃0
n+

∣∣∣V̂ ∣∣∣ψ̃0
n+

〉
=
ε

π

ˆ π

−π
cos2(nϕ)f(ϕ)dϕ

E1
n− =

〈
ψ̃0
n−

∣∣∣V̂ ∣∣∣ψ̃0
n−

〉
= − ε

π

ˆ π

−π
sin2(nϕ)f(ϕ)dϕ

2.2.2 Example: Fine structure relativistic correction

Consider a hydrogen atom with Hamiltonian

Ĥ0 =
P 2

2me

− e2

4πε0r

n l m degeneracy
1 0 0 1

2
0 0

4
1 0,±1

3
0 0

91 0,±1
2 0,±1,±2

The degeneracy goes as n2. For large n it becomes quickly impossible to solve the perturbation
with brute force. Consider the relativistic correction as a perturbation given by

V̂ = − P̂ 4

8m3
ec

2
.

Notice how we can rewrite the perturbation as

V̂ = − 1

c2

[
Ĥ0 +

e2

4πε0r

]2
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The unperturbed Hamiltonian possesses rotational symmetry. In fact, the degeneracy originates
from this rotational symmetry. From the rewriting, we can see that V̂ is also rotationally
symmetric. So they both commute with L̂2 (and also Lz). Thus, the first order correction is
just given by the expected value of the perturbation on the radial eigenvalues:

E1
n,l,m ∝

〈
ψ̃0
n,l,m

∣∣∣P̂ 4
∣∣∣ψ̃0

n,l,m

〉
∝
〈
ψ̃0
n,l,m

∣∣∣(Ĥ0 − Vcoulumb)2
∣∣∣ψ̃0

n,l,m

〉
∝
[
(E0

n,l,m)2 + 2kE0
n,l,m

〈
1

r

〉
+ k2

〈
1

r2

〉]
= −

(E0
n,l,m)2

2mec2

[
4n

l + 1/2
− 3

]
where k = e2/4πε0. Expectation values are evaluated on the unperturbed hydrogen wavefunc-
tions, and are just integrals. So we have simplified a problem with a high degeneracy. This also
illustrates the power of symmetry.

3 Discrete variable representation

In preparation for developing a computational approach to solving problems in quantum
physics, we will develop a system for discretising continuous variables. We will first focus on
time-independent 1D problems.

We discretise the space coordinates by first confining ourselves to a region of interest. This
region is chosen with the assumption that the states essentially vanish at the boundaries. Then
we simply divide this region into N intervals with width ∆x. The width is chosen so that
the maximum momentum of interest would be around ~/∆x (obtained from the de Broglie
wavelength). This gives us N − 1 non-trivial points, which also sets a limit on the dimension of
our Hilbert space.

For each cell centred around the i-th point with position xi, we define the discretised position
eigenstate

|i〉 → 1√
∆x

ˆ xi+∆x/2

xi−∆x/2

|x〉 dx.

It is a equally weighted uniform distribution of all states in the cell. They are orthogonal and
normalisable:

〈i|j〉 =
1

∆x

ˆ xi+∆x/2

xi−∆x/2

〈x|
ˆ xj+∆x/2

xj−∆x/2

|x′〉 dxdx′

=
1

∆x

ˆ xi+∆x/2

xi−∆x/2

ˆ xj+∆x/2

xj−∆x/2

δ(x− x′)dxdx′

= δij

Recall that the Hamiltonian is given by Ĥ = T̂ + V̂ . We show that V̂ is still diagonal in this
basis. Assuming that the wavefunction is fairly smooth within each cells, we can perform a
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mid-point approximation on some of the integrals without too much error.

〈i|V |j〉 =
1

∆x

ˆ xi+∆x/2

xi−∆x/2

ˆ xj+∆x/2

xj−∆x/2

〈x|V |x′〉 dxdx′

=
1

∆x

ˆ xi+∆x/2

xi−∆x/2

ˆ xj+∆x/2

xj−∆x/2

V (x) 〈x|x′〉 dxdx′

=
1

∆x

ˆ xi+∆x/2

xi−∆x/2

V (x)

ˆ xj+∆x/2

xj−∆x/2

δ(x− x′)dxdx′

≈ V (xi)δij

Note that we can use the same method to solve for perturbations. For example〈
ψ0
n

∣∣Vp∣∣ψ0
m

〉
=
∑
i,j

〈
ψ0
n

∣∣i〉 〈i|Vp|j〉 〈j∣∣ψ0
m

〉
=
∑
i,j

〈
ψ0
n

∣∣i〉Vp(xi)δij 〈j∣∣ψ0
m

〉
=
∑
i

∣∣〈i∣∣ψ0
n

〉∣∣2Vp(xi)
However we could have also just included the perturbation directly into V .

Next consider the kinetic energy matrix T̂ . Similarly, we can do some mid-point approximations
on the integrals.

〈i|T |x′〉 =
1

∆x

ˆ xi+∆x/2

xi−∆x/2

ˆ xj+∆x/2

xj−∆x/2

〈x|T |x′〉 dxdx′

=
1

∆x

ˆ xi+∆x/2

xi−∆x/2

ˆ xj+∆x/2

xj−∆x/2

〈x|T |x′〉 dxdx′

≈ 1

∆x
〈xi|T |xj〉

ˆ xi+∆x/2

xi−∆x/2

ˆ xj+∆x/2

xj−∆x/2

dxdx′

= ∆x 〈xi|T |xj〉 .
Our wavefunction under consideration vanishes at the endpoints. Hence we are able to use the
solutions for a particle in a infinite square well as basis states.

〈x|φn〉 =

√
2

L
sin

nπ(x− a)

L

They must also be eigenstates of T̂ .

T̂ |φn〉 =
n2~2π2

2mL2
|φn〉

We can now put in the completeness condition

〈xi|T̂ |xj〉 =
N−1∑
n=1
n′=1

〈xi|φn〉 〈φn|T̂ |φn′〉 〈φn′|xj〉

=
N−1∑
n=1
n′=1

√
2

L
sin

nπ(xi − a)

L

n2~2π2

2mL2
〈φn|φn′〉

√
2

L
sin

nπ(xj − a)

L

=
N−1∑
n=1

2

L

n2~2π2

2mL2
sin

nπ(xi − a)

L
sin

nπ(xj − a)

L
.
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Notice how we sum only up to the resolution limit N − 1. This should be a infinite sum, but we
can truncate it early because we will not have the resolution to capture the structure given by
any higher order terms.

3.1 Reduced units

It will help in both simplifying our calculation and also reducing floating point errors if we use
reduced units. It would be bad if we were multiplying something as small as ~ everywhere.

This involves making position and momentum dimensionless. Consider the following scaling

x̂ = x̄

√
~
mω

p̂ = p̄
√
mω~.

Here, x̄ and p̄ are our new dimensionless coordinates and momentum. Why this strange scaling?
Some simple calculations will show:

[x̄, p̄] = i =
[x̂, p̂]

~
.

This means this scaling is equivalent to setting ~ = 1. What is ω? Here ω is the characteristic
frequency scale of the system.

Recall the harmonic oscillator with Hamiltonian given by

Ĥ =
p̂2

2m
+

1

2
mω2x̂2.

Substituting in our scaled position and momentum,

Ĥ =
p̄2

2
~ω +

1

2
ω2x̄2 ~

ω

=

(
p̄2

2
+

1

2
x̄2

)
~ω.

So we have something like a new scaled Hamiltonian given by H̄ = p̄2

2
+ 1

2
x̄2, and ~ω is an

energy scaling. This also means that this scaling is as though m = 1.

We can also apply it to the time dependent Schödinger equation

i~
∂ |ψ〉
∂t

= Ĥ |ψ〉 = H̄(~ω) |ψ〉

i
∂ |ψ〉
∂ωt

= H̄ |ψ〉

In summary, the new units of our new scaled variables are listed below.

x̄
√

~
mω

p̄
√
~mω

H̄ ~ω
t̄ 1

ω

In our calculations, we will proceed with ~ = 1 and m = 1, and this will give us results in terms
of the dimensionless variables. To convert them back to real units (meters, seconds, etc.) we
multiply them with the scale listed above.
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3.2 Limitations

Imagine we are computationally solving for the n-th eigenstate of the harmonic oscillator. We
know that

p̄2 ∝ (n− 1

2
)

p̄ ∝ √n

Therefore we should have a resolution of around 1√
n
. So L

N
< 1√

n
.

We also have

1

2
x̄2 ∝ n− 1

2

2
x̄ ∝ √n

Therefore we also have another constraint of
√
n < L.

When will our computation fail? Assume n ≈ N . Then, the two conditions will say

√
N < L L <

√
N

which contradicts each other. So our computation is only valid if n� N .

3.3 Methodology

Knowing these limitations, how do we get started without knowing the exact solutions? Let us
consider another problem and pretend that we don’t know how to solve it:

Ĥ =
p̂2

2m
+D[1− exp(−α(x− x0))]2

First, we should find an appropriate value for ω. Performing a series expansion, we have

Ĥ ≈ D

[
1−

(
1− α(x− x0) +

α2

2
(x− x0)2

)]
In a harmonic approximation,

Dα2(x− x0)2 ≈ 1

2
mω2(x− x0)2

and obtain that ω =
√

2Dα2/m. Rewrite the Hamiltonian with our scaled units:

Ĥ =
p̄2

2m
~mω +D

[
1− exp

(
−α
√

~
mω

(x̄− x̄0)

)]2

=

{
p̄2

2
+
D

~ω
[1− exp(ᾱ(x̄− x̄0))]2

}
~ω

where ᾱ = α
√

~/mω. Our H̄ is given by the terms in the curly braces.
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4 Time evolution

4.1 Introduction

All wave equations have time evolutions. Therefore just studying the time evolution of the
Schrödinger equation is not very interesting. What is more interesting is the interplay between
time evolution and measurement.

Take the time dependent Schrödinger equation

i~
∂ |Ψ〉
∂t

= Ĥ |Ψ〉 .

Note the two responsibilities of the Hamiltonian. Firstly, it gives you the energy as its eigenvalues.
Secondly, it is also the generator of the time evolution. We know that the equation has solution
of the form

|Ψ(t)〉 = exp

[
−iĤ(t− t0)

~

]
|Ψ(t0)〉

where Û = exp
[
− iĤ(t−t0)

~

]
is an unitary operator. Unitary operators do not change the length

of vectors and the inner product between vectors. Plugging the solution back to the Schödinger
equation, we have

i~
∂Û(t, t0)

∂t
= ĤÛ(t, t0).

This is the most general setting, because we do not care about initial state. For a time
independent Hamiltonian, we have the solution above. For a time dependent Hamiltonian, the
solution reads

ˆ t

t0

i~
∂Û(t′, t0)

∂t
dt′ =

ˆ t

t0

Ĥ(t′)Û(t′, t0)dt′

i~
(
Û(t, t0)− Û(t0, t0)

)
=

ˆ t

t0

Ĥ(t′)Û(t′, t0)dt

Û(t, t0) = 1− i

~

ˆ t

t0

Ĥ(t′)Û(t′, t0)dt′

Below are some properties of Û :

• Û(t0, t0) = 1.

• Û(t3, t2)Û(t2, t1) = Û(t3, t1).

• Û(t1, t2)Û(t2, t1) = Û(t1, t1) = 1. In other words, Û †(t2, t1) = Û−1(t2, t1) = Û(t1, t2).

There is a group structure being exhibited here.
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Time independent operators can be transformed via the application of Û to make them time
dependent:

i~
∂U †(t, t0)ÔU(t, t0)

∂t
= i~

∂U †

∂t
ÔÛ + i~Û †Ô

∂Û

∂t

= −Û †ĤÔÛ + Û †ÔĤÛ

= Û †ÔÛ Û †ĤÔÛ + Û †HÛÛ †ÔĤÛ

=
[
Û †ÔÛ , Û †ĤÛ

]
.

