
1 Probability

• Baye’s theorem P (B) = P (B | A)P (A) + P (B | AC)P (AC).

• Baye’s first formula P (B) =
∑
P (B | Ai)P (Ai).

• Baye’s second formula P (Ai | B) =
P (B|Ai)P (Ai)∑
P (B|Aj)P (Aj)

.

2 Distributions

2.1 Binomial distribution

• Total number of successes in n Bernoulli trials.

• PDF: P (X = k) =
(n
k

)
pk(1− p)n−k.

• MGF: Mx(t) = (1− p− pet)n.

• E(X) = np, Var(X) = np(1− p), I(θ) = n
p(1−p) .

• When n large, p small, np moderate, Bin(n, p) ≈ Po(np).

2.2 Negative binomial distribution

• Number of independent Bernoulli trials performed until r successes.

• PDF: P (X = k) =
(k−1
r−1

)
pr(1− p)k−r.

• MGF: M(t) =
(

1−p
1−pet

)r
.

• E(X) = r(1− p)/p2, I(θ) = r
p(1−p)2 .

2.3 Geometric distribution

• Infinite Bernoulli trials, total number of trials up to and including
the first success.

• PDF: P (X = k) = p(1− p)k−1.

• CDF: 1− (1− p)k.

• MGF: Mx(t) = pet

1−(1−p)et .

• E(X) = 1/p, Var(X) = (1− p)/p2.

2.4 Poisson distribution

• PDF: P (X = k) = λk

k!
e−λ

• MGF: Mx(t) = eλ(et−1).

• E(X) = λ, Var(X) = λ, I(θ) = 1/λ.

2.5 Exponential distribution

• PDF: f(x) = λe−λx for x ≥ 0.

• CDF: F (x) =
´ x
−∞ f(u) du = 1− e−λx for x ≥ 0.

• E(X) = 1/λ, Var(X) = 1/λ2, I(θ) = 1/λ2.

2.6 Gamma distribution

• PDF: f(x) = λe−λx(λx)α−1

Γ(α)
, where Γ(α) =

´∞
0 xα−1e−x dx.

• MGF: (1− t/λ)−α.

• E(X) = α/λ, Var(X) = α/λ2.

• Γ(1, λ) = Exp(λ).

2.7 Normal distribution

• PDF: f(x) = 1
σ
√

2π
exp
(
− (x−µ)2

2σ2

)
.

• MGF: Mx(t) = exp
(
µt+ σ2t2

2

)
.

• E(X) = µ, Var(X) = σ2.

Let X1, . . . , Xn be sampled from a normal distribution. Define the
sample mean and variance

X̄ =
1

n

n∑
i=1

Xi S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2. (1)

Then E(X̄) = µ, Var(X̄) = σ2/n. Furthermore X and S2 are
independent.

(n− 1)S2

σ2
∼ χ2

n−1 (2)

X̄ − µ
S/
√
n
∼ tn−1 (3)

2.8 Chi square distribution

If Z is standard normal, then U = Z2 is chi-square with 1 dof. If Ui are
chi-square with 1 dof, then V = U1 + · · ·+ Un is chi-square with n dof.

• E(V ) = n, Var(V ) = 2n.

• MGF: M(t) = (1− 2t)−n/2.

• χ2
n = Γ(α = n

2
, λ = 1

2
)

• χ2
m + χ2

n = χ2
m+n.

2.9 t distribution

If Z is standard normal and U ∼ χ2
n, then Z/

√
U/n is a t distribution

with n dof.

• PDF: f(t) =
Γ[(n+1)/2]√
nπΓ(n/2)

(1 + t2/n)−(n+1)/2.

2.10 F distribution

U ∼ χ2
m and V ∼ χ2

n then W =
U/m
V/n

is a F distribution with m and n

dof.

3 Random variables

Let X have PDF fX CDF FX , and Y = aX + b, then

• FY (y) = P (Y ≤ y) = FX( y−b
a

),

• fy(y) = d
dy
FY (y) = 1

a
fX( y−b

a
).

