1 Probability

- Baye's theorem $P(B)=P(B \mid A) P(A)+P\left(B \mid A^{C}\right) P\left(A^{C}\right)$.
- Baye's first formula $P(B)=\sum P\left(B \mid A_{i}\right) P\left(A_{i}\right)$.
- Baye's second formula $P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum P\left(B \mid A_{j}\right) P\left(A_{j}\right)}$.

2 Distributions

2.1 Binomial distribution

- Total number of successes in n Bernoulli trials.
- PDF: $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$.
- MGF: $M_{x}(t)=\left(1-p-p e^{t}\right)^{n}$.
- $\mathrm{E}(X)=n p, \operatorname{Var}(X)=n p(1-p), I(\theta)=\frac{n}{p(1-p)}$.
- When n large, p small, $n p$ moderate, $\operatorname{Bin}(n, p) \approx \operatorname{Po}(n p)$.

2.2 Negative binomial distribution

- Number of independent Bernoulli trials performed until r successes.
- PDF: $P(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}$.
- MGF: $M(t)=\left(\frac{1-p}{1-p e^{t}}\right)^{r}$
- $\mathrm{E}(X)=r(1-p) / p^{2}, I(\theta)=\frac{r}{p(1-p)^{2}}$

2.3 Geometric distribution

- Infinite Bernoulli trials, total number of trials up to and including the first success.
- PDF: $P(X=k)=p(1-p)^{k-1}$.
- CDF: $1-(1-p)^{k}$.
- MGF: $M_{x}(t)=\frac{p e^{t}}{1-(1-p) e^{t}}$.
- $\mathrm{E}(X)=1 / p, \operatorname{Var}(X)=(1-p) / p^{2}$.

2.4 Poisson distribution

- PDF: $P(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}$
- MGF: $M_{x}(t)=e^{\lambda\left(e^{t}-1\right)}$.
- $\mathrm{E}(X)=\lambda, \operatorname{Var}(X)=\lambda, I(\theta)=1 / \lambda$.

2.5 Exponential distribution

- PDF: $f(x)=\lambda e^{-\lambda x}$ for $x \geq 0$
- CDF: $F(x)=\int_{-\infty}^{x} f(u) \mathrm{d} u=1-e^{-\lambda x}$ for $x \geq 0$
- $\mathrm{E}(X)=1 / \lambda, \operatorname{Var}(X)=1 / \lambda^{2}, I(\theta)=1 / \lambda^{2}$.

2.6 Gamma distribution

- PDF: $f(x)=\frac{\lambda e^{-\lambda x(\lambda x)^{\alpha-1}}}{\Gamma(\alpha)}$, where $\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} \mathrm{~d} x$.
- MGF: $(1-t / \lambda)^{-\alpha}$.
- $\mathrm{E}(X)=\alpha / \lambda, \operatorname{Var}(X)=\alpha / \lambda^{2}$.
- $\Gamma(1, \lambda)=\operatorname{Exp}(\lambda)$.

2.7 Normal distribution

- PDF: $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$.
- MGF: $M_{x}(t)=\exp \left(\mu t+\frac{\sigma^{2} t^{2}}{2}\right)$.
- $\mathrm{E}(X)=\mu, \operatorname{Var}(X)=\sigma^{2}$.

Let X_{1}, \ldots, X_{n} be sampled from a normal distribution. Define the sample mean and variance

$$
\begin{equation*}
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} . \tag{1}
\end{equation*}
$$

Then $\mathrm{E}(\bar{X})=\mu, \operatorname{Var}(\bar{X})=\sigma^{2} / n$. Furthermore X and S^{2} are independent.

$$
\begin{align*}
\frac{(n-1) S^{2}}{\sigma^{2}} & \sim \chi_{n-1}^{2} \tag{2}\\
\frac{\bar{X}-\mu}{S / \sqrt{n}} & \sim t_{n-1} \tag{3}
\end{align*}
$$

2.9 t distribution

If Z is standard normal and $U \sim \chi_{n}^{2}$, then $Z / \sqrt{U / n}$ is a t distribution with n dof.