We used the following identities above: (
ĤÔ

)†
= Ô†Ĥ

i~
∂Û

∂t
= ĤÛ

−i~∂Û
†

∂t
= Û †Ĥ

If Ô is time dependent, then we could do the above again, but with an extra term of i~Û ∂Ô
∂t
Û .

4.2 Quantum Zeno effect

Consider an initial state |φ〉. The state after a small time ∆t is given by exp
(
−iĤ∆t/~

)
|φ〉.

What is the probability of the system remaining in the initial state?∣∣∣∣∣
〈
φ

∣∣∣∣∣exp

(
−iĤ∆t

~

)∣∣∣∣∣φ
〉∣∣∣∣∣

2

≈
〈
φ

∣∣∣∣∣1 +
iĤ∆t

~
− Ĥ2∆t2

2~2

∣∣∣∣∣φ
〉〈

φ

∣∣∣∣∣1− iĤ∆t

~
− Ĥ2∆t2

2~2

∣∣∣∣∣φ
〉

=

(
1 +

i∆t

~
〈φ|Ĥ|ψ〉 − ∆t2

2~2
〈ψ|Ĥ2|ψ〉

)(
1− i∆t

~
〈φ|Ĥ|ψ〉 − ∆t2

2~2
〈ψ|Ĥ2|ψ〉

)
= 1 +

∆t2

~2

(
〈ψ|Ĥ|ψ〉

)2

− ∆t2

~2
〈ψ|Ĥ2|ψ〉

= 1− ∆t2

~2

〈
ψ
∣∣∣〈Ĥ2

〉
−
〈
Ĥ
〉∣∣∣ψ〉

= 1− ∆t2

~2

(
∆Ĥ

)2

where ∆Ĥ denotes the variance. After N measurements, the probability of the system remaining
in the same initial state is given by (

1− ∆t2

~2

(
∆Ĥ

)2
)N

.
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Suppose that these measurements were made in the duration of total time T , with ∆t = T/N .
We can rewrite the probability (

1− T 2

N2~2

(
∆Ĥ

)2
)N

.

As N →∞, this probability goes to 1, and this is the quantum Zeno effect. This is something
that cannot be derived from the time evolution of the Schrödinger equation.

5 Time dependent perturbation theory

5.1 Heisenberg representation

What we have been using so far is the Schrödinger representation. This is where we let the
states evolve in time according to some unitary operator. In the Heisenberg representation, we
let observables evolve and keep the states fixed.

In the Schrödinger representation, the expectation value of an observable at some time is

〈Ψ(t)|Ô(t)|Ψ(t)〉 = 〈Ψ(t0)|Û †(t, t0)Ô(t)Û(t, t0)|Ψ(t0)〉

If we define the operator in the Heisenberg representation as

ÔH(t) = Û †(t, t0)ÔS(t)Û(t, t0)

then we will get the same result

〈Ψ(t)|ÔS(t)|Ψ(t)〉 = 〈Ψ(t0)|ÔH(t)|Ψ(t0)〉

Heisenberg’s equation of motion is then given by

i~
∂ÔH(t)

∂t
= i~

∂Û †ÔS(t)Û

∂t

=
[
Û †ÔSÛ , U

†ĤSÛ
]

+ i~Û †
∂ÔS

∂t
Û

=
[
ÔH , ĤH

]
+ i~

∂ÔS

∂t H
.

What about Born’s rule? Consider the operator ÔS with eigenstate |φ〉 in the Schrödinger
representation. The probability of finding the system Û |Ψ(t0)〉 with eigenvalue φ is given

by
∣∣∣ 〈φ|Û |Ψ(t0)〉

∣∣∣2. In the Heisenberg representation, the eigenstate is given by Û † |φ〉. The

system is given by simply |Ψ(t0)〉, and Born’s rule says
∣∣∣ 〈φ|Û |Ψ(t0)〉

∣∣∣2.

5.2 Interaction representation

Let us divide the Hamiltonian Ĥ into a time independent Ĥ0 and a time dependent perturbation
V̂ (t). The time evolution of the unperturbed system is usually known, by choosing the
appropriate Ĥ0. How do we find the evolution in the presence of perturbation V̂ ?
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Let us factorise the unitary evolution operator into two parts, Û0 without the perturbation and
ÛI which is an additional correction due to the perturbation:

Û(t, t0) = Û0(t, t0)ÛI(t, t0).

Then we can write

〈Ψ(t)|Ôs(t)|Ψ(t)〉 = 〈Ψ(t0)| ÛI(t, t0)Û †0(t, t0)Ô(t)Û0(t, t0)ÛI(t, t0) |Ψ(t0)〉
= 〈ΨI(t0)|ÔI(t)|ΨI(t0)〉

where ÔI = Û †0ÔÛ0 and |ΨI〉 = ÛI |Ψ〉. This also explains why the interaction representation
is also called an intermediate representation. Operators will transform by Û0 and states will
transform by ÛI .

Now we need to figure out what ÛI is doing.

i~
∂ÛI
∂t

= i~
∂Û †0 Û

∂t

= i~
∂Û †0
∂t

Û + i~Û †0
∂Û

∂t

= −Û †0Ĥ0Û + Û †0ĤÛ

= −Û †0Ĥ0Û0ÛI + Û †0ĤÛ0ÛI

= Û †0

(
Ĥ − Ĥ0

)
Û0ÛI

= V̂I(t)UI

We are interested in solving this equation. We shall solve it perturbatively:

• Zeroth order: i~∂ÛI

∂t
= 0, meaning ÛI = 1.

• First order: i~∂ÛI

∂t
= V̂I(t), where we have plugged in ÛI = 1. Integrating both sides we

have

ˆ t

t0

∂ÛI
∂t

dt′ =

ˆ t

t0

1

i~
V̂I(t

′) dt′

ÛI(t, t0) = 1 +
1

i~

ˆ t

t0

V̂I(t
′) dt′

• Second order: again we plug the first order solution back in, and get

ÛI = 1 +
1

i~

ˆ t

t0

V̂I(t
′) dt′ +

(
1

i~

)2 ˆ t

t0

V̂I(t
′)

ˆ t′

t0

V̂I(t
′′) dt′ dt′′

We can see the general form. Every next order will add a new term with an extra integral.
However second order will suffice for our purposes.

Some rearrangement gives us an interesting interpretation of this procedure. Consider the first
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order solution:

Û = Û0ÛI

= Û0 + Û0
1

i~

ˆ t

t0

V̂I(t
′) dt′

= Û0(t, t0) + Û0(t, t0)
1

i~

ˆ t

t0

Û †0(t′, t0)V̂ (t′)Û0(t′, t0) dt′

= Û0(t, t0) +
1

i~

ˆ t

t0

Û0(t, t′)V̂ (t′)Û0(t′, t0) dt′

So this describes a free evolution from time t0 to t′, then we meet the potential, followed by
another free evolution to time t, and we do this for all possible t′. We can do the same for the
second order solution (only looking at the extra term):

Û0(t, t0)

(
1

i~

)2 ˆ t

t0

dt′
ˆ t′

t0

dt′′ V̂I(t
′)V̂I(t

′′)

=

(
1

i~

)2 ˆ t

t0

dt′
ˆ t′

t0

dt′′ Û0(t, t′)V̂ (t′)Û0(t′, t′′)V̂ (t′′)Û0(t′′, t0)

which shows us encountering the potential twice. This expansion is also called the Dyson series.

5.3 First order result

Let us walk through how we would use first order perturbation in our calculations. Recall for
first order we have ÛI(t, t0) = 1 + 1

i~

´ t
t0
V̂I(t

′) dt′, and in the interaction picture V̂I = Û †0V Û0.

Using the eigenstates of Ĥ0 to express the matrix elements,〈
ψ0
n

∣∣ÛI(t, t0)
∣∣ψ0

m

〉
= δmn +

1

i~

ˆ t

t0

dt′
〈
ψ0
n

∣∣∣∣∣exp

(
iĤ0(t′ − t0)

~

)
V̂ (t′) exp

(
iĤ0(t0 − t′)

~

)∣∣∣∣∣ψ0
m

〉

= δmn +
1

i~

ˆ t

t0

〈
ψ0
n

∣∣ V̂ (t1)
∣∣ψ0

m

〉
exp

(
i(E0

n − E0
m)(t1 − t0)

~

)
.

Transition amplitudes are then given by〈
ψ0
n

∣∣Û(t, t0)
∣∣ψ0

m

〉
=
〈
ψ0
n

∣∣Û0(t, t0)ÛI(t, t0)
∣∣ψ0

m

〉
= exp

(
iE0

n(t0 − t)
~

)〈
ψ0
n

∣∣ÛI(t, t0)
∣∣ψ0

m

〉
Finally, the transition probability (for m 6= n) is given by

Pm→n =
∣∣∣ 〈ψ0

n

∣∣Û(t, t0)
∣∣ψ0

m

〉∣∣∣2
=
∣∣∣ 〈ψ0

n

∣∣ÛI(t, t0)
∣∣ψ0

m

〉∣∣∣2
=

1

~2

∣∣∣∣ˆ t

t0

〈
ψ0
n

∣∣V̂ (t1)
∣∣ψ0

m

〉
exp

(
i(E0

n − E0
m)(t′ − t0)

~

)
dt′
∣∣∣∣2

Apart from some constant factors, the transition probability given by the first order perturbation
is proportional to the Fourier transform of the matrix element of the matrix element V̂nm
evaluated at the frequency determined by ωnm = E0

n−E0
m

~ .
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5.4 Example: constant perturbation

We start with Hamiltonian Ĥ0, and turn on a constant perturbation V starting at time t0. We
have

Pm→n =
1

~2
|Vmn|2

∣∣∣∣ˆ t

t0

exp(iωnm(t′ − t0)) dt′
∣∣∣∣2

=
|Vnm|2
~2

∣∣∣∣eiωnm(t−t0) − 1

iωnm

∣∣∣∣2
=
|Vnm|2
ω2
nm~2

∣∣eiωnm(t−t0)/2
∣∣2∣∣eiωnm(t−t0)/2 − e−iωnm(t−t0)/2

∣∣2
=

4|Vnm|2
ω2
nm~2

sin2

(
iωnm(t− t0)

2

)
Some rearrangement allows us to write it as so:

Pm→n =
4|Vnm|2
ω2
nm~2

sinc2

(
iωnm∆t

2

)
∆t2

The following is a sketch of the function:

−4 −2 2 4
π
∆t

ωnm

Pn→m

Roughly speaking, this shows that the transition probability is significant for ∆E∆t ≈ ~, which
is some kind of uncertainty principle. For small ∆t, it is possible for the system to transition to
another energy. As ∆t→∞, the function approaches a Dirac delta, and ∆E → 0. This means
that energy is conserved, but only at very long ∆t, and it is possible to go against the law due
to the uncertainty principle.

5.5 Periodic perturbation

Consider a perturbation of the form

V̂ (t) = v[exp(iωt) + exp(−iωt)]
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with ω > 0. The matrix element is given by〈
ψ0
n

∣∣V̂ (t)
∣∣ψ0

m

〉
= vnm[exp(iωt) + exp(−iωt)].

The probability amplitude is simply (setting t0 = 0):

Pm→n =
1

~2

∣∣∣∣ˆ t

0

〈
ψ0
n

∣∣V̂ (t1)
∣∣ψ0

m

〉
exp(iωnm(t′ − t0)) dt′

∣∣∣∣2
=
|vnm|2
~2

∣∣∣∣ˆ t

0

exp[i(ω + ωnm)t′] + exp[i(ωnm − ω)t′] dt′
∣∣∣∣2

=
|vnm|2
~2

∣∣∣∣exp[i(ω + ωnm)t]− 1

ω + ωnm
+

exp[i(ωnm − ω)t]− 1

ωnm − ω

∣∣∣∣2.
If ω is quite close to |ωnm|, the denominator might go to zero. In this case we make the following
approximation:

• If ωnm < 0 (meaning E0
n < E0

m), then the first term dominates.