• Let U be uniform on [0, 1] and X = F−1(U). Then the CDF of X
is F .

4 Extrema and order statistics

X1, . . . , Xn have CDF F and density f . Let U be their max and V be
their min.

• FU (u) = P (U ≤ u) = [F (u)]n, fU (u) = nf(u)[F (u)]n−1.

• FV (v) = 1− [1− F (v)]n, fV (v) = nf(v)[1− F (v)]n−1.

• fk(x) = n!
(k−1)!(n−k)!

f(x)[F (x)]k−1[1− F (x)]n−k.

5 Expectation value and variance

Let Y = g(X). Then E(Y ) =
∑
g(x)p(x) or E(Y ) =

´∞
−∞g(x)f(x) dx

(can generalise for joint variables).

• If X is nonnegative continuous, E(X) =
´∞
0 1− F (x) dx.

• If X and Y are independent then E[g(X)h(Y )] = E[g(X)]E[h(Y )].

• E[a+ bX] = a+ bE[X].

Define Var(X) =
∑

(xi − µ)2p(xi) or Var(X) =
´∞
−∞(x − µ)2f(x) dx.

Define Cov(X,Y ) = E[(X − µX)(Y − µY )].

• Var(a+ bX) = b2 Var(X).

• Var(X) = E(X2)− E(X)2.
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6 Moment generating functions

The MGF of X is defined as M(t) = E[etX ].

• If the MGF exists on an open interval containing 0, then it uniquely
determines the probability distribution.

• If X and Y are independent, then MX+Y (t) = MX(t)MY (t).

7 Delta method

Perform Taylor expansion about µX :

Y = g(X) ≈ g(µX) + (X − µX)g′(µX) +
1

2
(X − µX)2g′′(µX). (4)

E(Y ) ≈ g(µX) +
1

2
σ2
Xg
′′(µX) (5)

Var(Y ) ≈ σ2
X [g′(µX)]2 (6)

8 Central Limit Theorem

Theorem 8.1. Let X1, . . . be IID with mean 0 and variance σ2. Let
Sn =

∑n
i Xi. Then

lim
n→∞

P (
Sn

σ
√
n
≤ x) = Φ(x). (7)

where Φ is the CDF of the normal distribution.

9 Parameter estimation

9.1 Method of moments

Define the k-th sample moment as µ̂k = 1
n

∑
iX

k
i . Suppose we want to

estimate θ1 and θ2. Express θ1 and θ2 in terms of the actual moments:

θ1 = f1(µ1, µ2) θ2 = f2(µ1, µ2) (8)

then the method of moments estimates are

θ̂1 = f1(µ̂1, µ̂2) θ̂2 = f2(µ̂1, µ̂2) (9)

We can use bootstrap to simulate N samples of size n from the distribu-
tion with θ̂1 and θ̂2. For each sample, calculate MOM estimates θ∗1 and
θ∗2 . Use N values of ∗ to approximate sampling dist.

9.2 Maximum likelihood estimate

If Xi are iid, then define likelihood lik(θ) =
∏
f(Xi | θ). Then find

maxima for l(θ) = log(lik(θ)). Bootstrap can also be used. Just change
MOM to MLE above.

Suppose now X1, . . . , Xm, the counts in cells 1, . . . ,m, follow a multi-
nomial distribution with cell probabilities p1, . . . , pm that we want to
estimate. Use Lagrange multiplier

L(p1, . . . , pm, λ) = logn!−
m∑
i=1

log xi! +
m∑
i=1

xi log pi + λ

(
m∑
i=1

pi − 1

)
(10)

solve ∇L = 0.

Let θ0 be the true value.

• Under appropriate conditions, the MLE is consistent, i.e. θ̂ con-
verges to θ0 in probability.

• Under appropriate conditions,

I(θ) = E

[
∂

∂θ
log f(X | θ)

]2

= −E
[
∂2

∂θ2
log f(X | θ)

]
(11)

• Under approriate conditions,
√
nI(θ0)(θ̂ − θ0) tends to standard

normal.