- PDF: $f(t)=\frac{\Gamma[(n+1) / 2]}{\sqrt{n \pi \Gamma(n / 2)}}\left(1+t^{2} / n\right)^{-(n+1) / 2}$

2.10 F distribution

$U \sim \chi_{m}^{2}$ and $V \sim \chi_{n}^{2}$ then $W=\frac{U / m}{V / n}$ is a F distribution with m and n dof.

3 Random variables

Let X have PDF $f_{X} \operatorname{CDF} F_{X}$, and $Y=a X+b$, then

- $F_{Y}(y)=P(Y \leq y)=F_{X}\left(\frac{y-b}{a}\right)$,
- $f_{y}(y)=\frac{\mathrm{d}}{\mathrm{d} y} F_{Y}(y)=\frac{1}{a} f_{X}\left(\frac{y-b}{a}\right)$.
- Let U be uniform on $[0,1]$ and $X=F^{-1}(U)$. Then the CDF of X is F.

4 Extrema and order statistics

X_{1}, \ldots, X_{n} have CDF F and density f. Let U be their max and V be their min.

- $F_{U}(u)=P(U \leq u)=[F(u)]^{n}, f_{U}(u)=n f(u)[F(u)]^{n-1}$
- $F_{V}(v)=1-[1-F(v)]^{n}, f_{V}(v)=n f(v)[1-F(v)]^{n-1}$.
- $f_{k}(x)=\frac{n!}{(k-1)!(n-k)!} f(x)[F(x)]^{k-1}[1-F(x)]^{n-k}$

5 Expectation value and variance

Let $Y=g(X)$. Then $\mathrm{E}(Y)=\sum g(x) p(x)$ or $\mathrm{E}(Y)=\int_{-\infty}^{\infty} g(x) f(x) \mathrm{d} x$ (can generalise for joint variables).

- If X is nonnegative continuous, $\mathrm{E}(X)=\int_{0}^{\infty} 1-F(x) \mathrm{d} x$
- If X and Y are independent then $\mathrm{E}[g(X) h(Y)]=E[g(X)] E[h(Y)]$. - $\mathrm{E}[a+b X]=a+b \mathrm{E}[X]$.

Define $\operatorname{Var}(X)=\sum\left(x_{i}-\mu\right) 2 p\left(x_{i}\right)$ or $\operatorname{Var}(X)=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) \mathrm{d} x$. Define $\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]$.

- $\operatorname{Var}(a+b X)=b^{2} \operatorname{Var}(X)$.
- $\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}$.

6 Moment generating functions

The MGF of X is defined as $M(t)=E\left[e^{t X}\right]$.

- If the MGF exists on an open interval containing 0 , then it uniquely determines the probability distribution.
- If X and Y are independent, then $M_{X+Y}(t)=M_{X}(t) M_{Y}(t)$.

7 Delta method

Perform Taylor expansion about μ_{X} :

$$
Y=g(X) \approx g\left(\mu_{X}\right)+\left(X-\mu_{X}\right) g^{\prime}\left(\mu_{X}\right)+\frac{1}{2}\left(X-\mu_{X}\right)^{2} g^{\prime \prime}\left(\mu_{X}\right)
$$

$$
\begin{equation*}
\mathrm{E}(Y) \approx g\left(\mu_{X}\right)+\frac{1}{2} \sigma_{X}^{2} g^{\prime \prime}\left(\mu_{X}\right) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Var}(Y) \approx \sigma_{X}^{2}\left[g^{\prime}\left(\mu_{X}\right)\right]^{2} \tag{6}
\end{equation*}
$$

8 Central Limit Theorem

Theorem 8.1. Let X_{1}, \ldots be IID with mean 0 and variance σ^{2}. Let $S_{n}=\sum_{i}^{n} X_{i}$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\frac{S_{n}}{\sigma \sqrt{n}} \leq x\right)=\Phi(x) \tag{7}
\end{equation*}
$$

where Φ is the CDF of the normal distribution.