• If ωnm > 0 (meaning E0
n > E0

m), then the second term dominates.

To justify this, let us consider the first case. In this case, performing a Taylor expansion to the
first order gives

exp[i(ω + ωnm)t′]− 1

ω + ωnm
≈ 1 + i(ω + ωnm)t− 1

ω + ωnm
∝ t.

Meanwhile, the other term is oscillating with t, and will contribute less to the amplitude. This
approximation is also known as the rotating wave approximation. All in all, in this case we get

Pm→n ≈
|vnm|2t2

~2
sinc2

(
(ω + ωnm)t

2

)
.

If the perturbation is caused by a single photon, then this means that after a long time, then
ωnm ≈ ω, so the system will have either captured or emitted a photon.

For the other case, the expression is very similar:

Pm→n ≈
|vnm|2t2

~2
sinc2

(
(ωnm − ω)t

2

)
.

Interestingly, our results also means that an oscillating field can bring a quantum state down to
lower energy levels.

5.6 Two photon processes

Since we have seen that first order perturbation theory can describe single photon processes,
we would naturally expect second order perturbation theory to be able to describe two photon
processes. Assume we have two eigenstates with energies En − Em ≈ 2~ω. The perturbation as
usual is V̂ (t) = v cos(ωt). The driving frequency is far from the single photon resonance so our
previous results will not be applicable here.
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Let us assume that m 6= n and that the first order term does not really contribute any effect
since again ω is too small to cause a transition. Then,〈

ψ0
n

∣∣ÛI∣∣ψ0
m

〉
=

(
1

i~

)2 〈
ψ0
n

∣∣ ˆ t

0

V̂I(t
′)

ˆ t′

0

V̂I(t
′′) dt′ dt′′

∣∣ψ0
m

〉
=

(
1

i~

)2 〈
ψ0
n

∣∣ ˆ t

0

dt′
ˆ t′

0

dt′′ Û †0v cos(ωt′)Û0Û
†
0v cos(ωt′′)Û0

∣∣ψ0
m

〉
=

(
1

i~

)2 ˆ t

0

dt′
ˆ t′

0

dt′′

exp

(
iE0

nt
′

~

)〈
ψ0
n

∣∣ v cos(ωt′)Û0

∑
k

∣∣ψ0
k

〉〈
ψ0
k

∣∣ Û †0v cos(ωt′′) exp

(
iE0

mt
′′

~

) ∣∣ψ0
m

〉
=

(
1

i~

)2∑
k

〈
ψ0
n

∣∣v∣∣ψ0
k

〉 〈
ψ0
k

∣∣v∣∣ψ0
m

〉 ˆ t

0

dt′
ˆ t′

0

dt′′

exp

(
iE0

nt
′

~

)
cos(ωt′) exp

(−iE0
kt
′

~

)
exp

(
iE0

kt
′′

~

)
cos(ωt′′) exp

(
iE0

mt
′′

~

)
=

(
1

i~

)2∑
k

〈
ψ0
n

∣∣v∣∣ψ0
k

〉 〈
ψ0
k

∣∣v∣∣ψ0
m

〉 ˆ t

0

dt′
ˆ t′

0

dt′′

eiωnkt
′
[

1

2
eiωt

′
+

1

2
e−iωt

′
]
eiωkmt

′′
[

1

2
eiωt

′′
+

1

2
e−iωt

′′
]

=
1

4

(
1

i~

)2∑
k

〈
ψ0
n

∣∣v∣∣ψ0
k

〉 〈
ψ0
k

∣∣v∣∣ψ0
m

〉
ˆ t

0

ei(ωnm+2ω)t′ − ei(ωnk+ω)t′

ωkm + ω
+
eiωnmt′ − ei(ωnk−ω)t′

ωkm + ω

+
eiωnmt′ − ei(ωnk+ω)t′

ωkm − ω
+
ei(ωnm−2ω)t′ − ei(ωnk−ω)t′

ωkm − ω
dt′ .

In the above we use ωnm = (En − Em)/~ as shorthand. Given the condition that 2ω ≈ ωnm,
we see that only the seventh exponential will not be oscillating as much. Hence it will end up
being the dominating term. This gives us the final result:

〈
ψ0
n

∣∣ÛI∣∣ψ0
m

〉
≈ 1

4

(
1

i~

)2∑
k

〈
ψ0
n

∣∣v∣∣ψ0
k

〉 〈
ψ0
k

∣∣v∣∣ψ0
m

〉 ei(ωnm−2ω)t − 1

(ωkm − ω)(ωnm − 2ω)
.

Hence the probability amplitude is given by

Pm→n =
1

16

1

~4

∣∣∣∣∣∑
k

〈
ψ0
n

∣∣v∣∣ψ0
k

〉 〈
ψ0
k

∣∣v∣∣ψ0
m

〉
t2 sinc2

(
(ωnm − 2ω)t

2

)∣∣∣∣∣
2

6 Computational studies of quantum dynamics

In this section we are interested in simulating time dependent problems
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6.1 Discrete Fourier transform

We have already introduced the discrete variable transformation. Since the Fourier transform
plays an important role in quantum mechanics, it kind of follows that we would need a discrete
implementation of the Fourier transform. As we will see, the Fourier transform used to switch
between position and momentum representations can help us solve some problems faster 1.

Given a function f and a periodic boundary condition f(n) = f(n−N), we have the discrete
Fourier transform

g(m) =
N−1∑
n=0

exp

(
−2iπnm

N

)
f(n)

and the inverse transform

f(n) =
1

N

N−1∑
m=0

exp

(
2iπmn

N

)
g(m).

Consider a discrete variable representation of a function ψ on a lattice starting at some position
x0 with a separation between points of ∆x. Define xn = n∆x, and ψ(n) = ψ(xn − x0). The
Fourier transform is given by

φ(m) =
N−1∑
n=0

exp

(
−2iπn∆x

N∆x
m

)
ψ(xn − x0).

Denote x̄n = xn − x0 and the total length L = N∆x. Rewriting,

Φ(pj) = φ(m) =
N−1∑
n=0

exp

(
−ipjx̄n

~

)
ψ(x̄n).

where pj = ~kj = 2πm~/L. Thus the Fourier transform is clearly a transformation from position
space to momentum space.

Note that the possible range of momentum we have here is always positive ranging from 0 to
(N − 1)2π~/L. Also, due to periodicity, we have Φ(pj) = Ψ(pj − 2π~/∆x). We have argued
before that due to a resolution limit, we are usually not interested in high momentum states.
However here we see that Ψ(0) is large. This is not very physical. Very simply, we just decrease
the right half of the momentum lattice by N units. So, the lattice should instead range from:

0,
2π~
L
, 2

2π~
L
, . . .

(
N

2
− 1

)
2π~
L
,

(
N

2
−N

)
2π~
L
,

(
N

2
+ 1−N

)
2π~
L
, . . . ,−2π~

L
.

So, instead of considering high momentum values, we shift it into the negative regime. Again,
this is purely a matter of interpretation which occurs due to the implicitly assumed periodic
condition imposed by the Fourier transform, which is fine for a position representation but is
not physical (without modification) in the momentum representation.

1Recall the calculation of the matrix elements of the T̂ matrix in discrete variable transformation. It is
troublesome because it is not diagonal in the position representation, but is diagonal in the momentum (energy)
representation.
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6.2 Split operator method

As mentioned at the start of the section we want to switch between position and momentum
representations to avoid finding eigenvalues and eigenvectors.

Imagine if we have operator A which is diagonal in momentum representation and B which is
diagonal in position representation. Then A + B is not easily evaluated in either position or
momentum representation. Indeed it can be hard to obtain exp(A+B) if it is not diagonal.

We can make use of something called the Baker-Camper-Hausdorff (BCH) formula, which says
that

exp(iδA) exp(iδB) = exp(iδZ)

where Z is given by

Z = A+B +
iδ

2
[A,B]− δ2

12
([A, [A,B]] + [B, [B,A]]) + . . . .

For small δ, taking a BCH approximation up to second order, we have

exp(iδ(A+B)) = exp

(
iδ

2
A

)
exp(iδB) exp

(
iδ

2
A

)
+O(δ3).

What follows is a proof of this statement. First consider

exp(iδB) exp

(
iδ

2
A

)
≈ exp(iδZ1)

where the BCH formula gives Z1 = B + A/2 + iδ/2[B,A/2]. Next, consider

exp(iδ/2A) exp(iδZ1) ≈ exp(iδZ2).

The BCH formula gives

Z2 =
A

2
+ Z1 +

iδ

2

[
A

2
, Z1

]
≈ A

2
+
A

2
+B +

iδ

2

[
B,

A

2

]
+
iδ

2

[
A

2
, B +

A

2

]
= A+B

Thus substituting the first equation into the second gives us our claim.

Therefore, we can now write

exp

(−iδt
~

(T + V )

)
≈ exp

(−iδt
2~

T

)
exp

(−iδt
~

V

)
exp

(−iδt
2~

T

)
or

exp

(−iδt
~

(T + V )

)
≈ exp

(−iδt
2~

V

)
exp

(−iδt
~

T

)
exp

(−iδt
2~

V

)
which allow us to handle only diagonal matrices in either momentum or position representation,
which we can easily switch between using Fourier transforms. Not only is it easier to compute,
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the matrices are also sparser, saving both time and memory. As usual accuracy can be improved
by increasing resolution of δt.

The final time evolution operator is thus given by

U(ttotal, 0) ≈
N∏
j=1

exp

(−iδtH(tj)

~

)

≈
N∏
j=1

exp

(−iδt
2~

V (tj)

)
exp

(−iδt
~

T (tj)

)
exp

(−iδt
2~

V (tj)

)
If the Hamiltonian is not time dependent then this simplifies to just taking a power of N . Thus
the strategy for evaluation would be

1. Start with ψ in position representation

2. Multiply with exp(V . . .)

3. FFT ψ into momentum representation

4. Multiply with exp(T . . .)

5. IFFT ψ back into position representation

6. Multiply with exp(V . . .)

7. Move to next time step

7 Adiabatic approximation

7.1 Introduction

We consider a process as adiabatic if the change in the Hamiltonian is slow. The “slowness”
is determined by comparing the time scales between the change versus the time scale of the
system itself. This is known as a separation of time scales. For example, a vibrating molecule
induces a time dependent Hamiltonian on the electrons in the molecule. However, this vibration
is much slower than the speed at which the electrons are moving at, even though the vibration
may be extremely fast relative to a human scale.

We will write our Hamiltonian in terms of a set of time dependent parameters λ(t) =
{λ1(t), . . . , λn(t)}, for example these could be mass, position, colour of an incident laser beam,
etc.

i~
∂ |Ψ(t)〉
∂t

= Ĥ[λ(t)] |Ψ(t)〉 .

The instantaneous eigenvalues and eigenfunctions are assumed to be as usual:

Ĥ(λ) |ψn(λ)〉 = En(λ) |ψn(λ)〉 .

Note that the |ψ〉 states here have no relation with the |Ψ〉 state. The |Ψ〉 state is a solution to
the initial value problem, while the eigenstate |ψ〉 is only the solution to a time-independent
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solution given by an fixed point of time. We can connect the two with a time dependent unitary
operator UR(t)

|Ψ(t)〉 = UR(t) |ψ(t)〉 .
Plugging this back into the Schrödinger equation,

i~
∂UR(t) |ψ(t)〉

∂t
= H[λ(t)]UR(t) |ψ(t)〉

i~
∂UR(t)

∂t
|ψ(t)〉+ i~UR(t)

∂ |ψ(t)〉
∂t

= H[λ(t)]UR(t) |ψ(t)〉

i~U−1
R

∂UR
∂t
|ψ(t)〉+ i~

∂ |ψ(t)〉
∂t

= U−1
R H[λ(t)]UR |ψ(t)〉

i~
∂ |ψ(t)〉
∂t

=

(
U−1
R H[λ(t)]UR − i~U−1

R

∂UR
∂t

)
|ψ(t)〉 .