Confidence intervals:

• For µ, X̄ ± S√
n
tn−1(α/2).

• For σ2.

(
nσ̂2

χ2
n−1(α/2)

, nσ̂2

χ2
n−1(1−α/2)

)
.

• Approximate CI for θ0: θ̂ ± z(α/2)√
nI(θ̂)

.

• Use bootstrap. Generate B samples from a dist. with θ̂ and
for each sample make estimate θ∗. Approximate distribution
θ̂ − θ0 by θ∗ − θ̂. Use quantiles to make an approximate CI,
P (θ̂ − δ̄ ≤ θ0 ≤ θ̂ − δ) = 1− α.

9.3 Bayesian approach

If we have prior distribution fΘ(θ), the distribution of Θ given the data
X is the posterior distribution:

fΘ|X(θ | x) =
fx|θ(x | θ)fΘ(θ)´
fx|θ(x | θ)fΘ(θ) dθ

. (12)

9.4 Efficiency

Mean square error is also Var(θ̂)+(E(θ̂)−θ0)2. If an estimate is unbiased,

E(θ̂) = θ0 and MSE becomes Var(θ̂). Efficiency is defined as the ratio of
variances.

Theorem 9.1 (Carmer-Rao inequality). Under appropriate conditions,
if T is an unbiased estimate of θ, then Var(T ) ≥ 1/(nI(θ)).

9.5 Sufficiency

A statistic T (X1, . . . , Xn) is sufficient for θ is the conditional distribution
of X1, . . . , Xn given T = t does not depend on θ.

A statistic T (X1, . . . , Xn) is sufficient for θ iff the joint probability func-
tion factors f(x1, . . . , xn | θ) = g(T (x1, . . . , xn), θ)h(x1, . . . , xn).

Theorem 9.2 (Rao-Blackwell). If T is sufficient for θ, let θ̃ = E(θ̂ | T ).

Then E(θ̃ − θ)2 ≤ E(θ̂ − θ)2.

10 Hypothesis testing

• Rejecting H0 when it is true is called type I error, its probability
is the significance level, denoted α.

• Accepting H0 when it is false is called type II error, its probability
is β.

• The probability that H0 is rejected when it is false is called the
power of the test, given by 1− β.

• Likelihood ratio or test statistic: P (x | H0)/P (x | H1).

• Simple hypotheses completely specify the probability distribution.

Theorem 10.1 (Neyman-Pearson lemma). Suppose H0 and H1 are
simple hypotheses and the test that rejects H0 whenever the likelihood
ratio is less that c has significance level α. Then any other test which
has significance level leq α has power leq that of the likelihood ratio test.

Theorem 10.2. Suppose that for every θ0 ∈ Θ there is a test at level
α of the hypothesis that θ = θ0. Denote the acceptance region as A(θ0).
Then the set C(X) = {θ | X ∈ A(θ)} is a 1− α confidence region for θ.

Theorem 10.3. Suppose that C(X) is a 1 − α confidence region for
θ, that is, for every θ0, P [θ0 ∈ C(X) | θ = θ0] = 1 − α. Then an
acceptance region for a test at level α of the hypothesis θ = θ0 is
A(θ0) = {X | θ0 ∈ C(X)}.

10.1 Generalised likelihood ratio tests

Suppose hypotheses H0 has parameter space ω0 and H1 has param-
eter space ω1, and let Ω = ω0 ∪ ω1. We like to use the test statis-

tic Λ =
maxθ∈ω0

(lik(θ))

maxθ∈Ω(lik(θ))
. The rejection threshold is chosen such that

P (Λ ≤ λ0 | H0) = α.

For the multinomial distribution, the likelihood ratio is given by Λ =∏m
i

(
pi(θ̂)
p̂i

)xi
. Pearson’s statistic is more commonly used to test good-

ness of fit: χ2 =
∑m
i

[xi−npi(θ̂)]2

npi(θ̂)
.
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