9 Parameter estimation

9.1 Method of moments

Define the k-th sample moment as $\hat{\mu}_{k}=\frac{1}{n} \sum_{i} X_{i}^{k}$. Suppose we want to estimate θ_{1} and θ_{2}. Express θ_{1} and θ_{2} in terms of the actual moments:

$$
\begin{equation*}
\theta_{1}=f_{1}\left(\mu_{1}, \mu_{2}\right) \quad \theta_{2}=f_{2}\left(\mu_{1}, \mu_{2}\right) \tag{8}
\end{equation*}
$$

then the method of moments estimates are

$$
\begin{equation*}
\hat{\theta}_{1}=f_{1}\left(\hat{\mu}_{1}, \hat{\mu}_{2}\right) \quad \hat{\theta}_{2}=f_{2}\left(\hat{\mu}_{1}, \hat{\mu}_{2}\right) \tag{9}
\end{equation*}
$$

We can use bootstrap to simulate N samples of size n from the distribution with $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$. For each sample, calculate MOM estimates θ_{1}^{*} and θ_{2}^{*}. Use N values of $*$ to approximate sampling dist.

9.2 Maximum likelihood estimate

If X_{i} are iid, then define likelihood $\operatorname{lik}(\theta)=\prod f\left(X_{i} \mid \theta\right)$. Then find maxima for $l(\theta)=\log (l i k(\theta))$. Bootstrap can also be used. Just change MOM to MLE above.
Suppose now X_{1}, \ldots, X_{m}, the counts in cells $1, \ldots, m$, follow a multinomial distribution with cell probabilities p_{1}, \ldots, p_{m} that we want to estimate. Use Lagrange multiplier

$$
\begin{equation*}
L\left(p_{1}, \ldots, p_{m}, \lambda\right)=\log n!-\sum_{i=1}^{m} \log x_{i}!+\sum_{i=1}^{m} x_{i} \log p_{i}+\lambda\left(\sum_{i=1}^{m} p_{i}-1\right) \tag{10}
\end{equation*}
$$

solve $\boldsymbol{\nabla} L=0$.
Let θ_{0} be the true value.

- Under appropriate conditions, the MLE is consistent, i.e. $\hat{\theta}$ converges to θ_{0} in probability.
- Under appropriate conditions,

$$
\begin{equation*}
I(\theta)=E\left[\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right]^{2}=-E\left[\frac{\partial^{2}}{\partial \theta^{2}} \log f(X \mid \theta)\right] \tag{11}
\end{equation*}
$$

- Under approriate conditions, $\sqrt{n I\left(\theta_{0}\right)}\left(\hat{\theta}-\theta_{0}\right)$ tends to standard normal.
Confidence intervals:
- For $\mu, \bar{X} \pm \frac{S}{\sqrt{n}} t_{n-1}(\alpha / 2)$.
- For σ^{2}. $\left(\frac{n \hat{\sigma}^{2}}{\chi_{n-1}^{2}(\alpha / 2)}, \frac{n \hat{\sigma}^{2}}{\chi_{n-1}^{2}(1-\alpha / 2)}\right)$
- Approximate CI for $\theta_{0}: \hat{\theta} \pm \frac{z(\alpha / 2)}{\sqrt{n I(\hat{\theta})}}$.
- Use bootstrap. Generate B samples from a dist. with $\hat{\theta}$ and for each sample make estimate θ^{*}. Approximate distribution $\hat{\theta}-\theta_{0}$ by $\theta^{*}-\hat{\theta}$. Use quantiles to make an approximate CI, $P\left(\hat{\theta}-\bar{\delta} \leq \theta_{0} \leq \hat{\theta}-\underline{\delta}\right)=1-\alpha$.