Notice that the last term in the brackets form a effective Hamiltonian Heff in this representation.
Notice that if we choose UR = U , the true unitary evolution of the system, we recover the
Heisenberg representation. Indeed if we worked it out we would obtain Heff = 0, meaning the
states are not evolving. If we choose UR = U0, we recover the interaction representation.

For our purposes, we will define UR as

UR =
∑
n

|ψn(λ(t))〉〈ψn(λ(0))| .

To see what it does, consider the action of this operator on an initial state |ψm(λ(0))〉:
|Ψ(t)〉 = UR |ψm(λ(0))〉 = |ψm(λ(t))〉 .

It maps an initial eigenstate to the same eigenstate, but with the new parameters. For example,
if we move the potential of a harmonic oscillator slowly, the ground state should follow. If
the movement was fast however, this would not be true, the new state would be a very messy
superposition of the new eigenstates. It is a good exercise to simulate this with the computational
methods we have discussed so far.

Plugging in our UR into Heff,

Heff = U−1
R H[λ(t)]UR − i~U−1

R

∂UR
∂t

=
∑
n

|ψn(λ(0))〉〈ψn(λ(t))|H(λ(t))
∑
n

|ψn(λ(t))〉〈ψn(λ(0))|

− i~
∑
n

|ψn(λ(0))〉〈ψn(λ(t))|
∑
m

∂ |ψm(λ(t))〉
∂t

〈ψm(λ(0))|

=
∑
n

|ψn(λ(0))〉En(λ(t)) 〈ψn(λ(0))|

− i~
∑
n,m

|ψn(λ(0))〉 〈ψm(λ(0))| 〈ψn(λ(t))| ∂ |ψm(λ(t)〉)
∂t

.

Substituting this into the Schrödinger equation,

i~
∂ |ψ(t)〉
∂t

=
[∑

n

|ψn(λ(0))〉En(λ(t)) 〈ψn(λ(0))|

− i~
∑
n,m

|ψn(λ(0))〉 〈ψm(λ(0))| 〈ψn(λ(t))| ∂ |ψm(λ(t)〉)
∂t

]
|ψ(t)〉
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Again, keep in mind the difference between |ψ(t)〉, |Ψ(t)〉, and |ψ(λ(t))〉. Project this onto
〈ψk(λ(0))|, and denote Dk = 〈ψk(λ(0))|ψ(t)〉:

i~
∂Dk

∂t
= Ek(λ(t))Dk − i~

∑
m

Dk 〈ψk(λ(t))| ∂ |ψm(λ(t))〉
∂t

We now need to solve this. If we only consider the first part:

i~
∂Dk

∂t
= Ek(λ(t))Dk

The solution is standard:

Dk = exp

[−i
~

ˆ
Ek(λ(t)) dt

]
.

This motivates an ansatz

Dk = Ck(t) exp

[−i
~

ˆ
Ek(λ(t)) dt

]
.

Plugging the ansatz back in, and define θk = −1
~

´
Ek(θ(t)) dt as the dynamical phase. We have

i~
∂Ck(t)

∂t
eiθk = −i~

∑
m

〈ψk(λ(t))| ∂ |ψm(λ(t))〉
∂t

Ck(t)e
iθm

∂Ck(t)

∂t
= −

∑
m

〈ψk(λ(t))| ∂ |ψm(λ(t))〉
∂t

Ck(t)e
i(θm−θk)

We split the summation into two cases:

−∂Ck(t)
∂t

= 〈ψk(λ(t))| ∂ |ψk(λ(t))〉
∂t

Ck(t) +
∑
m6=n
〈ψk(λ(t))| ∂ |ψm(λ(t))〉

∂t
Ck(t)e

i(θm−θk)

It turns out that for adiabatic processes, because we are integrating over a long period of time,
and the second term contains an oscillating term, we can safely approximate it away. This will
be valid as long as along the process Em and Ek do not get close to each other:

θm − θk =
−1

~

ˆ
Em(λ(t))− Ek(λ(t)) dt .

The solution of

−∂Ck(t)
∂t

≈ 〈ψk(λ(t))| ∂ |ψk(λ(t))〉
∂t

Ck(t)

is given by

Ck(t) = Ck(0)eiγk(t)

where we defined the geometric phase as

γm(t) = i

ˆ t

0

〈ψm(λ(t′))| ∂ |ψm(λ(t))〉
∂t′

dt′

Therefore, finally, we have

|Ψ(t)〉 = UR |ψ(t)〉
= UR

∑
n

Cn(0)eiγn(t)eiθn(t) |ψn(λ(0))〉

=
∑
n

Cn(0)eiγn(t)eiθn(t) |ψn(λ(t))〉 .

Thus, if the initial state starts off as the k-th eigenstate, it will also end up as the k-th eigenstate
with some phase factors.
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7.2 Aside

The term “adiabatic” used in this context seems to be different from the same term defined
in statistical mechanics. However, as we see, since the k-th state goes to the k-th state, the
occupational probability for each state remains the same. Therefore, the informational entropy
remains a constant, which is analogous to the thermodynamic entropy remaining constant in
statistical mechanics.

The dynamical phase θm comes from the eigenenergies and it is expected that they will contribute
to an overall phase (recall the phase for a stationary system). What is the meaning behind the
geometric phase γm?

γm(t) = i

ˆ t

0

〈ψm(λ(t′))| ∂ |ψm(λ(t))〉
∂t′

dt′

= i

ˆ t

0

〈
ψm(λ(t′))

∣∣∣∣∣∑
i

∂ψm(λi(t))

∂t′

〉
dλi
dt′

dt′

= i

ˆ λ(t)

λ(0)

〈
ψm(λ(t′))

∣∣∣∣∣∑
i

∂ψm(λi(t))

∂t′

〉
dλ

and this is why it is called a geometric phase. It is a line integral along the path taken by the
adiabatic process in the λ-parameter phase.

If the eigenfunction along a path in the parameter space is always real in a certain representation,
then the geometric phase must be zero. This is simply because the geometric phase itself is
always real. This in turn is because of the normalisation condition which means

∂ 〈ψm|ψn〉
∂t

= 0

which then results in

〈ψm(λ)| ∂ |ψm(λ)〉
∂t

= −∂ 〈ψm(λ)|
∂t

|ψm(λ)〉

so γ∗m = γm.

7.3 Example: transport without transit

We start off with an example from [1]. Consider a system with three potential wells. The
tunnelling rate from well i to j is given by Ωij . We simplify our calculations greatly if we model
this as a three level system. We have a model Hamiltonian given by

Heff = ~

 0 Ω12 0
Ω∗12 0 Ω23

0 Ω∗23 0

 .

The tunnelling rates can be adjusted by adjusting the laser intensity that forms the wells. Thus,
we are going to investigate the dynamics of the system when we change the tunnelling rates
very slowly.
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For a fixed Ω12 and Ω23, we can solve for the eigenvalues:∣∣∣∣∣∣
−E Ω12 0
Ω∗12 −E Ω23

0 Ω∗23 −E

∣∣∣∣∣∣ = 0

−E(E2 − |Ω23|2)− |Ω12|2E = 0.

The solutions are given by E0 = 0 and E± = ±~ΩM where ΩM =
√
|Ω12|2 + |Ω23|2. The

eigenvector for E0 = 0 is given by (up to normalization)

|ψ0〉 =

 Ω23

0
−Ω∗12

 .

In the case where |Ω23| � |Ω12|, we can approximate this with (1, 0, 0). Similarly when
|Ω23| � |Ω12|, we can approximate it with (0, 0, 1). Thus, our idea here is to modify Ω12 and
Ω23 slowly to evolve the system between these two eigenstates. This would result in the trapped
particle moving from well 1 to well 3.

What is surprising here is that the system will never be found in well 2. Also, as long as we
maintain |Ω23| � |Ω12|, the system will remain in well 1 despite being able to tunnel into well 2.

7.4 Example: laser atom interaction

Now consider a three level system. We have a pump laser field that excites atoms from the
ground state (state 1) into an excited state (state 2), and a Stokes field that entices the atoms
down from the excited state into a middle state (state 3)between the ground and excited state.
In this case, the coupling strength (Rabi frequency) is given by

~Ωp = 〈ψ1| − d · Ep |ψ2〉
~Ωs = 〈ψ2| − d · Es |ψ3〉 .

Qualitatively, the following three configurations have the same energy:

1. atom on state 1, with one free pump field photon,

2. atom on state 2, with one less pump field photon,

3. atom on state 3, with one more photon in the Stokes field.

However, configurations 1 and 2 are coupled, and configurations 2 and 3 are coupled. So the
whole situation is analogous to the three-well problem above. For convenience, set E2 = 0. The
effective Hamiltonian is thus

Heff =
~
2

 0 Ωp 0
Ω∗p 0 Ωs

0 Ω∗s 0

 .

We will do something counter-intuitive. We will turn on the Stoke field first then transition
into the pumping field. This is a transition from a state of |Ωs| � |Ωp| into |Ωs| � |Ωp|. By
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a similar reasoning as the previous section, atoms transition from state 1 to 3 without going
through state 2. This is useful in certain cases, such as when the excited state is too energetic
and so decays too quickly.

If we kept |Ωs| � |Ωp| throughout the evolution, the atom will remain at the ground state. This
is kind of surprising, because this means that the atoms are not going to absorb the pumping
field, even if it is at a resonant frequency. This means that we are able to turn a opaque medium
transparent. This is called Electromagnetically Induced Transparency.

7.5 Example: Landau-Zener process

Consider the Hamiltonian

HLZ =

(
−γ ∆
∆ γ

)
.

We want to find out what happens when we change the bias parameter γ from +∞ to−∞. Firstly,
the eigenvalues are given by E± = ±

√
∆2 + γ2. The eigenvectors are (up to normalization):(

∆
E± + γ

)
.

Let us only worry about the case for E+. When γ = +∞, the resulting state will be (0, 1) and
when γ = −∞, the resulting state will be (1, 0). The eigenvector for E− will be orthogonal to
the eigenvector for E+. Thus at γ = +∞ the system is at (1, 0), and at γ = −∞ the system is
at (0, 1). So this is a way to implement a NOT gate. One big advantage of this operation (and
similarly for all adiabatic processes) is that the system is not sensitive to the duration of the
operation.

8 Berry phase

Suppose we have parameters λ1, λ2, . . . and our Hamiltonian is parametrised by them. If we
let the system adiabatically evolve through a closed loop in the parameter space, what is the
resultant geometric phase of the system after it has finished the loop? The obtained phase for
this process is called the Berry phase.

In a closed loop in the λ space the geometric phase can be written as

γm = i

˛
〈ψm(λ)|∇ |ψm(λ)〉 · dλ .

Using Stoke’s theorem,

γm = i

ˆ
S

∇× 〈ψm(λ)|∇ |ψm(λ)〉 · dλ .

We have previously shown that the geometric phase is zero if the eigenfunction can be chosen to
always be real. Then in this case the Berry phase will also be zero. Moreover, the Berry phase
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is independent of how we choose the overall phases of the eigenstates that are continuous over
the parameters. This is known as the gauge invariance of the Berry phase. To see this, consider
the eigenstate eifn(λ) |ψn(λ)〉. The new Berry phase is

γm = i

˛
〈ψm(λ)| e−ifm(λ)∇

∣∣[eifm(λ)ψm(λ)
]〉
· dλ

= i

˛
〈ψm(λ)| e−ifm(λ)

[
i(∇fm(λ))eifm(λ) |ψm(λ)〉+ eifm(λ)∇ |ψm(λ)〉

]
· dλ

= i

˛
∇fm(λ) · dλ+ i

˛
〈ψm(λ)|∇ |ψm(λ)〉 · dλ

The first integral is zero since we are integrating over a closed loop. Thus the phase change
does not affect the Berry phase.

In differential geometry, The “parallel” in parallel transport means that the inner product is
maintained locally to be unity. The loose analogue of this in quantum mechanics is to change
states while maintaining the inner product at unity:

〈ψn(λ)|ψn(λ+ dλ)〉 = 1〈
ψn(λ)

∣∣∣∣ψn(λ) +
d|ψn(λ)

dλ

〉
= 1

1 + 〈ψn(λ)| d |ψn(λ)〉
dλ

= 1

〈ψn(λ)| d |ψn(λ)〉
dλ

= 0.

Substituting in a state with a relative phase,

〈ψn(λ)| e−ifn(λ) d

dλ

[
eifn(λ) |ψn(λ)〉

]
= 0

〈ψn(λ)| e−ifn(λ)

[
i
df

dλ
eifn(λ) |ψn(λ)〉+ eifn(λ) d |ψn(λ)〉

dλ

]
= 0

df

dλ
= i 〈ψn(λ)| d |ψn(λ)〉

dλ

is exactly the expression for the Berry phase. Local parallel transport does not preserve local
phase.

8.1 Example: particle in magnetic field

Consider a spin 1
2

particle in a slowly rotating magnetic field with components

Bx = B sin θ cosφ By = B sin θ sinφ Bz = B cos θ

The Hamiltonian is given by

H = −γB · S

= −γ~
2

(Bxσx +Byσy +Bzσz)

= −γ~
2
B

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)
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The ground state is given by the spin up state

χ+(θ, φ) =

(
cos θ

2

eiφ sin θ
2

)
.

Consider the simple loop with constant θ and φ goes from 0 to 2π. The Berry phase is given by

i

ˆ 2π

0

〈χ+|
d |χ+〉

dφ
dφ = i

ˆ 2π

0

(
cos θ

2
e−iφ sin θ

2

)( 0
ieiφ sin θ

2

)
dφ

= i2
ˆ 2π

0

sin2 θ

2
dφ

= π(cos θ − 1).

For an arbitrary loop, we can use the curl form:

i

¨
S

∇×

〈χ+| d
dθ
|χ+〉

〈χ+| d
dφ
|χ+〉

0

 · dθ dφ = −
¨
S

d

dθ
sin2 θ

2
dθ dφ

= −1

2

¨
S

sin θ dθ dφ .

The integral is just the expression for a solid angle on the Bloch sphere traced out by the loop.
Hence, we see how the geometric phase actually relates to some kind of interpreted geometry
in the parameter phase. The integral is also a flux integral, and the curl looks like some kind
of fictitious magnetic field. Thus this is an analogue of a magnetic field that has magnetic
monopoles, since it has flux.

9 Transitionless quantum driving

We have previously derived that adiabatic processes bring the k-th eigenstate of the initial
Hamiltonian to the k-eigenstate of the new Hamiltonian. Can we do this precisely and rapidly?
In other words, given an initial state |Ψ(0)〉 = |ψk(λ(0))〉 which evolves later to |Ψ(t)〉 =
eiθk(t)eiγk(t) |ψk(λ(t))〉, how do we make this into an exact solution of a system with some
Hamiltonian H(t).

Let us recall evaluate a few terms that will be used later:

θk = −1

~

ˆ t

0

Ek(λ(t′)) dt′

θ̇k = −1

~
Ek(λ(t))

γk = i

ˆ t

0

〈ψ(λ(t′))| d |ψ(λ(t′))〉
dt′

dt′

γ̇k = i 〈ψk(λ(t))| d |ψk(λ)〉
dλ

λ̇

We know that the following unitary operator maps the initial state to the final state:

U(t, 0) =
∑
k

eiθk(t)eiγk(t) |ψk(λ(t))〉〈ψk(λ(0))| .
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What kind of Hamiltonian can realise U? From the Schroödinger equation, the Hamiltonian is
given by

H = i~
∂U

∂t
U−1

= i~

[∑
k

i(θ̇k + γ̇k)e
iθkeiγk |ψk(λ(t))〉〈ψk(λ(0))|+ eiθkeiγk

∂ |ψk(λ(t))〉
∂λ

λ̇ 〈ψk(λ(0))|
]

[∑
j

e−iθje−iγj |ψj(λ(0))〉〈ψk(λ(t))|
]

= i~

[∑
k

i(θ̇k + γ̇k) |ψk(λ(t))〉〈ψk(λ(0))|+ λ̇
∂ |ψk(λ(t))〉

∂λ
〈ψk(λ(t))|

]

= i~
[∑

k

i

(
−1

~
Ek(λ(t)) + i 〈ψk(λ(t))| ∂ |ψk(λ(t))〉

∂λ
λ̇

)
|ψk(λ(t))〉〈ψk(λ(0))|

+ λ̇
∂ |ψk(λ(t))〉

∂λ
〈ψk(λ(t))|

]
= H(λ(t)) + i~λ̇

∑
k

[
− |ψk(λ)〉〈ψk(λ)| 〈ψk(λ)| ∂ |ψk(λ)〉

∂λ
+
∂ |ψk(λ)〉

∂λ
〈ψk(λ)|

]

= H(λ(t)) + i~λ̇
∑
m 6=k

〈ψm(λ)| dH(λ)
dλ
|ψk(λ)〉

Ek(λ)− Em(λ)
|ψm(λ)〉 〈ψk(λ)| .

The last step was achieved by inserting the completeness condition into the second term in the
summation, and by using the fact that

〈ψm|
d |ψn(λ)〉

dλ
=
〈ψm(λ)| dH(λ)

dλ
|ψn(λ)〉

En(λ)− Em(λ)
.

Now, going back to our derivation, notice that in the adiabatic limit λ̇→ 0, the second term
goes to zero, which supports the initial claim made by adiabatic approximation. Also it is
evident that the cost we pay for speed is the complexity of creating a system that obey this new
Hamiltonian.

9.1 Example: application to Landau-Zener process

Recall the Hamiltonian

HLZ =

(
−γ ∆
∆ γ

)
We showed that an adiabatic Landau-Zener process can realise a NOT operation. Since the
wavefunction can always be chosen to be real, the geometric phase is zero. So for our case

U =
∑
k=1,2

eiθk(t) |ψk(γ(t))〉〈ψk(γ(0))|

where the two eigenstates are given by

|ψ1(γ)〉 =

(
sin β

2

cos β
2

)
|ψ2(γ)〉 =

(
− cos β

2

sin β
2

)
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where β = arccot(γ/∆). This parametrisation simplifies normalisation. The results we have
derived give us an alternative Hamiltonian. The following computation is obtained not from the
last result in the derivation above, but from the third line.

H = HLZ + i~
d

dt

(
sin β

2

cos β
2

)(
sin β

2
cos β

2

)
+ i~

d

dt

(
− cos β

2

sin β
2

)(
− cos β

2
sin β

2

)
= HLZ + i~

β̇

2

(
− cos β

2
sin β

2
cos2 β

2

− sin2 β
2

− sin β
2

cos β
2

)
+ i~

β̇

2

(
− sin β

2
cos β

2
sin2 β

2

− cos2 β
2

cos β
2

sin β
2

)
= HLZ + i~

β̇

2

(
0 1
−1 0

)
= HLZ −

β̇~
2
σy

This Hamiltonian is comparatively easy to create. All we need to do is to apply a field along
the y direction with a time dependence matching β̇.

10 Open quantum systems

The motivation behind this section is that all quantum systems are in the presence of some
environment. Thus it is necessary to understand what happens to a quantum system in this
situation. Previously we have always assumed that the system and environment is one and the
same, described by some Hamiltonian, etc. Now we have to be very clear what we are interested
and not interested in.

Consider entanglement. We have two systems. Once they interact, the total wavefunction in
general will no longer be a direct product of their individual wavefunctions and this is what we
call “entanglement”. In principle, the entire universe must be described by one whole entity as
a highly entangled wavefunction.

What is the difference between classical and quantum correlation? Suppose Alice and Bob have
a total of $100. Then by knowing the amount of money Alice has, we will know the money Bob
has. Now consider an entangled system

1√
2

[|↑〉A |↓〉B − |↓〉A |↑〉B]

By measuring particle A we will know the state of B since they are of opposite spin by
construction. This is exactly like classical correlation, and there is nothing to be excited of.
However, wavefunctions do not describe reality, but potentiality. Observations depend on how
measurement is performed. Consider the following rewriting of the same wavefunction:

1√
2

[ |↑〉A + |↓〉A√
2

⊗ − |↑〉B + |↓〉B√
2

+
|↑〉A − |↓〉A√

2
⊗ |↑〉B + |↓〉B√

2

]
Thus a different measurement on A will cause different properties to emerge on B. Entanglement
is thus correlations about potentiality, without having reality first. How system B’s reality
emerges depends on how we go about measuring particle A.
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10.1 Density matrices

A pure state is a system that is described by a wavefunction. So far, all that we have learned is
regarding pure states. If a system is in state |ψ〉 then we define the density matrix (or density
operator)

ρ̂ = |ψ〉〈ψ| .

We have the von Neumann equation

i~
∂ρ̂

∂t
= i~

∂ |ψ〉
∂t
〈ψ|+ |ψ〉 i~∂ 〈ψ|

∂t

= H |ψ〉〈ψ|+ |ψ〉 [H |ψ〉]†

= Hρ̂− ρ̂H
= [H, ρ̂].

We can also do the same in the interaction representation,

ρ̂I(t) = |ψI(t)〉〈ψI(t)|

and

i~
∂ρ̂I
∂t

= [VI , ρ̂I ]

recalling

i~
∂ÛI(t, t0)

∂t
= V̂I(t)ÛI(t, t0).

In a particular representation |ψ〉 =
∑

i ci |ψi〉, then we have the matrix

ρ̂ =
∑
ij

cic
∗
j |ψi〉〈ψj|

=


|c1|2 cic

∗
j|c2|2

c∗i cj
. . .

|cn|2

.
This also tells us why we call it a density matrix. The diagonal terms gives us the population in
a certain representation, and the off diagonal terms are something called “coherence” that are
cross terms during expansion and intuitively measure the interference between states.

10.1.1 Trace of density matrices

By normalisation it follows that

tr ρ̂ = 1.
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We also have

tr ρ̂2 = tr(|ψ〉 〈ψ|ψ〉 〈ψ|)
= tr |ψ〉〈ψ|
= 1

Suppose we have an observable Â with eigenstates |ψi〉 such that Â |ψi〉 = Ai |ψi〉. The
expectation value is given by

〈ψ|Â|ψ〉 =
∑
i

Ai|〈φi|ψ〉|2

=
∑
i

〈φi|ψ〉 〈ψ|Ai|φi〉

=
∑
i

〈φi| ρ̂Â |φi〉

= tr ρ̂Â

Here it may be helpful to point out that trAB = trBA.

10.1.2 Mixed state density operators

Consider the following experimental setup. We make a spin measurement on a particle, and if it
has spin up, we produce a state |ψ1〉, and if it has spin down, we produce a state |ψ2〉. Now
how do we describe the entire ensemble as a whole?

The system produced is |ψk〉, with probability Pk. Then the ensemble average〈
Â
〉

=
∑
k

Pk 〈ψk|Â|ψk〉

=
∑
k

Pk tr |ψk〉〈ψk| Â

= tr
∑
k

Pk |ψk〉〈ψk| Â

This naturally gives rise to the definition of the mixed state density operator

ρmix =
∑
k

Pk |ψk〉〈ψk| .

It is also easy to determine some properties of the trace

tr ρ̂2 = tr
∑
k

P 2
k |ψk〉〈ψk|

=
∑
k

P 2
k tr |ψk〉〈ψk|

=
∑
k

P 2
k
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Thus, if tr ρ̂2 = 1, then we have a pure state. Otherwise, it is a mixed state.