9.3 Bayesian approach

If we have prior distribution $f_{\Theta}(\theta)$, the distribution of Θ given the data X is the posterior distribution:

$$
\begin{equation*}
f_{\Theta \mid X}(\theta \mid x)=\frac{f_{x \mid \theta}(x \mid \theta) f_{\Theta}(\theta)}{\int f_{x \mid \theta}(x \mid \theta) f_{\Theta}(\theta) \mathrm{d} \theta} \tag{12}
\end{equation*}
$$

9.4 Efficiency

Mean square error is also $\operatorname{Var}(\hat{\theta})+\left(E(\hat{\theta})-\theta_{0}\right)^{2}$. If an estimate is unbiased, $E(\hat{\theta})=\theta_{0}$ and MSE becomes $\operatorname{Var}(\hat{\theta})$. Efficiency is defined as the ratio of variances.
Theorem 9.1 (Carmer-Rao inequality). Under appropriate conditions, if T is an unbiased estimate of θ, then $\operatorname{Var}(T) \geq 1 /(n I(\theta))$.

9.5 Sufficiency

A statistic $T\left(X_{1}, \ldots, X_{n}\right)$ is sufficient for θ is the conditional distribution of X_{1}, \ldots, X_{n} given $T=t$ does not depend on θ.

A statistic $T\left(X_{1}, \ldots, X_{n}\right)$ is sufficient for θ iff the joint probability function factors $f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=g\left(T\left(x_{1}, \ldots, x_{n}\right), \theta\right) h\left(x_{1}, \ldots, x_{n}\right)$.

Theorem 9.2 (Rao-Blackwell). If T is sufficient for θ, let $\tilde{\theta}=E(\hat{\theta} \mid T)$. Then $E(\tilde{\theta}-\theta)^{2} \leq E(\hat{\theta}-\theta)^{2}$.

10 Hypothesis testing

- Rejecting H_{0} when it is true is called type I error, its probability is the significance level, denoted α.
- Accepting H_{0} when it is false is called type II error, its probability is β.
- The probability that H_{0} is rejected when it is false is called the power of the test, given by $1-\beta$.
- Likelihood ratio or test statistic: $P\left(x \mid H_{0}\right) / P\left(x \mid H_{1}\right)$.
- Simple hypotheses completely specify the probability distribution.

Theorem 10.1 (Neyman-Pearson lemma). Suppose H_{0} and H_{1} are simple hypotheses and the test that rejects H_{0} whenever the likelihood ratio is less that chas significance level α. Then any other test which has significance level leq α has power leq that of the likelihood ratio test.
Theorem 10.2. Suppose that for every $\theta_{0} \in \Theta$ there is a test at level α of the hypothesis that $\theta=\theta_{0}$. Denote the acceptance region as $A\left(\theta_{0}\right)$. Then the set $C(X)=\{\theta \mid X \in A(\theta)\}$ is a $1-\alpha$ confidence region for θ.
Theorem 10.3. Suppose that $C(X)$ is a $1-\alpha$ confidence region for θ, that is, for every $\theta_{0}, P\left[\theta_{0} \in C(X) \mid \theta=\theta_{0}\right]=1-\alpha$. Then an acceptance region for a test at level α of the hypothesis $\theta=\theta_{0}$ is $A\left(\theta_{0}\right)=\left\{X \mid \theta_{0} \in C(X)\right\}$.

10.1 Generalised likelihood ratio tests

Suppose hypotheses H_{0} has parameter space ω_{0} and H_{1} has parameter space ω_{1}, and let $\Omega=\omega_{0} \cup \omega_{1}$. We like to use the test statistic $\Lambda=\frac{\max _{\theta \in \omega_{0}}(l i k(\theta))}{\max _{\theta \in \Omega}(l i k(\theta))}$. The rejection threshold is chosen such that $P\left(\Lambda \leq \lambda_{0} \mid H_{0}\right)=\alpha$.

For the multinomial distribution, the likelihood ratio is given by $\Lambda=$ $\prod_{i}^{m}\left(\frac{p_{i}(\hat{\theta})}{\hat{p}_{i}}\right)^{x_{i}}$. Pearson's statistic is more commonly used to test goodness of fit: $\chi^{2}=\sum_{i}^{m} \frac{\left[x_{i}-n p_{i}(\hat{\theta})\right]^{2}}{n p_{i}(\hat{\theta})}$.