There is a difference between mixed states and superposition states. For instance, the pure state
|ψ〉 = c1 |ψ1〉+ c2 |ψ2〉 will be measured at state |ψ1〉 with probability |c1|2 and state |ψ2〉 with
probability |c2|2. However, this is an entirely quantum description. The state is prepared exactly
in the state |psi〉. This does not mean that the system is at state |ψ1〉 with probability |c1|2
and state |ψ2〉 with probability |c2|2. To further highlight the difference, consider the density
operators for the pure and mixed situations:

ρ̂ =

(
|c1|2 c1c

∗
2

c∗1c2 |c2|2
)

ρ̂mix =

(
|c1|2 0

0 |c2|2
)
.

Here is a puzzle to highlight this further. Let there be a macroscopic ball of mass M rolling
back and forth on a U-shaped curve. We may assume that this could be described as a mixed
state of different energy eigenstates

ρball =
∑
k

Pk(t) |Ek〉〈Ek| ,

because we do not expect the massive particle to exhibit any quantum interference effects. Let
us calculate the expectation value of position x:

tr

[
x̂
∑
k

Pk(t) |Ek〉〈Ek|
]

=

ˆ
〈x| x̂

∑
k

Pk(t) |Ek〉〈Ek| |x〉 dx

=

ˆ
〈Ek|x〉 〈x|x̂

∑
k

Pk(t)|Ek〉 dx

=
∑
k

〈Ek|x̂|Ek〉Pk(t)

= 0

Thus the particle never moves if it is described as a mixed state. Even at macroscopic levels,
quantum interference effects still play a role. This is actually not surprising, because stationary
states are stationary apart from some phase change. To have meaningful time dependent
behaviour, we cannot avoid interference between stationary states.

10.1.3 Reduced density matrix

We have a system A which is of interest and a system B which comprises of all other degrees of
freedom, including the environment. The likely observables will look something like ÔA ⊗ Ib

where IB is the identity operator on system B. In this case, we will see that we do not need the
density matrix of the entire system.

Let the basis of system A be |ψl〉 and the basis of system B be |φk〉. The entire system has basis
|ψl〉 |φk〉. The trace of some operator ÔAB in this system is hence

∑
l,k

〈ψl| 〈φk| ÔAB |φk〉 |ψl〉 =
∑
l

〈ψl|
(∑

k

〈φk| ÔAB |φk〉
)
|ψl〉

where the term in brackets is called a partial trace.
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As an example, the trace of the density operator is given by

tr ρ̂AB =
∑
l

〈ψl|
(∑

k

〈φk| ρ̂AB |φk〉
)
|ψl〉

=
∑
l

〈ψl| ρ̂A |ψl〉

= trA ρ̂A

where we have defined ρ̂A as the partial trace. This term is our reduced density matrix.

To see the usefulness of this definition, consider the expectation of our operator ÔA ⊗ IB.

tr
(
ρ̂ABÔAB ⊗ IB

)
=
∑
k,l

〈ψl| 〈φk| ρ̂AB |φk〉 ÔA |ψl〉

=
∑
l

〈ψl|
∑
k

〈φk| ρ̂AB |φk〉 ÔA |ψl〉

=
∑
l

〈ψl| ρ̂AÔA |ψl〉

= trA ρ̂AÔA

10.2 Quantum measurement

What happens during measurement? von Neumann proposed that measurement is implemented
by physical interaction. A apparatus could be thought of as something that tries to map a
system’s state onto say a needle’s state:

|systemi〉
∣∣apparatusready

〉
→ |systemi〉 |apparatusi〉

What if the initial system is in a superposition?∑
i

ci |si〉 |aready〉 →
∑
i

ci |si〉 |ai〉

At the end of measurement, the system and apparatus becomes entangled. Let us compute the
reduced density matrix of the apparatus. The total density matrix is

ρ̂sa =
∑
i

ci |si〉 |ai〉
∑
j

c∗j 〈aj| 〈sj|

The reduced density matrix is

ρ̂a = trs ρ̂sa

= trs

[∑
ij

cic
∗
j |ai〉〈aj| |si〉〈sj|

]
=
∑
ij

cic
∗
j |ai〉〈aj| 〈sj|si〉

=
∑
i

|ci|2 |ai〉〈ai|
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In the end the apparatus is a mixed state, which seems like it has been prepared in state i with
probability |ci|2. This agrees with Born’s rule. We can do the same for the system, and get

ρ̂s =
∑
i

|ci|2 |si〉〈si| .

This is why we say that the act of measurement destroys the state.

10.2.1 Wigner’s friend paradox

Here is a thought experiment called Wigner’s friend. Wigner’s friend measures the state of
Schrödingers’ cat.

1√
2

(|alive〉+ |dead〉) |ready〉 → 1√
2

(|alive〉 |happy〉+ |dead〉 |sad〉)

Wigner thinks that before he asks his friend, his friend does not have an answer as his friend is
entangled with the cat. However, from his friend’s point of view, no matter if Wigner asks him
or not, he has already performed the measurement, and the superposition has collapsed. Which
is the correct state? There is still no easy answer. To perhaps resolve the so called paradox, we
should keep in mind that the wavefunction is not a description of reality, but is only able to tell
us statistics of measurements. Thus if Wigner and his friend took multiple measurements and
took the ensemble average, they will agree. It is natural for them to disagree about the exact
state with just a single measurement.

10.2.2 Which way information in double slit experiment

Consider the double slit experiment but now we have a detector at one slit to peek at which slit
the particle has gone through.

1√
2

(|ψR〉+ |ψL〉) |ready〉 → 1√
2

(|ψR〉 |excited〉+ |ψL〉 |ground〉)

Our reduced density is a mixed state density

ρatom =
1

2
(|ψR〉〈ψR|+ |ψL〉〈ψL|)

The probability density distribution is given by

tratom [ρatom |x〉〈x|] =
1

2

(
|ψR(x)|2 + |ψL(x)|2

)
.

The cross terms are gone so there is no longer any interference patterns. This is even if the
detectors were just left alone without any observation. So long as the information of the travel
path is available, it is enough to kill the superposition.

Now let us consider that we just set up the double slit experiment as usual (without any
detectors), but with some environment between the slit and the detector, such as air molecules.

1√
2

(|ψR〉+ |ψL〉) |E0〉 →
1√
2

(|ψR〉 |ER〉+ |ψL〉 |EL〉)
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The system’s reduced density is given by

ρ̂s =
1

2
(|ψR〉〈ψR|+ |ψL〉〈ψL|+ 〈EL|ER〉 |ψR〉〈ψL|+ 〈ER|EL〉 |ψL〉〈ψR|).

If the inner product 〈EL|ER〉 is small, then interference will vanish. If the environment is
somehow insensitive to the path the atom takes, such that the inner product is still close to 1,
then the interference will remain. The value |〈ER|EL〉| is often called the decoherence factor.
Typically, the decoherence factor decays fast with time. That is, the information quickly leaks
out and the environment is effectively measuring or collapsing the wavefunction.

10.2.3 Weak adiabatic measurement

In this measurement model, the wavefunction of the system under measurement is not collapsed.
There is almost no entanglement between the system of interest and the measurement device,
which is the culprit for causing wavefunction collapse in the von Neumann model. We will be
using adiabatic evolution to imprint the expectation value of interest onto the quantum state of
a measurement device. The device is then measured as per normal and the expectation value is
estimated without collapsing the original system’s wavefunction.

Consider a weak measurement model

Hs + λAsPm

where Hs is the system Hamiltonian, As is some operator of the system, and Pm is the
momentum operator of the device. Traditionally measurement would collapse the system onto
some eigenstate of As, which is not what we want. We let the system couple very weakly to the
device and slowly turn up λ.

Suppose the system is has an original eigenstate Hs |ψ0
n〉 = E0

n |ψ0
n〉. With weak coupling, the

new eigenstate |ψn(λ)〉 ≈ |ψ0
n〉 is still close to the original eigenstate. The energy is given by

En(λ) = E0
n +

〈
ψ0
n

∣∣λAsPm∣∣ψ0
n

〉
The second term is proportional to the expectation value of the operator 〈ψ0

n|As|ψ0
n〉.

The Heisenberg equation of motion

dXm

dt
=
i

~
[ 〈
ψ0
n

∣∣λAsPm∣∣ψ0
n

〉
, Xm

]
= λ

〈
ψ0
n

∣∣As∣∣ψ0
n

〉 i
~

[Pm, Xm]

= λ
〈
ψ0
n

∣∣As∣∣ψ0
n

〉
This means that the expectation value of As can be deduced by measuring Xm, without collapsing
the state of the system.

10.3 Decoherence

We will explore an exactly solvable decoherence model. Before we do that, we will further
explore the idea of coherence.
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Consider a symmetric double well system and we are only interested in the ground state |ψg〉
and first excited state |ψe〉, with respective eigenenergies E0 and E1. Start with a superposition
state 1√

2
(|ψg〉+ |ψe〉). The density matrix of this system is

ρ̂s =
1

2
[|ψg〉〈ψg|+ |ψe〉〈ψe|+ |ψg〉〈ψe|+ |ψe〉〈ψg|].

The spatial profile of the system is given by the expectation value

〈x|ρ̂s|x〉 =
1

2
[|ψg(x)|2 + |ψe(x)|2 + ψg(x)ψ∗e(x) + ψe(x)ψ∗g(x)].

After some time, each of the eigenstates will acquire some phase, and the state becomes
1√
2

(
e−iE0t |ψg〉+ e−iE1t |ψe〉

)
. Then the expectation value now becomes

〈x|ρ̂s|x〉 =
1

2
[|ψg(x)|2 + |ψe(x)|2 + ei(E1−E0)tψg(x)ψ∗e(x) + ei(E0−E1)tψe(x)ψ∗g(x)].

Thus, the phase difference creates something like a beat signal in the interference terms. The
wave packet moves from the left well to the right well periodically. This is a simple description
quantum tunnelling due to the interference between |ψg〉 and |ψe〉.

Suppose we now include an environment, such that |ψg〉 evolves to |ψg〉 |Eg〉 e−iE0t, and |ψe〉
evolves to |ψe〉 |Ee〉 e−iE1t. The expectation value becomes

〈x|ρ̂s|x〉

=
1

2
[|ψg(x)|2 + |ψe(x)|2 + ei(E1−E0)tψg(x)ψ∗e(x) 〈Ee|Eg〉+ ei(E0−E1)tψe(x)ψ∗g(x) 〈Eg|Ee〉].

The particle’s average position will oscillate, but this oscillation will slowly decay. The rate of
decay depends on how fast the two branches diverge, or in other words depending on how fast
the inner product decays.

10.4 Exactly solvable decoherence model

The ensemble is made up of a particle’s spin interacting with a bath of harmonic oscillators.
The system of interest has Hamiltonian

Ĥs =
1

2
ω0σz

and the environment has Hamiltonian

Ĥe =
∑
i

(
1

2mi

p̂2
i +

1

2
miω

2
i q̂

2
i

)
.

We will introduce a specially tailored coupling between the two that allows us to solve the
system precisely. This coupling has the following Hamiltonian:

Ĥc = σ̂z ⊗
∑
i

ciq̂i.

For each oscillator, the system is linearly coupled to the position of the operator.
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The position q̂ and momentum p̂ operators can be written in terms of creation and annihilation
operators

p̂i = −i
√
miωi

2

(
âi − â†i

)
q̂i =

√
1

2miωi

(
âi + â†i

)
.

The total Hamiltonian thus reads

Ĥ =
1

2
ωσ̂z︸ ︷︷ ︸
Ĥs

+
∑
i

ωiâ
†
i âi︸ ︷︷ ︸

Ĥe

+ σ̂z ⊗
∑
i

(
giâ
†
i + g∗i âi

)
︸ ︷︷ ︸

Ĥc

Note that Hamiltonian commutes with σz. Furthermore, the environment is modelled as
harmonic oscillators, which are easier to solve for. Finally, the coupling is linear in terms of âi
and â†i . These are some of the reasons why this problem can be solved exactly.

Let us work in the interaction representation. The Hamiltonian can be divided into the time
dependent component comprising of the coupling Ĥc and the time independent component
which is made up of the other two terms which we will call Ĥ0. We have the following relations:

dσ̂z
dt

= i[Ĥ0, σ̂z] = 0

dâ†i
dt

= i[Ĥ0, â
†
i ] = i

[∑
j

ωj â
†
j âj, â

†
i

]
= iωâ†i

dâi
dt

= i[Ĥ0, âi] = i

[∑
j

ωj â
†
j âj, âi

]
= −iωâi

where all the operators above are in the interaction representation. This tells us that

σ̂zI = σz â†i I = eiωita†i âiI = e−iωitai

Thus, in the interaction representation

ĤcI(t) = σ̂z ⊗
∑
i

[
giâ
†
ie
iωt + g∗i âie

−iωt
]

Luckily, this problem is exactly solvable.

10.4.1 Magnus expansion solution

We introduce the Magnus expansion. Ordinarily for a problem such as

Y ′(t) = A(t)Y (t)

where Y is a vector and A is a matrix. The regular approach is to use the Dyson series. There
is another approach, where the solution can be written as

Y (t) = exp Ω(t, t0)Y0
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where the operators

Ω(t) =
∞∑
k=1

Ωk(t)

Ω1(t) =

ˆ t

0

A(t1) dt1

Ω2(t) =
1

2

ˆ t

0

ˆ t1

0

[A(t1), A(t2)] dt2 dt1

Ω3(t) =
1

6

ˆ t

0

ˆ t1

0

ˆ t2

0

[A(t1), [A(t2), A(t3)]] + [A(t3), [A(t2), A(t1)] dt3 dt2 dt1

Applying this to our problem

i
∂UI
∂t

= HIUI ,

make the ansatz

UI = exp
(
−iHeff

I t
)

with

Heff
I =

∑
k

Bk

B1 =
1

t

ˆ t

0

HI(t1) dt1

B2 = − 1

2t

ˆ t

0

ˆ t1

0

[HI(t1), HI(t2)] dt2 dt1

and so on. As we will find out, [HI(t1), HI(t2)] turns out to be a number. This means that all
the commutators in the higher orders will go to 0, which means that the solution is exactly the
series taken up to the second order. Evaluate the commutator:

[HI(t1), HI(t2)] =

[∑
i

giâ
†
ie
iωit1 + g∗i âie

−iωit1 ,
∑
j

gj â
†
je
iωjt2 + g∗j âje

−iωjt2

]
=
∑
i

gig
∗
i [â
†
i , âi]e

iωi(t1−t2) + gig
∗
i [âi, â

†
i ]e
−iωi(t1−t2)

=
∑
i

|gi|2
(
e−iωi(t1−t2) − eiωi(t1−t2)

)
which is just a number. Furthermore, we see that B2 will just produce some overall phase and
so is not of our interest. We will hence focus on B1, which is a time average of the Hamiltonian
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in the interaction representation. The final solution, up to some phase, is

UI = exp

(
−i
ˆ t

0

HI(t
′) dt′

)
= exp

(
−iσz ⊗

∑
i

ˆ t

0

gia
†
ie
iωit
′
+ g∗i aie

−iωit
′
dt′
)

= exp

[
σz
∑
i

(
gia
†
i (e

iωit − 1)

ωi
+
g∗i ai(e

−iωit − 1)

−ωi

)]

= exp

[
σz
2

∑
i

(
a†iλi(t)− aiλ∗i (t)

)]
where

λi(t) =
2gi
ωi

(1− eiωit)

Let us test the solution with the state |s〉 = [a |↑〉+ b |↓〉]⊗ |E0〉.
Ui(t) |s〉

= a exp

[
1

2

∑
i

(
a†iλi(t)− aiλ∗i (t)

)]
|↑〉 |E0〉+ b exp

[
−1

2

∑
i

(
a†iλi(t)− aiλ∗i (t)

)]
|↓〉 |E0〉

= a |↑〉
∏
i

exp

[
1

2

(
a†iλi(t)− aiλ∗i (t)

)]
|E0〉+ b |↓〉

∏
i

exp

[
−1

2

(
a†iλi(t)− aiλ∗i (t)

)]
|E0〉

= a |↑〉 |ε+(t)〉+ b |↓〉 |ε−(t)〉

Let

|λ〉 = exp
[
λâ† − λ∗â

]
|E0〉 .

This is known as a coherent state in quantum optics, because it can be shown that it is an
eigenstate of â. Then we can write

|ε±〉 =
∏
i

∣∣∣∣±λi2
〉
.

It is not too important for us right now, but it can be expanded as

|λ〉 = exp

(
−|λ|

2

2

) ∞∑
n=0

λn√
n!
|n〉

which gives us a relation between two coherent states:

〈λ|µ〉 = exp

(
−1

2
|λ|2 − 1

2
|µ|2 + λ∗µ

)
and so the decoherence factor is given by

〈ε−|ε+〉 =
∏
i

exp

(
−1

2
|λi|2

)

= exp

(
−
∑
i

4|gi|2
ω2
i

(1− cosωit)

)

≈ exp

(
−
∑
i

2|gi|2t2
)
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The last step uses the approximation cosωit ≈ 1 − ω2
i t

2/2. The decoherence factor exhibits
Gaussian decay.

We are still in the interaction representation. To change back into the Schrödinger representation,
we multiply the state with U0. However, when computing the density matrix, U0 and U †0 will
cancel. ρ̂ = U0ρ̂IU

†
0 is simply a rotation. The key factor that determines the rate of decay is

still the decoherence factor.

10.4.2 BCH formula solution

Again, we want to solve for the propagator

i
∂UI
∂t

= ĤcIUI

with

ĤeI(t) = σ̂z ⊗
∑
i

[
giâ
†
ie
iωt + g∗i âie

−iωt
]
.

Recall the BCH formula

exp(iδA) exp(iδB) = exp(iδZ)

where

Z = A+B +
iδ

2
[A,B]− δ2

12
([A, [A,B]] + [B, [B,A]]) + . . . .

Notice that if the commutator [A,B] is a number, the later commutators will vanish.

We can split the evolution into many small time intervals. For example, let us just begin with
the following:

UI(t, 0) = e−iHI(t3)∆te−iHI(t2)∆te−iHI(t1)∆t.

We have previously shown that [HI(t), HI(t
′)] is just a number. Using the BCH formula we can

combine the last two exponentials:

UI(t, 0) = exp(−iHI(t3)∆t) exp(−i[HI(t2) +HI(t1)]∆t) exp

(
−1

2
[HI(t2), HI(t1)]∆t2

)
.

Applying it again:

UI(t, 0) = exp(−i[HI(t3) +HI(t2) +HI(t1)]∆t) exp

(
−1

2
[HI(t3), HI(t2) +HI(t1)]∆t2

)
· · ·

Generalising this for an arbitrary number of terms, we will have

UI(t, 0) = exp

(
−i

n∑
j=1

HI(tj)∆t

)
exp

(
−1

2

n∑
m=2

[
HI(tm),

m−1∑
j=1

HI(tj)

]
∆t2

)
When we make ∆t→ 0, the sums turn into integrals, and we have

UI(t, 0) = exp

(
−i
ˆ t

0

HI(t
′) dt′

)
exp

(
−1

2

ˆ t

0

[
HI(t

′),

ˆ t′

0

HI(t
′′) dt′′

]
dt′
)

This looks like our solution given by the Magnus expansion.
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10.5 Dynamical decoupling for suppression of decoherence

We have learned about decoherence and how it makes life hard when designing quantum systems.
It is usually more difficult to affect the environment. Therefore, in this section we will learn
how to affect the system instead to suppress the coupling between the system and environment.

Let us return to the pure dephasing model in the previous question.

Ĥ =
1

2
ωσ̂z +

∑
i

ωiâ
†
i âi + σ̂z ⊗

∑
i

(
giâ
†
i + g∗i âi

)
+ Ĥc(t)

Our goals is to find a control Hamiltonian Ĥc that may suppress the system-environment
coupling. A basic idea we can come up with here is to make the spin flip rapidly about the z-axis.
This makes σz averaged out to 0 from the environment’s point of view, effectively decoupling
the system and environment.

Let ~ = 1. Since we have

i
dUc(t)

dt
= Ĥc(t)Uc(t),

finding Uc is equivalent to finding Ĥc. Let us work in a representation rotated by Uc, or
equivalently, by choosing Uc as the U0 in the interaction representation. We denote operators in
this representation with a tilde. Then, the effective Hamiltonian in this representation,

H̃ = U †c [Hs +He +Hint +Hc]Uc − iU †c
dUc
dt

= U †c [Hs +He +Hint +Hc]Uc − U †cHcUc

= H̃s + Ĥe + H̃int

The last step is because the environment operators commute with all system operators. Uc is
only applied to the system and so H̃e = Ĥe.

Let us assume a periodic Uc with a period tc, i.e. Uc(t+ tc) = Uc(t). If tc is small, then it sets a
very small characteristic system. This period will affect H̃ as well, since its time dependence
comes from Uc. Thus the unitary evolution operator induced by H̃ will also be periodic. Hence
we only need to worry calculate the dynamics up to tc:

U(Ntc, 0) = Uc(Nt0, 0)Ũ(Ntc, 0) = 1 · Ũ(t0, 0)N

So now we need to solve

i
dŨ

dt
= H̃Ũ .

Applying Magnus expansion to the total propagator,

Ũ(tc, 0) ≈ exp
[
−itc(H̃0 + H̃1 + . . . )

]
H̃0 =

1

tc

ˆ tc

0

H̃(t1) dt1

H̃1 =
−i
2tc

ˆ tc

0

ˆ t1

0

[
H̃(t1), H̃(t2)

]
dt2 dt1
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Since the integrals are always from 0 to tc, we can see that H̃0 is of zeroth order of tc, and H̃1

is of first order of tc. So if tc is small enough, we can truncate the expansion up to the zeroth
order. Furthermore, if ˆ tc

0

H̃int(t) dt = 0,

we have

Ũ(tc, 0) ≈ exp

[
−i
ˆ tc

0

H̃s(t) + Ĥe(t) + H̃int(t) dt

]
= exp

[
−i
ˆ tc

0

H̃s(t) + Ĥe(t) dt

]
= exp

[
−i
ˆ tc

0

U †c Ĥs(t)Uc dt

]
⊗ exp

[
−iĤetc

]
.

This means that the final state will not be an entangled state.

So now our efforts are focused on finding a correct Uc that makes the integral vanish. Let us
go back to the original pure dephasing model. Ĥint is essentially σz for our purposes since we

cannot touch the environment part of the Hamiltonian. Propose Uc = exp
(
−i2πt

tc
σx

)
.

ˆ tc

0

exp

(
i
2πt

tc
σx

)
σz exp

(
−i2πt

tc
σx

)
dt =

ˆ tc

0

σz exp

(
−i4πt

tc
σx

)
dt

= σz

ˆ tc

0

cos
4πt

tc
− iσx sin

4πt

tc
dt

= 0

Where we made use of the following relations.

σxσz = −σzσx exp(i(n̂ · σ)α) = cosα + i(n̂ · σ) sinα

Finally,

Hc = i
dUc
dt

U−1
c

=
2π

tc
σx

This answer is very natural! The easiest way to rotate the spin is to apply a field along the
x-axis such that the spin precesses.

Could we create a more general Uc such that this scheme would work in a general situation? In
other words, what if the coupling depends on all σx, σy, and σz? One thing we could try is to
rotate the spin about two axes

Uc = exp

(
i
2πt

tc
nyσy

)
exp

(
i
2πt

tc
nxσx

)
Check with σy as coupling:

ˆ tc

0

exp

(
−i2πt

tc
nyσy

)
exp

(
−i2πt

tc
nxσx

)
σy exp

(
i
2πt

tc
nyσy

)
exp

(
i
2πt

tc
nxσx

)
dt

=

ˆ tc

0

σy exp

(
i
4πt

tc
nxσx

)
dt

= 0
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Check with σx as coupling:

ˆ tc

0

exp

(
−i2πt

tc
nyσy

)
exp

(
−i2πt

tc
nxσx

)
σx exp

(
i
2πt

tc
nyσy

)
exp

(
i
2πt

tc
nxσx

)
dt

=

ˆ tc

0

exp

(
−i2πt

tc
nyσy

)
σx exp

(
i
4πt

tc
nyσy

)
exp

(
i
2πt

tc
nxσx

)
dt

=

ˆ tc

0

σx exp

(
−i2πt

tc
nyσy

)[
cos

4πt

tc
ny + iσy sin

4πt

tc
ny

]
exp

(
i
2πt

tc
nxσx

)
dt

= σx

ˆ tc

0

σy exp

(
i
2πt

tc
nyσy

)[
i sin

4πt

tc
ny

]
exp

(
i
2πt

tc
nxσx

)
dt

= iσxσy

ˆ tc

0

sin
4πt

tc
ny exp

(
i
4πt

tc
nxσx

)
dt

= iσxσy

ˆ tc

0

sin
4πt

tc
ny

[
cos

4πt

tc
nx + iσx sin

4πt

tc
nx

]
dt

This integral is 0 if nx 6= ny.

What is Hc?

Hc

= i
dUc
dt

U−1
c

= −
[

2π

tc
nyσy exp

(
i
2πt

tc
nyσy

)
exp

(
i
2πt

tc
nxσx

)
+ exp

(
i
2πt

tc
nyσy

)
2π

tc
nxσx exp

(
i
2πt

tc
nxσx

)]
exp

(
−i2πt

tc
nxσx

)
exp

(
−i2πt

tc
nyσy

)
= −2π

tc
nyσy −

2π

tc
nxσx exp

(
−i4πt

tc
nyσy

)
= −2π

tc
nyσy −

2π

tc
nxσx

[
cos

4πt

tc
ny − iσy sin

4πt

tc
ny

]
Notice how we have fields along all axes, recall σxσy = −σz.

10.6 Quantum Born-Markov master equation

This section will focus on the derivation of an equation of motion for the reduced density matrix
of a system. More specifically, we are looking for a propagator for

ρ̂s(t) = tre ρse(t) = tre(Û ρ̂se(0)Û †).

We will be considering a total Hamiltonian of the form

Ĥ = Ĥs + Ĥe + Ĥc

= Ĥ0 +
∑
α

Ŝα ⊗ Êα

All terms are assumed to be time-independent.
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If there is no environment, then

dρ̂s(t)

dt
= i[Ĥ ′s, ρ̂s]

Here H ′ is to indicate possible modifications to the effective Hamiltonian due to the environment.
If there is some system-environment coupling, we expect

dρ̂s(t)

dt
= −i[H ′s, ρ̂s] +D(ρ̂s),

which is a sum of some unitary evolution and additional environment effects.

We start off from

dρ̂I(t)

dt
= −i[ĤeI(t), ρ̂I(t)]

Here this density matrix is for the entire ensemble. Integrating the above

ρ̂I(t) = ρ̂(0)− i
ˆ t

0

[ĤeI(t), ρ̂I(t
′)] dt′

Put the integral back into the original equation,

dρ̂I(t)

dt
= −i

[
ĤcI(t), ρ̂(0)− i

ˆ t

0

[ĤeI(t), ρ̂I(t
′)] dt′

]
= −i

[
ĤcI(t), ρ̂(0)

]
−
ˆ t

0

[
ĤeI(t),

[
ĤeI(t), ρ̂I(t

′)
]]

dt′

We have ρ̂sI(t) = tre ρ̂I(t). Thus

dρ̂sI(t)

dt
= −i tre

[
ĤcI(t), ρ̂(0)

]
−
ˆ t

0

tre

[
ĤeI(t),

[
ĤeI(t), ρ̂I(t

′)
]]

dt′

We will begin to make some approximations. First, we assume that at time t = 0, the system
and environment are not entangled:

ρ̂(0) = ρ̂s(0)⊗ ρ̂e(0).

Now,

tre ĤeI(t)ρ̂I(0) = tre

[∑
α

Sα(t)Eα(t)ρ̂eI

]
ρ̂sI(0)

=
∑
α

tre[Eαρ̂eI ]Sαρ̂sI(0)

=
∑
α

tre[e
iHe(t)Eαe

−iHetρ̂eI ]Sαρ̂sI(0)

=
∑
α

tre[Eαρ̂eI ]Sαρ̂sI(0)

The last step results from observing that from statistical mechanics we have ρe = e−βHe/Z 2

and so they commute, and also the cyclic property of trace tr(AB) = tr(BA). The trace turns

2Boltzmann distribution means that the state |ψk〉 with eigenvalue Ek occurs with probability e−βEk/Z. If the
environment is at thermal equilibrium, then it is at a mixed state

∑
k |ψk〉〈ψk| e−βEk/Z = e−βHe/Z

∑
k |ψk〉〈ψk| =

e−βHe/Z.
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out to be time independent. We can easily set it to 0, and this is also known as the centring
condition:

tre

[
ĤcI(t), ρ̂(0)

]
= 0.

So far up to the second order we have

dρ̂sI(t)

dt
= −
ˆ t

0

tre

[
ĤeI(t),

[
ĤeI(t

′), ρ̂I(t
′)
]]

dt′

To simplify this, we make another approximation that

ρ̂I(t) = ρ̂sI(t)⊗ ρ̂e.

That is, the environment state is not perturbed by the system. We may worry that this
approximation is too aggressive. However, it can be justified since we are already at the second
order. Most of the interaction will be captured by the first two terms in the commutator. Their
correlation is not assumed to be important any more. Thus,

dρ̂sI(t)

dt
= −
ˆ t

0

tre

[
ĤeI(t),

[
ĤeI(t

′), ρ̂sI(t
′)⊗ ρ̂e

]]
dt′

Now,

ĤcI(t) = U †0ĤcU0

= ei(Hs+He)t
∑
α

SαEαe
−i(Hs+He)t

=
∑

eiHstSαe
iHsteiHetEαe

iHet

=
∑
α

SαI ⊗ EαI

Let us simplify the commutators first.

tre

[
SαI ⊗ EαI ,

[
S ′βI ⊗ E

′
βI
, ρ̂′sI ⊗ ρ̂e

]]
= tre

[
SαIEαI , S

′
βI
E ′βI ρ̂

′
sI ρ̂e − ρ̂′sI ρ̂eS ′βIE

′
βI

]
= tre[SαIEαIS

′
βI
E ′βI ρ̂

′
sI ρ̂e − SαIEαI ρ̂′sI ρ̂eS ′βIE

′
βI

− S ′βIE
′
βI
ρ̂′sI ρ̂eSαIEαI + ρ̂′sI ρ̂eS

′
βI
E ′βISαIEαI ]

= tre[EαIE
′
βI
ρ̂e]
(
SαIS

′
βI
ρ̂′sI − S ′βI ρ̂

′
sISαI

)
+ tre[E

′
βI
EαI ρ̂e]

(
ρ̂′sIS

′
βI
SαI − SαI ρ̂′sIS ′βI

)
Here, the prime denotes using t′ as argument versus t. Define the environment self correlation
function as

Cαβ(t− t′) = tre[EαIE
′
βI
ρ̂e]

=
〈
EαIE

′
βI

〉
ρ̂e

We are close, except that on the left side of our equation we have ρ̂sI(t), and on the other side
we have ρ̂sI(t

′). Finally we apply the Markov approximation. This means that the current rate
of change does not depend on the entire history of the system. This is expressed by making the
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correlator Cαβ(t− t′) decay very fast, since this would mean that the observables at t and t′

are not correlated. We can also extend the lower limit of the integral to −∞ because of this.
This is mainly to result in a indefinite integral that looks nice. Rewrite τ = t− t′. Furthermore,
assuming the correlation function Cαβ(τ) is very short, we can replace the history ρ̂sI(t− τ) by
the current ρ̂sI(t). The final integral reads

dρ̂sI(t)

dt
= −
ˆ ∞

0

∑
α,β

Cαβ(τ)
[
SαI(t)SβI(t− τ)ρ̂sI(t)− SβI(t− τ)ρ̂sI(t)SαI(t)

]
+ Cαβ(−τ)

[
ρ̂sI(t)SβI(t− τ)SαI(t)− SαI(t)ρ̂sI(t)SβI(t− τ)

]
dτ

Transforming back to the Schrödinger representation,

dρ̂s(t)

dt
= −i[Ĥs, ρ̂s(t)] + e−iĤst

(
dρ̂sI(t)

dt

)
eiĤst.

We will need the following manipulations while solving:

e−iHstSαI(t)SβI(t− τ)ρ̂sI(t)e
iHst = e−iHstSαI(t)e

iHste−iHstSβI(t− τ)eiHste−iHstρ̂sI(t)e
iHst

= Sαe
−iHstSβe

iHstρ̂s

Finally,

dρ̂s(t)

dt
= −i[Ĥs, ρ̂s(t)]−

ˆ ∞
0

∑
α,β

Cαβ(τ)
[
Sα, SβI(−τ)ρ̂s(t)

]
+ Cαβ(−τ)

[
ρ̂s(t)SβI(−τ), Sα

]
dτ

10.6.1 Evaluating the correlation function

Let us try to solve for the correlation function in the case of the pure dephasing model, where

Ĥe = σz
∑
i

ciqi

and

E(τ) =
∑
i

ciq̂i(τ) E(0) =
∑
i

ciq̂i

Note that we are still in the interaction representation. We have previously derived that

q̂(τ) =

√
1

2mωi
[aie

−ωiτ + a†ie
iωiτ ]

So our final task is to evaluate〈∑
i

ci[aie
−ωiτ + a†ie

iωiτ ]
∑
j

cj

√
1

2mωj
[aj + a†j]

〉
ρ̂e

.

The i-th oscillator should be only correlated with the i-th oscillator. The expression above now
becomes 〈∑

i

c2
i [aiaie

−ωiτ + a†ia
†
ie
iωiτ + aia

†
ie
−iωiτ + a†iaie

iωτ ]

〉
ρ̂e

.
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Look at the i-th oscillator alone. Consider the following terms. First,

tr

[
aiai

∑
n

|n〉〈n| e
−βHi

Z

]
=
∑
n

〈n|aiai|n〉
e−βHn

Z

= 0

Similarly, we get that

tr

[
a†ia
†
i

∑
n

|n〉〈n| e
−βHn

Z

]
= 0.

The only non zero terms are thus

tr

[
aia
†
i

∑
n

|n〉〈n| e
−βHn

Z

]
=
∑
n

〈n|aia†i |n〉
e−βHn

Z

=
∑
n

〈n|a†iai + 1|n〉 e
−βHn

Z

=
∑
n

ne−β(n~ωi+
1
2

)∑
m e
−β(m~ωi+

1
2

)
+ 1

=
eβ~ωi

(eβ~ωi − 1)2

/ eβ~ωi

eβ~ωi − 1
+ 1

=
1

eβ~ωi − 1
+ 1

=
1

1− e−β~ωi

and

tr

[
a†iai

∑
n

|n〉〈n| e
−βHn

Z

]
=
∑
n

〈n|aia†i + 1− 1|n〉 e
−βHn

Z

=
1

1− e−β~ωi
− 1

=
1

eβ~ωi − 1
.

Thus in summary the correlation function is given by∑
i

c2
i

(
e−iωiτ

1− e−β~ωi
+

eiωiτ

eβ~ωi − 1
.

)
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